Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Карбид циркония
Изображение молекулярной модели
Общие
Систематическое
наименование
монокарбид циркония
Традиционные названия карбид циркония
Хим. формула ZrC
Рац. формула ZrC
Физические свойства
Состояние твёрдое
Молярная масса 103,23 г/моль
Плотность 6,73 г/см³
Термические свойства
Температура
 • плавления 3530 °C
 • кипения 5100 °C
Теплопроводность 11,6 Вт/(м·K)
Энтальпия
 • образования -196,65 кДж/моль
Классификация
Рег. номер CAS 12070-14-3
PubChem
Рег. номер EINECS 235-125-1
SMILES
InChI
ChemSpider
Безопасность
NFPA 704
NFPA 704 four-colored diamondОгнеопасность 0: Негорючее веществоОпасность для здоровья 0: Не представляет опасности для здоровья, не требует мер предосторожности (например, ланолин, пищевая сода)Реакционноспособность 0: Стабильно даже при действии открытого пламени и не реагирует с водой (например, гелий)Специальный код: отсутствует
0
0
0
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Карби́д цирко́нияхимическое соединение металла циркония и углерода с формулой ZrC. Представляет собой фазу внедрения с широкой областью гомогенности, которая составляет от 38,4 до 50 ат. % углерода, что отвечает формуле ZrC0,62 и ZrC1,0 соответственно[1].

Физические свойства

Карбид циркония представляет собой порошок серого цвета. Имеет кубическую гранецентрированную решетку типа NaCl, пространственная группа Fm3m, с периодом а = 0,4693 нм.

Получение

Карбид циркония можно получить одним из следующих способов[3].

  • Непосредственным насыщением циркония углеродом:

Процесс ведут в вакууме, а исходные компоненты берут в виде порошков;

  • Восстановлением оксида циркония углеродом с последующим образованием карбида:

Процесс идет через образование низших окислов циркония и последующего образования карбида циркония по реакции:

Этот метод применяется для получения технически чистого карбида циркония в промышленных масштабах. Обычно процесс проводят при температуре около 2000 °C;

  • Осаждением из газовой фазы:

В основе метода лежит реакция:

Осаждение происходит на поверхности вольфрамовой нити, разогретой до температуры 1700—2400 °C. Проведение процесса при высокой температуре (около 2400 °C) позволяет получить монокристаллический осадок. Метан может быть заменен толуолом, бензолом или ацетиленом.

[4]

Химические свойства

Карбид циркония является химически стойким соединением при комнатной температуре по отношению к серной, соляной, фосфорной, хлорной, щавелевой кислотам и смесям серной и фосфорной, серной и щавелевой кислот. Не растворяется в 10% и 20% растворах гидроксида натрия. Растворяется в кипящих серной, азотной, хлорной кислотах. Сильно растворяется в царской водке, смесях серной и азотной, азотной и плавиковой кислот[3]. Начиная с 700 °C, карбид циркония взаимодействует с кислородом с образованием ZrO2. При высоких температурах, в присутствии азота, образуются карбонитриды циркония.

Применение

Высокая температура плавления и малое поперечное сечение захвата нейтронов карбида циркония позволяет применять его как защитное покрытие на графитовых матрицах в твэлах, содержащих карбиды урана и тория. Покрытие из карбида циркония, нанесенное CVD-процессом на диоксид урана, используется как диффузионный барьер от продуктов реакции полураспада ядерного топлива[5]. Композит ZrC-UC используют в термоэлектрогенераторах. Также карбид циркония применяется как абразивный материал для полировки металлов[3].

Примечания

  1. Самсонов Г. В. Физическое материаловедение карбидов. — Наукова думка, 1974. — С. 107-109. — 454 с.
  2. Самсонов Г. В., Виницкий И. М. Тугоплавкие соединения (справочник). — Металлургия, 1976. — С. 560.
  3. 1 2 3 Косолапова Т. Я. Карбиды. — Металлургия, 1968. — С. 300.
  4. C 233. Современное производство карбида циркония. Галевский Г.В. Дата обращения: 3 августа 2019. Архивировано из оригинала 15 ноября 2017 года.
  5. Effect of Use of Zirconium Carbide Coatings on the VHTR Core Nuclear Design. Дата обращения: 21 апреля 2012. Архивировано из оригинала 16 октября 2011 года.
Эта страница в последний раз была отредактирована 11 мая 2022 в 08:19.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).