Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Уравнение Д’Аламбера

Из Википедии — свободной энциклопедии

Уравнение Д’Аламбера — дифференциальное уравнение вида

где и  — функции. Впервые исследовалось Ж. Д’Аламбером (J. D’Alembert, 1748). Известно также под названием уравнения Лагранжа, частный случай при называется уравнением Клеро[1].

Решение

Интегрирование дифференциальных уравнений такого типа производится в параметрическом виде, с помощью параметра

С учётом этой подстановки, исходное уравнение принимает вид

Дифференцирование по x даёт:

или

Особые решения

Одним из решений последнего уравнения является любая функция, производная которой является постоянной , удовлетворяющей алгебраическому уравнению

так как для постоянного

Если , то , постоянная C должна быть найдена подстановкой в исходное уравнение:

так как в рассматриваемом случае , то

.

Окончательно можем написать:

Невозможно разобрать выражение (SVG (MathML можно включить с помощью плагина для браузера): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «http://localhost:6011/ru.wikipedia.org/v1/»:): {\displaystyle y = x \varphi(p_0) + f(p_0) } .

Если такое решение нельзя получить из общего, то оно называется особым.

Общее решение

Будем рассматривать обратную функцию к , тогда, воспользовавшись теоремой о производной обратной функции можно написать:

.

Это уравнение является линейным дифференциальным уравнением первого порядка, решая которое, получим выражение для x как функцию от p:

Таким образом получается решение исходного дифференциального уравнения в параметрическом виде:

.

Исключая из этой системы переменную p, получим общие решение в виде

.

Примечания

  1. Пискунов H. С. Дифференциальное и интегральное исчисления для втузов, т. 2.: Учебное пособие для втузов.. — 13-е изд.. — М.: Наука, Главная редакция физико-математической литературы, 1985. — С. 46-48. — 560 с.
Эта страница в последний раз была отредактирована 11 декабря 2021 в 08:32.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).