Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Численное дифференцирование

Из Википедии — свободной энциклопедии

Численное дифференцирование — совокупность методов приближённого вычисления значения производной некоторой функции, заданной таблично или имеющей сложное аналитическое выражение.

Конечные разности

Производная функции в точке определяется с помощью предела:

В числителе дроби под знаком предела стоит конечная разность функции , в знаменателе — шаг этой разности. Поэтому простейшим методом аппроксимации производной является использование конечных разностей функции с некоторым достаточно малым шагом . Например, выражение

приближает производную функции в точке с точностью до величины, пропорциональной . Использование выражения

позволяет сократить ошибку приближения до величины, пропорциональной .

Конечными разностями можно также приближать производные высших порядков.

Интерполяция

Если известны значения функции в некоторых узлах , то можно построить интерполяционный полином (например, в форме Лагранжа или в форме Ньютона) и приближенно положить

Такие выражения называются формулами численного дифференцирования.

Иногда наряду с приближенным равенством удаётся (например, используя формулу Тейлора) получить точное равенство, содержащее остаточный член , называемый погрешностью численного дифференцирования:

Такие выражения называются формулами численного дифференцирования с остаточными членами. Степень, с которой величина входит в остаточный член, называется порядком погрешности формулы численного дифференцирования.

Далее приводятся несколько формул численного дифференцирования с остаточными членами для первой и второй производных для равноотстоящих узлов с постоянным шагом , полученных с использованием формулы Лагранжа:

  • (два узла):
  • (три узла):
  • (три узла):
  • (четыре узла):

Здесь , , а — некоторая промежуточная точка между наибольшим и наименьшим из узлов.

В общем случае коэффициенты формул численного дифференцирования можно вычислить для произвольной сетки узлов и любого порядка производной.

Неустранимая погрешность

В формулах численного дифференцирования с постоянным шагом значения функции делятся на , где — порядок вычисляемой производной. Поэтому при малом неустранимые погрешности в значениях функции оказывают сильное влияние на результат численного дифференцирования. Таким образом, возникает задача выбора оптимального шага , так как погрешность собственно метода стремится к нулю при , а неустранимая погрешность растет. В результате общая погрешность, которая возникает при численном дифференцировании, может неограниченно возрастать при . Поэтому задача численного дифференцирования считается некорректно поставленной.

Комплексные числа

Классические приближения конечными разностями содержат неустранимую погрешность и являются плохо обусловленными. Однако, если функция является голоморфной, принимает вещественные значения на вещественной прямой и может быть оценена в любой окрестности любой вещественной точки комплексной плоскости, то её производная может быть вычислена устойчивыми методами. Например, первую производную можно сосчитать по формуле с комплексным шагом[1]:

где мнимая единица. Эту формулу можно получить из следующего разложения в ряд Тейлора:

В общем случае производные произвольного порядка можно вычислить с помощью интегральной формулы Коши:

Интеграл можно вычислять приближённо.

Литература

Примечания

  1. Complex Step Differentiation. Дата обращения: 4 мая 2021. Архивировано 6 мая 2021 года.

См. также


Эта страница в последний раз была отредактирована 31 декабря 2023 в 18:57.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).