Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Оксид золота(III)

Из Википедии — свободной энциклопедии

Оксид золота​(III)​
Изображение молекулярной модели
Общие
Систематическое
наименование
Оксид золота​(III)​
Традиционные названия Окись золота
Хим. формула Au2O3
Физические свойства
Состояние красно-бурый порошок
Молярная масса 441,93 г/моль
Плотность 10,38 г/см³
Термические свойства
Температура
 • плавления 160 °C
Химические свойства
Растворимость
 • в воде не раств.
Структура
Кристаллическая структура орторомбическая, группа Fdd2
Классификация
Рег. номер CAS 1303-58-8
PubChem
Рег. номер EINECS 215-122-1
SMILES
InChI
Номер ООН <-- номер UN -->
ChemSpider
Безопасность
NFPA 704
NFPA 704 four-colored diamondОгнеопасность 0: Негорючее веществоОпасность для здоровья 1: Воздействие может вызвать лишь раздражение с минимальными остаточными повреждениями (например, ацетон)Реакционноспособность 0: Стабильно даже при действии открытого пламени и не реагирует с водой (например, гелий)Специальный код: отсутствует
0
1
0
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

Окси́д зо́лота(III) — бинарное неорганическое химическое соединение золота и кислорода с формулой Au2O3. Наиболее устойчивый оксид золота.

YouTube Encyclopedic

  • 1/2
    Views:
    4 633
    392
  • Шевельков А. В. - Неорганическая химия II - Элементы 11 группы
  • 11-класс | Химия | Ртуть и благородные металлы. Титан и молибден

Transcription

Получение

Получается из гидроксида золота(III) Au2O3 · H2O обезвоживанием при нагревании. Полная потеря воды наступает при температуре около 200 °С.[1]. Полученный таким образом оксид золота(III) аморфен. Имеет красный или красно-бурый цвет. Примесь бурого, как и в случае гидроксида золота(III), обычно связывают с присутствием небольшого количества золота(0). Монокристаллы Au2O3 были получены из аморфного оксида гидротермальным синтезом в кварцевой ампуле, заполненной на треть смесью хлорной кислоты HClO4 и перхлората щелочного металла (температура синтеза 235—275 °С, давление до 30 МПа). Полученные монокристаллы имели рубиново-красный цвет[1].

Свойства

Структура кристаллического Au2O3 орторомбическая, группа Fdd2. Атомы золота имеют тетрагональную (близкую к квадратной) координацию атомами кислорода со средним расстоянием Au–O 2,02—2,03 А. Часть атомов кислорода являются мостиковыми — одни связаны с двумя атомами золота, другие с тремя[2][3].

По данным кристаллографии, плотность равна 10,38 г/см³.

Нагрев аморфного оксида золота(III) до 260—300 °С приводит к полному разложению с выделением кислорода и металлического золота[1], хотя разложение начинается уже при более низкой температуре:

Оксид золота(III) нерастворим в воде. Заметно, хотя и медленно, растворяется в растворах щелочей, образуя тетрагидроксокомплекс Au(OH)4. Встречающиеся указания на амфотерность требуют уточнения. Поскольку золото(III) никогда не образует в растворе простых солей с катионом Au3+, а получаются только комплексные формы, то растворимость Au2O3 в некоторых кислотах обусловлена не только взаимодействием с H+, но в первую очередь именно комплексообразованием с анионом кислоты. Так, оксид золота(III) хорошо растворяется в соляной кислоте, давая HAuCl4. Умеренно растворим в азотной и серной кислотах, давая смешанные аквагидроксонитратные или аквагидроксосульфатные комплексы типа Au(OH)i(H2O)jXkz (где i + j + k = 4, X = NO3 или SO4, z = –i + kzX). Нерастворим в хлорной кислоте любой концентрации.

Оксид золота в виде плёнки на инертной подложке испытывался для получения токопроводящих соединений («золотых дорожек») в микроэлектронике. Плёнки получали магнетронным напылением, разложение оксида до золота в нужных местах проводили при помощи лазера[4].

Примечания

  1. 1 2 3 Schwarzmann E., Mohn J., Rumpel H. Uber eienkristalle von gold oxid Au2O3 // Z. Naturforschung. 1976., B. 31b, h 1, P. 135.
  2. Jones P. G., Rumpel H., Sheldrick G. M., Schwarzmann E. Gold(III) oxide and oxychloride //Gold bulletin. 1980. V 13, Issue 2 , p 56. DOI 10.1007/BF03215453
  3. Jones P. G., Rumpel H., Schwarzmann E., Sheldrick G. M., Paulus H. Gold(III) oxide // Acta crystallographica. 1979. Sect. B. V. B35. part 6. p.1435-1437
  4. Machalett F., Edinger K., Melngailis J., M. Diegel M., Steenbeck K., E. Steinbeiss E. Direct patterning of gold oxide thin films by focused ion-beam irradiation //Applied Physics A: Materials Science & Processing. 2000. V. 71, N. 3, p. 331—335, DOI: 10.1007/s003390000598
Эта страница в последний раз была отредактирована 19 марта 2024 в 11:50.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.