Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Звёздная динамика — раздел звёздной астрономии, изучающий движения звёзд под воздействием гравитационных полей. Основными объектами изучения являются двойные и кратные звёзды, рассеянные и шаровые скопления, галактики (в том числе и Млечный Путь), скопления и сверхскопления галактик как звёздные системы.

Звёздная динамика использует и методы аналитической механики, и методы статистической физики. Это обусловлено тем, что в реальных звёздных системах (без учёта кратных звёзд) количество объектов зачастую слишком велико даже для методов численного моделирования, не говоря уже об аналитическом решении гравитационной задачи N тел. Учитывая большое количество объектов в звёздной системе, динамика звёзд обычно связана с более глобальными, статистическими свойствами нескольких орбит, а не с конкретными данными о положениях и скоростях отдельных орбит[1].

Движение звёзд в галактике или в шаровом звёздном скоплении в основном определяется средним распределением других, удалённых звёзд. Звёздные столкновения включают такие процессы, как релаксация, массовая сегрегация, приливные силы и динамическое трение, которые влияют на траектории членов системы.

Звёздная динамика также имеет отношение к физике плазмы. Эти две области широко изучались в 20-м веке и обе заимствовали математический формализм, первоначально разработанный в области механики жидкости.

Ключевые концепты

Звёздная динамика включает в себя определение гравитационного потенциала значительного количества звёзд. Звёзды могут быть смоделированы как точечные массы, орбиты которых определяются составным взаимодействием друг с другом. Как правило, эти точечные массы представляют звёзды в различных скоплениях или галактиках, таких как скопление галактик или шаровое звёздное скопление. Из 2-го закона Ньютона, уравнение, описывающее взаимодействия изолированной звёздной системы, можно записать в виде формулы

являющейся формулировкой гравитационной задачи N тел. На любого индивидуального члена системы N гравитирующих тел влияют гравитационные потенциалы остальных . На практике, невозможно вычислить гравитационные потенциалы системы, складывая все точечно-массовые потенциалы в системе, поэтому звёздные динамики разрабатывают потенциальные модели которые могут точно моделировать систему, оставаясь при этом недорогими в вычислительном отношении[2]. Гравитационный потенциал зависит от гравитационного поля :

тогда как плотность тела связана с потенциалом через уравнение Пуассона:

Гравитационные столкновения и релаксация

Звёзды в звёздной системе влияют на траектории друг друга из-за сильных и слабых гравитационных столкновений. Столкновения между двумя звёздами определяются как сильные, если изменение потенциальной энергии больше или равно их начальной кинетической энергии. Сильные столкновения редки, и они, как правило, считаются важными только в плотных звёздных системах, таких как центры шаровых скоплений. Слабые столкновения оказывают более глубокий эффект на эволюцию звёздной системы путем воздействия на траектории многих орбит. Гравитационные столкновения могут быть изучены с помощью концепции релаксации звёзд.

Релаксация — процесс установления статического равновесия в физической системе, состоящей из многих тел[3]. Простой пример, демонстрирующий релаксацию — релаксация двух тел, где орбита звезды изменяется из-за гравитационного взаимодействия с другой звездой. Изначально звезда двигается по орбите с начальной скоростью , перпендикулярной прицельному параметру, т.е. дистанции ближайшего сближения, к звезде, гравитационное поле которой повлияет на исходную орбиту. По законам Ньютона, изменение скорости звезды , примерно равно ускорению при прицельном параметре, умноженному на время ускорения. Время релаксации можно считать временем, которое требуется, что бы сравнялось с , или временем которое требуется, чтобы отклонения в скорости равнялись начальной скорости звезды. Время релаксации для звёздной системы из объектов, с учётом, что прицельный параметр больше прицельного параметра, соответствующего изменению орбиты звезды на 90 градусов (и более), примерно равно

где — время пересечения галактики (англ. crossing), т.е. время, за которое звезда проходит через всю галактику один раз.

Время релаксации идентифицирует бесстолкновительные и столкновительные звёздные системы. Динамика на временных масштабах, меньших времени релаксации, определяется как бесстолкновительная. Они также идентифицированы как системы, в которых звёзды объекта взаимодействуют с гравитационным потенциалом, а не суммой потенциалов точечнs[ масс[2] Накопленные эффекты релаксации двух тел в галактике могут привести к так называемой массовой сегрегации, когда более массивные звезды собираются около центра скоплений, а менее массивные — выталкиваются к внешним частям скопления[4].

