Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Superfactorial

From Wikipedia, the free encyclopedia

In mathematics, and more specifically number theory, the superfactorial of a positive integer is the product of the first factorials. They are a special case of the Jordan–Pólya numbers, which are products of arbitrary collections of factorials.

Definition

The th superfactorial may be defined as:[1]

Following the usual convention for the empty product, the superfactorial of 0 is 1. The sequence of superfactorials, beginning with , is:[1]
1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000, ... (sequence A000178 in the OEIS)

Properties

Just as the factorials can be continuously interpolated by the gamma function, the superfactorials can be continuously interpolated by the Barnes G-function.[2]

According to an analogue of Wilson's theorem on the behavior of factorials modulo prime numbers, when is an odd prime number

where is the notation for the double factorial.[3]

For every integer , the number is a square number. This may be expressed as stating that, in the formula for as a product of factorials, omitting one of the factorials (the middle one, ) results in a square product.[4] Additionally, if any integers are given, the product of their pairwise differences is always a multiple of , and equals the superfactorial when the given numbers are consecutive.[1]

References

  1. ^ a b c Sloane, N. J. A. (ed.), "Sequence A000178 (Superfactorials: product of first n factorials)", The On-Line Encyclopedia of Integer Sequences, OEIS Foundation
  2. ^ Barnes, E. W. (1900), "The theory of the G-function", The Quarterly Journal of Pure and Applied Mathematics, 31: 264–314, JFM 30.0389.02
  3. ^ Aebi, Christian; Cairns, Grant (2015), "Generalizations of Wilson's theorem for double-, hyper-, sub- and superfactorials", The American Mathematical Monthly, 122 (5): 433–443, doi:10.4169/amer.math.monthly.122.5.433, JSTOR 10.4169/amer.math.monthly.122.5.433, MR 3352802, S2CID 207521192
  4. ^ White, D.; Anderson, M. (October 2020), "Using a superfactorial problem to provide extended problem-solving experiences", PRIMUS, 31 (10): 1038–1051, doi:10.1080/10511970.2020.1809039, S2CID 225372700

External links

This page was last edited on 3 February 2023, at 22:04
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.