Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Геометрическая фигура

Из Википедии — свободной энциклопедии

Фигуры на плоскости.

Фигу́ра (лат. figura — внешний вид, образ) (англ. shape) — геометрический термин, формально применимый к произвольному множеству точек. Обычно это конечное число точек, линий или поверхностей, в том числе и в единственном числе: точка, линия или поверхность[1].

Общие определения

Фигу́ра — любое множество точек. Точка — элемент пространства. Пространство — пара множеств[2]:

Эквивалентные фигуры. Геометрия группы

Фигура эквивалентна, или равна, фигуре , если в группе имеется преобразование, переводящее в . Группа преобразований необходима для того, чтобы выполнялись симметричность и транзитивность свойства эквивалентности фигур, без чего понятие эквивалентности не имеет смысла. Другими словами, использование группы преобразований делает истинными следующие два утверждения[2]:

  • если фигура эквивалентна фигуре , то тогда и эквивалентна , другими словами, и эквивалентны;
  • если две фигуры и эквивалентны третьей , то тогда и эквивалентны.

Свойства и арифметические характеристики фигур пространства называются, согласно автору Эрлангенской программы Феликсу Клейну, геометрическими, если они не изменяются при любых преобразованиях группы , другими словами, если они одинаковы для эквивалентных фигур. Геометрией группы называется система утверждений о геометрических свойствах и арифметических характеристиках фигур[3].

Группы автоморфизмов

Автоморфным преобразованием, или автоморфизмом, относительно некоторой фигуры произвольного пространства с какой-нибудь группой преобразований называется такое преобразование группы , которое переводит в самоё себя (то есть отображает на себя) эту фигуру . Автоморфизм перемещает любую точку фигуры снова в некоторую точку этой фигуры, в частности, в ту же самую точку[4].

Особенности группы преобразований делает истинными следующее утверждение[5]:

  • множество всех автоморфизмов данной группы относительно любой фигуры есть группа — подгруппа группы .

Фигуры на плоскости

Обычно фигурой на плоскости называют замкнутые множества, которые ограничены конечным числом линий. При этом допускаются вырождения, например: угол, луч и точка считаются геометрическими фигурами.

Если все точки фигуры лежат в некоторой плоскости — она называется плоской и она может быть задана уравнением .

Порядок (степень) фигуры — это порядок (степень) уравнения, которым она задана[6].

Фигуры в (трёхмерном) пространстве

Если Φ — фигура, состоящая из всех точек (трёхмерного) пространства, удовлетворяющих уравнению , то данное уравнение — уравнение фигуры, оно задает фигуру Φ[6].

См. также

Примечания

  1. Фигура, 1988.
  2. 1 2 3 4 Ефимов Н. В. Высшая геометрия, 2004, 158. Геометрия данной группы, с. 409.
  3. Ефимов Н. В. Высшая геометрия, 2004, 158. Геометрия данной группы, с. 410.
  4. Ефимов Н. В. Высшая геометрия, 2004, 162. Группы автоморфизмов, с. 414—415.
  5. 1 2 Ефимов Н. В. Высшая геометрия, 2004, 162. Группы автоморфизмов, с. 415.
  6. 1 2 Милованов М. В., Тышкевич Р. И., Феденко А. С. Часть 1 // Алгебра и аналитическая геометрия. — Минск: Вышэйшая школа, 1984. — С. 221. — 305 с.

Источники

Эта страница в последний раз была отредактирована 24 марта 2024 в 09:38.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).