Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Алгебраическая группа

Из Википедии — свободной энциклопедии

Алгебраическая группа — это группа, являющаяся одновременно алгебраическим многообразием, причём групповая операция и операция взятия обратного элемента являются регулярными отображениями многообразий.

В терминах теории категорий, алгебраическая группа — это групповой объект в категории алгебраических многообразий.

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    1 621
    3 692
    44 994
  • Linear Algebraic Groups: an overview by Wilberd van der Kallen
  • 001 Linear Algebraic Groups: an introductory course by K N R
  • Group Theory Part 1

Субтитры

Свойства

Несколько важных классов групп можно наделить структурой алгебраической группы:

Обратно, эллиптические кривые — пример алгебраических многообразий, которые можно наделить структурой алгебраической группы.

Существуют два класса алгебраических групп, свойства которых настолько хорошо изучены, что их обычно рассматривают отдельно: абелевы многообразия и линейные алгебраические группы. Существуют также алгебраические группы, не принадлежащие ни одному из этих классов — например, такие группы естественным образом возникают в теории обобщённых якобианов[en]. Однако, согласно структурной теореме Шевалле, любая связная алгебраическая группа над совершенным полем содержит нормальную линейную алгебраическую подгруппу, фактор по которой — абелево многообразие.

Согласно другой базовой теореме, любая группа, являющаяся аффинным алгебраическим многообразием, допускает точное конечномерное представление, то есть является группой матриц с элементами в поле k, заданной полиномиальными уравнениями с коэффициентами в k. Это значит, что определение аффинной алгебраической группы является излишним: всегда можно использовать более конкретное её определение как группы матриц.

Данное выше определение подходит только для групп над алгебраически замкнутым полем. Существуют также «алгебраические группы над кольцом», определяемые при помощи языка схем: групповая схема над коммутативным кольцом R — это групповой объект в категории схем над R.

Алгебраическая подгруппа алгебраической группы — это подгруппа, замкнутая в топологии Зарисского. Гомоморфизм алгебраических групп — это регулярное отображение соответствующих многообразий, являющееся одновременно гомоморфизмом групп; алгебраическую подгруппу можно эквивалентным образом определить как образ инъективного гомоморфизма.

Примечания

Эта страница в последний раз была отредактирована 7 июля 2020 в 13:27.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).