Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Численное решение уравнений

Из Википедии — свободной энциклопедии

Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.

Постановка задачи

Рассмотрим методы численного решения уравнений и систем уравнений:

или

Численное решение задачи можно проводить как непосредственно (используя одноимённые методы), так и с применением оптимизационных методов, приведя задачу к соответствующему виду. Последним посвящена статья Градиентные методы.

Численные методы решения уравнений

Покажем, как можно решить изначальную систему уравнений, не прибегая к оптимизационным методам. В случае, если наша система представляет собой СЛАУ, целесообразно прибегнуть к таким методам, как метод Гаусса или метод Ричардсона. Однако мы всё же будем исходить из предположения, что вид функции нам неизвестен, и воспользуемся одним из итерационных методов численного решения. Среди большого разнообразия таковых выберем один из наиболее известных — метод Ньютона. Этот метод в свою очередь основывается на принципе сжимающего отображения. Поэтому сначала будет изложена суть последнего.

Сжимающее отображение

Определим терминологию:

Говорят, что функция осуществляет сжимающее отображение на , если

Тогда справедлива следующая основная теорема:

Теорема Банаха (принцип сжимающих отображений).
Если — сжимающее отображение на , то:
  1. Уравнение имеет единственный корень в ;
  2. Итерационная последовательность сходится к этому корню;
  3. Для очередного члена справедливо .

Из последнего пункта теоремы вытекает, что скорость сходимости любого метода на основе сжимающих отображений не менее линейной.

Поясним смысл параметра для случая одной переменной. Согласно теореме Лагранжа имеем:

Отсюда следует, что . Таким образом, для сходимости метода достаточно, чтобы

Общий алгоритм последовательных приближений

  1. Уравнение преобразуется к уравнению с тем же корнем вида , где  — сжимающее отображение.
  2. Задаётся начальное приближение и точность
  3. Вычисляется очередная итерация
    • Если , то и возврат к шагу 3.
    • Иначе и остановка.

Применительно к общему случаю операторных уравнений этот метод называется методом последовательных приближений или методом простой итерации. Однако уравнение можно преобразовывать к сжимающему отображению , имеющему тот же корень, разными способами. Это порождает ряд частных методов, имеющих как линейную, так и более высокие скорости сходимости.

Применительно к СЛАУ

Рассмотрим систему:

Для неё итерационное вычисление будет выглядеть так:

Метод будет сходится с линейной скоростью, если

Двойные вертикальные черты означают некоторую норму матрицы.

Решение уравнения cos(x)=x по методу простой итерации, очередная итерация: xn+1=cos xn, начальное приближение: x1 = −1
Решение уравнения f(x)=0 по методу Ньютона, начальное приближение: x1=a.

Метод Ньютона (метод касательных)

Одномерный случай

Оптимизация преобразования исходного уравнения в сжимающее отображение позволяет получить метод с квадратичной скоростью сходимости.

Чтобы отображение было наиболее эффективно, необходимо, чтобы в точке очередной итерации выполнялось . Будем искать решение данного уравнения в виде , тогда:

Воспользуемся тем, что , и получим окончательную формулу для :

С учётом этого сжимающая функция примет вид:

Тогда алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:

Многомерный случай

Обобщим полученный результат на многомерный случай.

Выбирая некоторое начальное приближение , находят последовательные приближения путём решения систем уравнений:

,

где .

См. также

Литература

  1. Амосов А. А., Дубинский Ю. А., Копченова Н. П. Вычислительные методы для инженеров. — М.: Мир, 1998.
  2. Бахвалов Н. С., Жидков Н. П., Кобельков Г. Г. Численные методы. — 8-е изд. — М.: Лаборатория Базовых Знаний, 2000.
  3. Волков Е. А. Численные методы. — М.: Физматлит, 2003.
  4. Коршунов Ю. М., Коршунов Ю. М. Математические основы кибернетики. — М.: Энергоатомиздат, 1972.
  5. Калиткин Н. Н. Численные методы. — М.: Наука, 1978.

Ссылки

Эта страница в последний раз была отредактирована 21 февраля 2023 в 08:44.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).