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Summary 

Human and bovine respiratory syncytial viruses (HRSV and BRSV), along with 
pneumonia virus of mice (PVM) are the members of the genus Pneumovirus in the 
subfamily Pneumovirinae of the family Paramyxoviridae. Although both HRSV and 
BRSV have been associated with important diseases in human and livestock, there is no 
clearcut description of the molecular aspects of their pathogenesis. For HRSV, the lack 
of a suitable study model is one of the main reasons hampering the study of aspects of 
pathogenesis of the virus. HRSV infects a wide range of animal models, however most 
of the common laboratory animal models are not sufficiently permissive to study the 
infectivity of the virus. 

PVM naturally infects mice and causes a disease indistinguishable from that of 
HRSV in humans. Two strains of PVM have been described: strain 15 (Warwick) which 
is not pathogenic and strain J3666 which is highly pathogenic. The main difference 
between these two strains lies in the organisation of the gene encoding the attachment 
(G) glycoprotein. The G gene in strain J3666 has two ORFs. The larger second ORF 
codes for the G glycoprotein and is located downstream of the first ORF which has no 
known function. The strain 15 G gene also contains two ORFs but in this case both the 
first and main ORFs overlap each other. 

The aim of the project was to investigate the molecular basis for pathogenesis of 
PVM as a model for pneumoviruses. As a first step, the pathogenesis of PVM strain 
J3666 was revaluated and the effect of consecutive tissue culture passages on the 
pathogenicity of the virus was examined. It was shown that consecutive passages of 
PVM strain J3666 caused attenuation of the virus. To investigate the possible mutations 
causing the attenuation the majority of the virus genome was sequenced from three 
passage stocks where the transition from pathogenic to non-pathogenic occurred.  No 
differences in the genome sequences for the three passage stocks were found.  However, 
sequence analysis of individual clones of the SH and G genes of the viruses showed 
evidence that the stocks contained a mixed population of sequences. 

A robust reverse genetics system was established to rescue recombinant PVM 
from cDNA using co-transfection of plasmids coding for the ribonucleoprotein complex 
of the virus (N, L, M2-1 and P proteins) and a cDNA copy of the virus genome cloned 
under the control of the bacteriophage T7 RNA polymerase. Using this system, four 
viruses differing in their G gene organisation were generated and used to infect mice to 
study the effect of mutations on pathogenicity.  It was shown that the viruses with the G 
gene of strain 15 (Warwick) lacking the first ORF manifest a modest increase in their 
pathogenicity compared to the non-pathogenic PVM strain 15(Warwick) parent. The 
recombinant viruses containing the G gene organisation of strain J3666 showed the 
highest level of pathogenicity. 

The reverse genetics system was used to study the role of the first ORF in G 
glycoprotein expression. Using a dicistronic minigenome construct, the effect of the 
presence or absence of the first ORF in both the strain 15 and strain J3666 G gene 
organisation was studied.  It was shown that the presence of the first ORF of the G gene 
in the strain 15 (Warwick) suppressed the expression of the G protein, while the first 
ORF in the strain J3666 did not have any significant effect on G protein expression. 
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1.1  PVM and RSV: An overview and virus taxonomy 

Pneumonia virus of mice (PVM) was first purified from apparently healthy mice 

in 1938 during an attempt to isolate viruses from mice with “various acute non-

influenzal diseases of the respiratory tract” (Horsfall & Hahn, 1940). The lung extract of 

healthy mice, which were used as the control system, caused transmissible pulmonary 

consolidations in mice intranasally infected with the extract (Horsfall & Hahn, 1940). A 

wide range of mammalian hosts including humans, primates, rodents and rabbits were 

reported being seropositive against PVM (Horsfall & Curnen, 1946; Pringle & Eglin, 

1986). A recent study showed the presence of a viral agent closely related to PVM 

capable of producing acute pneumonia in dogs. The canine virus was isolated from 

nasal and pharyngeal swab specimens and tested using a pool of human respiratory 

syncytial virus (HRSV) monoclonal antibodies consisting of four monoclonal antibodies 

against P, N, M2 and F proteins. Testing the canine virus against the antibodies, 

individually, indicated that the agent reacts with the P and M2 monoclonal antibodies, 

but not with N and F antibodies. Sequencing of PCR fragments amplified from the N 

gene of the canine virus indicated 96% - 97% alignment to the N gene of PVM, and a 

fragment amplified from the L gene was found to be 96% identical to the L gene of 

PVM (Renshaw et al., 2010).  

About 2 decades after the description of PVM,  HRSV was isolated in 1956 

from a symptomatic chimpanzee with coryza during an outbreak of illness (Chanock et 

al., 1957). This virus, chimpanzee coryza agent (CCA), was subsequently shown to be a 

serious human pathogen (Chanock et al., 1957). HRSV is now recognised as the most 

important viral pathogen of serious respiratory tract infection in paediatrics, and is 

responsible for both upper and lower respiratory tract infections (Collins et al., 2001). 

Annually, a large range of patients including infants, neonates, immunocompromised 

patients, and elderly people are infected with the virus (Collins et al., 2001). 

