Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Trampa atómica

De Wikipedia, la enciclopedia libre

Una trampa atómica o trampa magnética es un dispositivo que utiliza un campo magnético para atrapar neutrones mediante un momento magnético. Aunque tales dispositivos se han utilizado con diferentes propósitos en física, se los conoce especialmente por constituir la última etapa en el proceso de enfriamiento de átomos para lograr el condensado de Bose-Einstein. Esta aplicación fue propuesta originalmente por el físico David Pritchard.[1]

YouTube Encyclopedic

  • 1/3
    Views:
    5 321
    2 504 896
    7 303 628
  • Reloj Atómico de Fuente en el CENAM (cámara magento-óptica)
  • Experimentos de fisica
  • Cómo hacer MOCO radiactivo - SLIME fluorescente (Experimentos Caseros)

Transcription

Principio de operación

Muchos átomos tiene un momento magnético, es decir, que su energía cambia en un campo magnético de acuerdo a la ecuación:

.

De acuerdo con los principios de mecánica cuántica, el momento magnético de un átomo será cuantizado, vale decir, tomará alguno de ciertos valores discretos. Si el átomo se coloca en un fuerte campo magnético su momento se alineará con el campo. Si un número de átomos se colocan en el mismo campo, se distribuirán sobre los varios valores permitidos de quantum magnético para ese átomo.

Si un campo magnético variable se superpone al campo fijo, aquellos átomos cuyos momentos están alineados con el campo tendrán menor energía en un campo mayor. Como una pelota cuesta abajo en una colina, los átomos tenderán a ocupar lugares con un campo mayor, por lo que se los denomina átomos «buscadores de campo fuerte».

A la inversa, aquellos átomos con un momento opuesto al campo tendrán mayor energía en un campo fuerte, tendiendo a ocupar lugares en un campo más débil, por lo que se los llama átomos «buscadores de campo débil».

Es imposible producir un máximo local de magnitud de campo magnético en el espacio. Sin embargo sí puede producirse un mínimo local. Este mínimo puede atrapar átomos buscadores de campo débil, si no tienen suficiente energía cinética como para escapar.

Normalmente las trampas atómicas tienen un campo relativamente mínimo y solo son capaces de atrapar átomos cuya energía cinética corresponde a temperaturas del orden de una fracción de kelvin.

El mínimo requerido para la trampa magnética puede producirse de diferentes formas, incluyendo trampas magnéticas permanentes, trampas con configuración Ioffe, trampas QUIC, y otras.

Trampa atómica de microchip

Trampa atómica de microchip desarrollada en el ILS,2005.

La magnitud mínima del campo magnético puede lograrse mediante el llamado «microchip atómico».[2]​ En la figura se muestra uno de los primeros microchips utilizados como trampa atómica. El conductor en forma de Z (el circuito dorado impreso sobre la superficie de silicio) se coloca dentro del campo magnético uniforme cuya fuente no se ve en la figura. Solo serán atrapados los átomos con campo magnético de spin positivo. A fin de prevenir la mezcla de estados de spin, el campo magnético externo se inclinó en el plano del chip, proveyendo la rotación adiabática del spin al movimiento del átomo. En una primera aproximación solo la magnitud, pero no la orientación del campo magnético es responsable de la energía necesaria para atrapar al átomo.

El chip mostrado tiene un tamaño de 2 x 2 cm, pensado par simplificar su fabricación: no obstante podría ser mucho menor. Con métodos litográficos convencionales puede fabricarse un conjunto de trampas, donde cada conjunto se considera como prototipo de una celda de memoria de q-bits en una computadora cuántica. La forma de transferir átomos o q-bits entre trampas está aún en desarrollo. Se asume que existe un control eléctrico mediante electrodos adicionales o uno óptico-adiabático, sin frecuencias resonantes.

Aplicaciones del condensado de Bose-Einstein

El condensado de Bose-Einstein requiere condiciones de muy alta densidad y muy baja temperatura en una nube de átomos. Se utiliza típicamente el enfriamiento por láser en una trampa magneto-óptica. Sin embargo, tal enfriamiento está limitado por el impulso de retroceso que recibe el átomo de un fotón simple. Lograr el condensado requiere enfriar a los átomos más allá del enfriamiento por láser, lo que significa que los láseres utilizados deben apagarse e iniciar un nuevo método de captura. Las trampas magnéticas se han usado para mantener muy fríos los átomos mientras el enfriamiento por evaporación reduce la temperatura para alcanzar el condensado.

Referencias

  1. David E. Pritchard. "Cooling neutral atoms in a magnetic trap for precision spectroscopy." Phys. Rev. Lett., 51, 1336 (1983).
  2. M.Horikoshi; K.Nakagawa (2006). «Atom chip based fast production of Bose–Einstein condensate». Applied Physics B (3 edición) 82: 363-366. doi:10.1007/s00340-005-2083-z. 
  • M. H. Anderson, et al. "Observation of Bose-Einstein condensation in a dilute atomic vapor." Science, 269, 198 (1995).

Enlaces externos

Esta página se editó por última vez el 13 abr 2020 a las 18:03.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.