Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Кренархеоты
Sulfolobus, инфицированный вирусом Sulfolobus tengchongensis spindle-shaped virus 1 (STSV-1)[1][2][3][4]. В левой и нижней частях фотографии видны две вирусные частицы веретеновидной формы, отпочковывающиеся от клетки археи. Масштаб = 1 мкм

Sulfolobus, инфицированный вирусом Sulfolobus tengchongensis spindle-shaped virus 1 (STSV-1)[1][2][3][4]. В левой и нижней частях фотографии видны две вирусные частицы веретеновидной формы, отпочковывающиеся от клетки археи. Масштаб = 1 мкм
Научная классификация
Домен:
Тип:
Кренархеоты
Международное научное название
Crenarchaeota Garrity and Holt 2002
Синонимы
  • Eocyta[5]
  • Thermoproteaeota Oren et al. 2015[5]

Кренархео́ты[6] (лат. Crenarchaeota, от др.-греч. κρήνη — ручей, ἀρχαῖος — древний) — тип в составе домена архей, включающий единственный класс Thermoprotei Reysenbach 2002[7][8]. Тип выделен на основании анализа последовательностей 16S рРНК.

Описание

Кренархеоты — морфологически разнородная группа. Клетки кокковидной, палочковидной, дискообразной, нитевидной форм. Размеры клеток варьируют от кокков диаметром меньше микрометра (мкм) до филаментов длиной более 100 мкм[9].

Клеточный цикл у исследованных кренархеот устроен одинаково: период до удвоения ДНК (пререпликативный) короткий, а после удвоения (пострепликативный) — длинный, на него приходится от 64 до 77 % всего клеточного цикла[10].

Физиолого-биохимические свойства группы разнообразны: среди кренархеот есть ацидофилы и нейтрофилы, строгие и факультативные анаэробы и строгие аэробы, хемолитоавтотрофы и хемоорганотрофы. Многие кренархеоты используют серу в метаболизме. Наиболее общий энергетический процесс у кренархеот выглядит как H2 + S0H2S[6].

Первоначально кренархеот отделили от остальных архей на основании последовательностей рРНК. В дальнейшем было показано, что кренархеоты также отличаются от других архей отсутствием гистонов, однако впоследствии у некоторых кренархеот они были выявлены[11].

Среда обитания

Впервые представители кренархеот были обнаружены в проточной горячей воде. Сегодня их находят в термальных источниках, вулканических котлах и почвах вулканических полей на суше и горячих ключах, «чёрных курильщиках», мини-вулканах и илах в геотермальных участках под водой. Таким образом, предполагали, что в состав кренархеот входят только термофильные и гипертермофильные организмы[12].

Однако в 1996 году был обнаружен психрофильный вид Crenarchaeum symbiosum, который живёт при 10 °C в ассоциации с морскими губками. Также в составе этого типа архей обнаружены фантомные формы, живущие при температуре до −2 °C[12].

Сейчас кренархеоты обнаруживают в полевых и лесных почвах, палеопочвах, озёрных осадках, морском детрите и активном иле анаэробных очистных сооружений[12]. Анализ рРНК из разных сред показал, что кренархеоты — самые многочисленные археи в морской среде[13].

Кренархеоты распространены по всему миру. В частности, они составляют важную часть планктона в полярных, умеренных и тропических водах. Описаны два симбиотических вида кренархеот: один обитает в холодноводной голотурии, а другой был обнаружен в морской губке[14].

Систематика и классификация

Согласно некоторым данным, мезофильные морские кренархеоты выделяются в самостоятельный тип Thaumarchaeota, однако на молекулярном уровне отличия между кренархеотами и Thaumarchaeota весьма немногочисленны[15]. В настоящее время близкие друг к другу типы Thaumarchaeota, Aigarchaeota, Crenarchaeota и Korarchaeota выделяются в надтип TACK[16].

На июнь 2017 года в класс Thermoprotei включают 5—6 порядков[7][8]:

  • Порядок Acidilobales Prokofeva et al. 2009
  • Порядок Cenarchaeales[англ.] Cavalier-Smith 2002 — согласно данным NCBI, относится к типу Thaumarchaeota[17]
  • Порядок Desulfurococcales Huber and Stetter 2002
  • Порядок Fervidicoccales Perevalova et al. 2010
  • Порядок Sulfolobales Stetter 1989
  • Порядок Thermoproteales Zillig and Stetter 1982 emend. Burggraf et al. 1997

Разделение кренархеот на порядки основано на последовательностях генов 16S рРНК. Самую древнюю эволюционную ветвь кренархеот составляют роды Thermoproteus, Thermofilum и Pyrobaculum[9].

Эоцитная гипотеза

Эоцитная гипотеза. Слева — филогенетическое древо клеточных организмов согласно трёхдоменной системе, справа — согласно эоцитной гипотезе[18]

Так называемая эоцитная гипотеза была предложена в 1980-х Джеймсом Лейком (англ. James Lake). Согласно ей, эукариоты произошли от прокариотических эоцитов (то есть кренархеот). Возможным подтверждением этой гипотезы является наличие гомолога субъединицы Rbp-8 РНК-полимеразы у кренархеот, но не у остальных архей[19].

