Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

The Classical Groups

From Wikipedia, the free encyclopedia

In Weyl's wonderful and terrible1 book The Classical Groups [W] one may discern two main themes: first, the study of the polynomial invariants for an arbitrary number of (contravariant or covariant) variables for a standard classical group action; second, the isotypic decomposition of the full tensor algebra for such an action.

1Most people who know the book feel the material in it is wonderful. Many also feel the presentation is terrible. (The author is not among these latter.)

Howe (1989, p.539)

The Classical Groups: Their Invariants and Representations is a mathematics book by Hermann Weyl (1939), which describes classical invariant theory in terms of representation theory. It is largely responsible for the revival of interest in invariant theory, which had been almost killed off by David Hilbert's solution of its main problems in the 1890s.

Weyl (1939a) gave an informal talk about the topic of his book. There was a second edition in 1946.

YouTube Encyclopedic

  • 1/2
    Views:
    313
    3 756 974
  • Concentration of Measure on the Compact Classical Matrix Groups - Elizabeth Meckes
  • What Latin Sounded Like - and how we know

Transcription

Contents

Chapter I defines invariants and other basic ideas and describes the relation to Felix Klein's Erlangen program in geometry.

Chapter II describes the invariants of the special and general linear group of a vector space V on the polynomials over a sum of copies of V and its dual. It uses the Capelli identity to find an explicit set of generators for the invariants.

Chapter III studies the group ring of a finite group and its decomposition into a sum of matrix algebras.

Chapter IV discusses Schur–Weyl duality between representations of the symmetric and general linear groups.

Chapters V and VI extend the discussion of invariants of the general linear group in chapter II to the orthogonal and symplectic groups, showing that the ring of invariants is generated by the obvious ones.

Chapter VII describes the Weyl character formula for the characters of representations of the classical groups.

Chapter VIII on invariant theory proves Hilbert's theorem that invariants of the special linear group are finitely generated.

Chapter IX and X give some supplements to the previous chapters.

References

This page was last edited on 9 June 2022, at 20:29
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.