Связи со статистической механикой и физикой плазмы

Статистический характер звёздной механики происходит от применения кинетической теории газов к звёздным системам такими физиками, как Джеймс Джинс, в начале 20-го века. Уравнения Джинса, описывающие время эволюции звёздной системы в гравитационном поле, аналогичны уравнению Эйлера для идеальной жидкости и были получены из кинетического уравнения Больцмана. Оно было выведено Людвигом Больцманом для объяснения неравновесного поведения термодинамической системы. Как и в статистической механике, в динамике звёзд используются функции распределения, которые инкапсулируют информацию о звёздной системе вероятностным образом. Одночастичная функция распределения в фазовом пространстве, , определяется таким образом, что представляет вероятность нахождения данной звезды с позицией вокруг дифференциального элемента объёма и скоростью вокруг дифференциального элемента объёма . Распределение по функциям нормируется так, что его интегрирование по всем позициям и скоростям будет равно единице. Для столкновительных систем теорема Лиувилля применяется для изучения микросостояния звёздной системы, а также широко используется для изучения различных статистических ансамблей статистической механики.

В физике плазмы кинетическое уравнение Больцмана упоминается как уравнение Власова, используемое для изучения времени эволюции функции распределения плазмы. Принимая во внимание, что Джинс применил бесстолкновительное уравнение Больцмана, наряду с уравнением Пуассона, к системе звёзд, взаимодействующих посредством большой силы тяжести, Анатолий Власов применил уравнение Больцмана с уравнениями Максвелла к системе частиц, взаимодействующих через кулоновскую силу[1]. Оба подхода отделяют себя от кинетической теории газов, вводя дальнодействующие силы для изучения долгосрочной эволюции системы многих частиц. В дополнение к уравнению Власова концепция затухания Ландау в плазме была применена Дональдом Линден-Беллом к ​​гравитационным системам для описания эффектов затухания в сферических звёздных системах[5].

Приложение

Звёздная динамика в основном используется для изучения распределения масс внутри звёздных систем и галактик. Ранние примеры применения звёздной динамики к скоплениям включают статью Альберта Эйнштейна 1921 года, в которой применена теорема вириала к сферическим звёздным скоплениям, и статью Фрица Цвикки 1933 года, в которой применена теорема вириала конкретно к кластеру Скопление Волос Вероники, который был одним из первоначальных предвестников идеи тёмной материи во Вселенной[6][7]. Уравнения Джинса использовались для понимания различных данных наблюдений звёздных движений в галактике Млечный Путь. Например, Ян Оорт использовал уравнения Джинса для определения средней плотности вещества в солнечной окрестности, тогда как концепция асимметричного дрейфа возникла из изучения уравнений Джинса в цилиндрических координатах[8]. Звёздная динамика также даёт представление о структуре формирования и эволюции галактик. Динамические модели и наблюдения используются для изучения трёхосной структуры эллиптических галактик и позволяют предположить, что видимые спиральные галактики созданы слиянием галактик[1]. Звёздные динамические модели также используются для изучения эволюции активных ядер галактик и их чёрных дыр, а также для оценки распределения массы тёмной материи в галактиках.

Примечания

  1. 1 2 3 Murdin Paul. Encyclopedia of Astronomy and Astrophysics. — 2001. — ISBN 978-0750304405.
  2. 1 2 Binney James. Galactic Dynamics. — 2008. — ISBN 978-0-691-13027-9.
  3. Поляченко Евгений Валерьевич. Основы динамики бесстолкновительных систем. — 2015.
  4. Sparke Linda. Galaxies in the Universe. — 2007. — ISBN 978-0521855938.
  5. Lynden-Bell Donald. The stability and vibrations of a gas of stars (англ.) // Monthly Notices of the Royal Astronomical Society. — Oxford University Press, 1962. — No. 124. — P. 279—296.
  6. Einstein Albert. A Simple Application of the Newtonian Law of Gravitation to Star Clusters // The Collected Papers of Albert Einstein. — 2002. — № 7. — С. 230—233. Архивировано 14 июня 2018 года.
  7. Zwicky Fritz. Republication of: The redshift of extragalactic nebulae // General Relativity and Gravitation. — 2009. — № 41. — С. 207—224. Архивировано 22 июля 2019 года.
  8. Choudhuri Arnab Rai. Astrophysics for Physicists. — 2010.

Литература

Ссылки

Эта страница в последний раз была отредактирована 20 мая 2024 в 22:57.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).