Примечания

  1. Krupovic M., Quemin E. R. J., Bamford D. H., Forterre P., Prangishvili D. Unification of the Globally Distributed Spindle-Shaped Viruses of the Archaea // Journal of Virology. — 2013. — 11 декабря (т. 88, № 4). — С. 2354—2358. — ISSN 0022-538X. — doi:10.1128/JVI.02941-13.
  2. Hochstein Rebecca, Bollschweiler Daniel, Engelhardt Harald, Lawrence C. Martin, Young Mark. Large Tailed Spindle Viruses of Archaea: a New Way of Doing Viral Business // Journal of Virology. — 2015. — 17 июня (т. 89, № 18). — С. 9146—9149. — ISSN 0022-538X. — doi:10.1128/JVI.00612-15.
  3. Robb F., Antranikian G., Grogan D., Driessen A. (Editors). Thermophiles: Biology and Technology at High Temperatures. — CRC Press, 2007. — P. 231—232. — 368 p. — ISBN 978-0849392146.
  4. Uneven Distribution of Viruses Suggests Surprising Evolutionary Power : [англ.] // Scientific American.
  5. 1 2 Crenarchaeota (англ.) на сайте Национального центра биотехнологической информации (NCBI). (Дата обращения: 23 июля 2017).
  6. 1 2 Воробьёва, 2007, с. 317.
  7. 1 2 Classification of domains and phyla - Hierarchical classification of prokaryotes (bacteria) : Version 2.0 : [англ.] // LPSN. — 2016. — 2 October.
  8. 1 2 Taxonomy Browser : Crenarchaeota : [англ.] // NCBI. (Дата обращения: 23 июля 2017).
  9. 1 2 Tolweb: Crenarchaeota. Дата обращения: 10 августа 2017. Архивировано 10 августа 2017 года.
  10. Lundgren M., Malandrin L., Eriksson S., Huber H., Bernander R. Cell Cycle Characteristics of Crenarchaeota: Unity among Diversity // Journal of Bacteriology. — 2008. — 23 мая (т. 190, № 15). — С. 5362—5367. — ISSN 0021-9193. — doi:10.1128/JB.00330-08. [исправить]
  11. Cubonová L., Sandman K., Hallam S. J., Delong E. F., Reeve J. N. Histones in crenarchaea. (англ.) // Journal of bacteriology. — 2005. — Vol. 187, no. 15. — P. 5482—5485. — doi:10.1128/JB.187.15.5482-5485.2005. — PMID 16030242. [исправить]
  12. 1 2 3 Пиневич, 2006, с. 90.
  13. Madigan M., Martinko J. (editors). Brock Biology of Microorganisms (неопр.). — 11th. — Prentice Hall, 2005. — ISBN 0-13-144329-1.
  14. Joanne M. Willey, Linda M. Sherwood, Christopher J. Woolverton. Prescott's Principles of Microbiology. — 1st edition. — McGraw-Hill Higher Education, 2009. — P. 413. — 968 p. — ISBN 978-0-07-337523-6.
  15. Issues in Life Sciences—Muscle, Membrane, and General Microbiology: 2012 Edition / Q. Ashton Acton. — ScholarlyEditions, 2012. — P. 100. — 223 p. — ISBN 978-1-4816-4674-1.
  16. Zuo G., Xu Z., Hao B. Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis. (англ.) // Life (Basel, Switzerland). — 2015. — Vol. 5, no. 1. — P. 949—968. — doi:10.3390/life5010949. — PMID 25789552. [исправить]
  17. Taxonomy Browser : Cenarchaeales : [англ.] // NCBI. (Дата обращения: 25 июля 2017).
  18. Cox C. J., Foster P. G., Hirt R. P., Harris S. R., Embley T. M. The archaebacterial origin of eukaryotes. (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2008. — Vol. 105, no. 51. — P. 20356—20361. — doi:10.1073/pnas.0810647105. — PMID 19073919. [исправить]
  19. Kwapisz M., Beckouët F., Thuriaux P. Early evolution of eukaryotic DNA-dependent RNA polymerases. (англ.) // Trends in genetics : TIG. — 2008. — Vol. 24, no. 5. — P. 211—215. — doi:10.1016/j.tig.2008.02.002. — PMID 18384908. [исправить]

Литература

  • Воробьёва Л. И. Археи: учебное пособие для вузов. — М.: ИКЦ «Академкнига», 2007. — 447 с. — ISBN 978-5-94628-277-2.
  • Пиневич А. В. Микробиология. Биология прокариотов : Учебник : в 3 т. — СПб. : Издательство С.-Петербургского университета, 2006. — Т. 1. — 352 с. — ISBN 5-288-04057-5.
Эта страница в последний раз была отредактирована 20 апреля 2022 в 19:23.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).