Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

From Wikipedia, the free encyclopedia

The Steane code is a tool in quantum error correction introduced by Andrew Steane in 1996. It is a CSS code (Calderbank-Shor-Steane), using the classical binary [7,4,3] Hamming code to correct for both qubit flip errors (X errors) and phase flip errors (Z errors). The Steane code encodes one logical qubit in 7 physical qubits and is able to correct arbitrary single qubit errors.

Its check matrix in standard form is

where H is the parity-check matrix of the Hamming code and is given by

The Steane code is the first in the family of quantum Hamming codes, codes with parameters for integers . It is also a quantum color code.

Expression in the stabilizer formalism

In a quantum error-correcting code, the codespace is the subspace of the overall Hilbert space where all logical states live. In an -qubit stabilizer code, we can describe this subspace by its Pauli stabilizing group, the set of all -qubit Pauli operators which stabilize every logical state. The stabilizer formalism allows us to define the codespace of a stabilizer code by specifying its Pauli stabilizing group. We can efficiently describe this exponentially large group by listing its generators.

Since the Steane code encodes one logical qubit in 7 physical qubits, the codespace for the Steane code is a -dimensional subspace of its -dimensional Hilbert space.

In the stabilizer formalism, the Steane code has 6 generators:

Note that each of the above generators is the tensor product of 7 single-qubit Pauli operations. For instance, is just shorthand for , that is, an identity on the first three qubits and an gate on each of the last four qubits. The tensor products are often omitted in notation for brevity.

The logical and gates are

The logical and states of the Steane code are

Arbitrary codestates are of the form .

References

  • Steane, Andrew (1996). "Multiple-Particle Interference and Quantum Error Correction". Proc. R. Soc. Lond. A. 452 (1954): 2551–2577. arXiv:quant-ph/9601029. Bibcode:1996RSPSA.452.2551S. doi:10.1098/rspa.1996.0136. S2CID 8246615.
This page was last edited on 30 April 2024, at 00:18
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.