Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

State variable

From Wikipedia, the free encyclopedia

A state variable is one of the set of variables that are used to describe the mathematical "state" of a dynamical system. Intuitively, the state of a system describes enough about the system to determine its future behaviour in the absence of any external forces affecting the system. Models that consist of coupled first-order differential equations are said to be in state-variable form.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    14 291
    1 613 142
    393 894
  • Mathematical Biology. 04: Steady States and Linearization
  • What are variables, expressions, and equations? | Introduction to algebra | Algebra I | Khan Academy
  • Mathematical Model of Control System

Transcription

Examples

Control systems engineering

In control engineering and other areas of science and engineering, state variables are used to represent the states of a general system. The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the state equations, and the equations expressing the values of the output variables in terms of the state variables and inputs are called the output equations. As shown below, the state equations and output equations for a linear time invariant system can be expressed using coefficient matrices: A, B, C, and D

where N, L and M are the dimensions of the vectors describing the state, input and output, respectively.

Discrete-time systems

The state vector (vector of state variables) representing the current state of a discrete-time system (i.e. digital system) is , where n is the discrete point in time at which the system is being evaluated. The discrete-time state equations are

which describes the next state of the system (x[n+1]) with respect to current state and inputs u[n] of the system. The output equations are

which describes the output y[n] with respect to current states and inputs u[n] to the system.

Continuous time systems

The state vector representing the current state of a continuous-time system (i.e. analog system) is , and the continuous-time state equations giving the evolution of the state vector are

which describes the continuous rate of change of the state of the system with respect to current state x(t) and inputs u(t) of the system. The output equations are

which describes the output y(t) with respect to current states x(t) and inputs u(t) to the system.

See also

References

  1. ^ Palm, III William J. (2009). System Dynamics (2nd ed.). McGraw-Hill Medical Publishing. p. 420. ISBN 978-0-07-126779-3.
This page was last edited on 10 April 2023, at 10:46
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.