Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Стохастическое вложение соседей с t-распределением

Из Википедии — свободной энциклопедии

Стохастическое вложение соседей с t-распределением (англ. t-distributed Stochastic Neighbor Embedding, t-SNE) — это алгоритм машинного обучения для визуализации, разработанный Лоренсом ван дер Маатеном и Джеффри Хинтоном[1]. Он является техникой нелинейного снижения размерности[en], хорошо подходящей для вложения данных высокой размерности для визуализации в пространство низкой размерности (двух- или трехмерное). В частности, метод моделирует каждый объект высокой размерности двух- или трёхмерной точкой таким образом, что похожие объекты моделируются близко расположенными точками, а непохожие точки моделируются с большой вероятностью точками, далеко друг от друга отстоящими.

Описание

Алгоритм t-SNE состоит из двух главных шагов. Сначала t-SNE создаёт распределение вероятностей по парам объектов высокой размерности таким образом, что похожие объекты будут выбраны с большой вероятностью, в то время как вероятность выбора непохожих точек будет мала. Затем t-SNE определяет похожее распределение вероятностей по точкам в пространстве малой размерности и минимизирует расстояние Кульбака — Лейблера между двумя распределениями с учётом положения точек. Заметим, что исходный алгоритм использует евклидово расстояние между объектами как базу измерения сходства, это может быть изменено сообразно обстоятельствам.

Алгоритм t-SNE использовался для визуализации широкого ряда приложений, включая исследование компьютерной безопасности[2], музыкальный анализ[en][3], исследования по раку[en][4], биоинформатику[5] и обработку биомедицинских сигналов[6]. Алгоритм часто используется для визуализации высокоуровневых представлений, полученных из искусственной нейронной сети[7].

Поскольку t-SNE отображения часто используются для показа кластеров, а на визуализацию кластеров может оказывать значительное влияние выбранная параметризация, постольку необходимо умение работать с параметрами алгоритма t-SNE. Для выбора параметров и проверки результатов могут оказаться необходимы интерактивные[неизвестный термин] исследования[8][9]. Было продемонстрировано, что алгоритм t-SNE часто способен обнаружить хорошо отделённые друг от друга кластеры, а при специальном выборе параметров аппроксимировать простой вид спектральной кластеризации[10].

Детали

Если дан набор из объектов высокой размерности , t-SNE сначала вычисляет вероятности , которые пропорциональны похожести объектов и следующим образом:

Ван дер Маатен и Хинтон объясняли: «Похожесть точки данных точке является условной вероятностью , что для будет выбрана в качестве соседней точки, если соседи выбираются пропорционально их гауссовой плотности вероятности с центром в »[1].

Более того, вероятности с принимаются равными нулю:

Полоса пропускания гауссовых ядер устанавливается с помощью метода бисекции так, что перплексивность[en] условного распределения равна предопределённой перплексивности. Как результат полоса пропускания адаптируется плотности данных — меньшие значения используются в более плотных частях пространства данных.

Поскольку гауссово ядро использует евклидово расстояние , оно подвержено проклятию размерности и в данных высокой размерности, когда расстояния теряют возможность различать, становятся слишком похожи (асимптотически, они сходятся к константе). Предлагается подкорректировать расстояние с помощью экспоненциального преобразования, основываясь на внутреннем размере[en] каждой точки, чтобы смягчить проблему[11].

Алгоритм t-SNE стремится получить отображение в -мерное пространство (с ), которое отражает похожести , насколько это возможно. Для этого алгоритм измеряет похожесть между двумя точками и с помощью очень похожего подхода. Конкретно, определяется как

Здесь имеющее утяжелённый хвост t-распределение Стьюдента (с одной степенью свободы, которое является тем же, что и распределение Коши) используется для измерения похожести между точками в пространстве низкой размерности, чтобы иметь возможность непохожие объекты расположить на карте далеко друг от друга. Заметим, что в этом случае мы также устанавливаем

Расположения точек в пространстве малой размерности определяется минимизацией (несимметричной) расстояния Кульбака — Лейблера распределения от распределения , то есть

Минимизация расстояния Кульбака — Лейблера по отношению к точкам осуществляется с помощью градиентного спуска. Результатом оптимизации является отображение, которое отражает похожесть между объектами пространства высокой размерности.

Программное обеспечение

Примечания

Литература

  • van der Maaten L.J.P., Hinton G.E. Visualizing Data Using t-SNE // Journal of Machine Learning Research. — 2008. — Ноябрь (т. 9).
  • Gashi I., Stankovic V., Leita C., Thonnard O. An Experimental Study of Diversity with Off-the-shelf AntiVirus Engines // Proceedings of the IEEE International Symposium on Network Computing and Applications. — 2009.
  • Hamel P., Eck D. Learning Features from Music Audio with Deep Belief Networks // Proceedings of the International Society for Music Information Retrieval Conference. — 2010.
  • Jamieson A.R., Giger M.L., Drukker K., Lui H., Yuan Y., Bhooshan N. Exploring Nonlinear Feature Space Dimension Reduction and Data Representation in Breast CADx with Laplacian Eigenmaps and t-SNE // Medical Physics. — 2010. — Т. 37, вып. 1. — doi:10.1118/1.3267037. — PMID 20175497. — PMC 2807447.
  • Wallach I., Liliean R. The Protein-Small-Molecule Database, A Non-Redundant Structural Resource for the Analysis of Protein-Ligand Binding // Bioinformatics. — 2009. — Т. 25, вып. 5. — doi:10.1093/bioinformatics/btp035. — PMID 19153135.
  • Birjandtalab J., Pouyan M. B., Nourani M. Nonlinear dimension reduction for EEG-based epileptic seizure detection. — 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). — 2016. — ISBN 978-1-5090-2455-1. — doi:10.1109/BHI.2016.7455968.
  • Christopher Olah. Visualizing Representations: Deep Learning and Human Beings. — 2015.
  • Nicola Pezzotti, Boudewijn P. F. Lelieveldt, Laurens van der Maaten, Thomas Hollt, Elmar Eisemann, Anna Vilanova. Approximated and User Steerable tSNE for Progressive Visual Analytics // IEEE Transactions on Visualization and Computer Graphics. — 2017. — Т. 23, вып. 7. — ISSN 1077-2626. — doi:10.1109/tvcg.2016.2570755. — PMID 28113434.
  • Martin Wattenberg, Fernanda Viégas, Ian Johnson. How to Use t-SNE Effectively. — Distill, 2016.
  • George C. Linderman, Stefan Steinerberger. Clustering with t-SNE, provably. — 2017.
  • Erich Schubert, Michael Gertz. Intrinsic t-Stochastic Neighbor Embedding for Visualization and Outlier Detection // SISAP 2017 – 10th International Conference on Similarity Search and Applications. — 2017. — doi:10.1007/978-3-319-68474-1_13.

Ссылки

Эта страница в последний раз была отредактирована 3 февраля 2023 в 02:36.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).