Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
English Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Whittaker model

From Wikipedia, the free encyclopedia

In representation theory, a branch of mathematics, the Whittaker model is a realization of a representation of a reductive algebraic group such as GL2 over a finite or local or global field on a space of functions on the group. It is named after E. T. Whittaker even though he never worked in this area, because (Jacquet 1966, 1967) pointed out that for the group SL2(R) some of the functions involved in the representation are Whittaker functions.

Irreducible representations without a Whittaker model are sometimes called "degenerate", and those with a Whittaker model are sometimes called "generic". The representation θ10 of the symplectic group Sp4 is the simplest example of a degenerate representation.

YouTube Encyclopedic

  • 1/3
    Views:
    541
    643
    901
  • David Helm: Whittaker models, converse theorems, and the local Langlands correspondence for ...
  • Thomas Lam, Total positivity, crystals and Whittaker functions
  • Restriction problem for non-generic representation of Arthur type - Wee Teck Gan

Transcription

Whittaker models for GL2

If G is the algebraic group GL2 and F is a local field, and τ is a fixed non-trivial character of the additive group of F and π is an irreducible representation of a general linear group G(F), then the Whittaker model for π is a representation π on a space of functions ƒ on G(F) satisfying

Jacquet & Langlands (1970) used Whittaker models to assign L-functions to admissible representations of GL2.

Whittaker models for GLn

Let be the general linear group , a smooth complex valued non-trivial additive character of and the subgroup of consisting of unipotent upper triangular matrices. A non-degenerate character on is of the form

for and non-zero . If is a smooth representation of , a Whittaker functional is a continuous linear functional on such that for all , . Multiplicity one states that, for unitary irreducible, the space of Whittaker functionals has dimension at most equal to one.

Whittaker models for reductive groups

If G is a split reductive group and U is the unipotent radical of a Borel subgroup B, then a Whittaker model for a representation is an embedding of it into the induced (Gelfand–Graev) representation IndG
U
(χ), where χ is a non-degenerate character of U, such as the sum of the characters corresponding to simple roots.

See also

References

  • Jacquet, Hervé (1966), "Une interprétation géométrique et une généralisation P-adique des fonctions de Whittaker en théorie des groupes semi-simples", Comptes Rendus de l'Académie des Sciences, Série A et B, 262: A943–A945, ISSN 0151-0509, MR 0200390
  • Jacquet, Hervé (1967), "Fonctions de Whittaker associées aux groupes de Chevalley", Bulletin de la Société Mathématique de France, 95: 243–309, doi:10.24033/bsmf.1654, ISSN 0037-9484, MR 0271275
  • Jacquet, H.; Langlands, Robert P. (1970), Automorphic forms on GL(2), Lecture Notes in Mathematics, Vol. 114, vol. 114, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0058988, ISBN 978-3-540-04903-6, MR 0401654, S2CID 122773458
  • J. A. Shalika, The multiplicity one theorem for , The Annals of Mathematics, 2nd. Ser., Vol. 100, No. 2 (1974), 171-193.

Further reading

This page was last edited on 8 October 2023, at 21:25
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.