The similarity between the cytopathology of HRSV and Newcastle disease virus 

(NDV) was the first evidence suggesting relatedness of the two viruses (Kisch et al., 

1962). Later, despite the lack of neuraminidase (NA) and hemagglutination (HA) 

activities in HRSV, the possibility of the classification of HRSV into the “Parainfluenza 

group” was suggested (Waterson & Hobson, 1962). Based on the virus morphology and 

the lack of neuraminidase and hemagglutination activities and to distinguish it from 
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other members of the family Paramyxoviridae, HRSV was classified separately in the 

genus pneumovirus, of the family Paramyxoviridae (Venkatesan et al., 1983). 

The family Paramyxoviridae, one of the largest families of viruses, includes 

major contagious and infectious viruses causing a wide range of disease in humans and 

animals. The family Paramyxoviridae contains two subfamilies: Paramyxovirinae and 

Pneumovirinae. The subfamily Pneumovirinae is distinguished from Paramyxovirinae 

based on their morphologically different nucleocapsid. However, the major differences 

between them are the number of encoded proteins and a different form of attachment 

glycoprotein  (Lamb & Kolakofsky, 2001). In turn, the family Paramyxoviridae is 

related to other families of virus having single component negative sense RNA genomes 

as part of the order Mononegavirales. 

The sub-family Paramyxovirinae includes the genera avulavirus, henipavirus, 

respirovirus, rubulavirus, and morbillivirus, and the subfamily Pneumovirinae contains 

the genera pneumovirus and metapneumovirus (Table 1.1). There are three members 

described in the genus pneumovirus: human respiratory syncytial virus (HRSV), bovine 

respiratory syncytial virus (BRSV) and murine pneumonia virus (MPV). HRSV is the 

type member of the genus and has two known subtypes: genotype A and B. MPV, 

traditionally known as pneumonia virus of mice (PVM), is the murine counterpart of 

HRSV. Most information known is about HRSV as the type member of the genus. In 

the description of pneumoviruses below, differences between PVM and HRSV, and also 

difference between the two HRSV genotypes are indicated where it is required. A 

summary of the classification of the family Paramyxoviridae is given in Table  1.1. 
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Family Subfamily Genus Type species 

Paramyxoviridae 

Paramyxovirinae 

avulavirus  Newcastle disease virus (NDV) 

Henipavirus  Hendra virus (HeV) 

morbillivirus  measles virus (MeV) 

rubulavirus  mumps virus (MuV) 

respirovirus  Sendai  virus (SeV) 

Pneumovirinae 
pneumovirus 

human respiratory syncytial virus 
(HRSV) 

metapneumovirus  avian metapneumovirus (AMPV) 

Table  1.1 Classification of family Paramyxoviridae based on the reclassification of International 
Committee on the Taxonomy of Viruses (ICTV) in 2009 (ICTV, 2009). The type member of each 
genus is provided separately under type species column. 

HRSV was classified into two distinct subtypes A and B by using a cross 

protection experiment with related glycoproteins (Mufson et al., 1985). Mufson and 

colleagues (1985) used a collection of monoclonal antibodies against the G, F, M, N and 

P proteins of RSV strain Long and examined seven different viruses isolated at different 

times. The main difference was observed in the G glycoproteins in which the two 

subtypes shared one of the six epitopes that was tested. In the same study differences in 

the epitopes of the F, M and N proteins were reported:  one of the two epitopes 

examined in the F glycoprotein, two of six epitopes in the M protein, and one of six in 

the N protein were different between subtypes A and B (Mufson et al., 1985). In 

another study 26 different HRSV strains were classified into three groups which were 

defined as common, more common and rare strains (Anderson et al., 1985). 

Soon after isolation of bovine respiratory syncytial virus (BRSV) the serologic 

relatedness between HRSV and BRSV was shown which suggested a taxonomical 

relationship between the two viruses (Doggett et al., 1968; Paccaud & Jacquier, 1970). 

Subsequently, PVM was classified as another member of the genus mainly because of 

the morphological similarities with human and bovine RS viruses (Berthiaume et al., 

1974).  
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1.1.1 General features of the virion  

Both PVM and HRSV are enveloped viruses surrounded by the lipid bilayer 

which is derived from the host cell plasma membrane. The fusion (F) and attachment 

(G) glycoproteins project from the surface of the viral envelope. A small hydrophobic 

(SH) protein is the third viral surface protein. However, due to its hydrophobic nature 

and small size the SH protein is not readily detectable on the virus surface. The matrix 

(M) protein forms a protein layer between the envelope and the nucleocapsid. The 

nucleocapsid consists of the virus genomic RNA (vRNA) tightly packaged into the 

nucleocapsid protein and surrounded by the RNP complex. The virus structure is 

depicted in Figure 1.1 and different parts of the virus are annotated. 

The virion of HRSV and PVM show a pleomorphic appearance with sizes 

ranging from 100 to 350 nm. The filamentous forms range from 60 to 200 nm in 

diameter and a length of up to 10 µm (Bachi & Howe, 1973; Lamb & Kolakofsky, 

2001; Norrby et al., 1970). PVM particles are 100-120 nm in diameter with a length of 

2-3 µm in the filamentous forms, and 80-120 nm in diameter in the spherical 

morphology (Compans et al., 1967; Gallaspy et al., 1978). 

 

Figure  1.1 pneumovirus structure. The attachment (G) and fusion (F) glycoproteins, lipid 

membrane, the matrix (M) protein, and ribonucleoprotein complex (RNP complex) are indicated. 

As described above, no HA or NA activity has been reported for HRSV 

(Richman et al., 1971). However, this characteristic is not a general feature of 
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pneumoviruses; Ling and Pringle (1989b) using a hemagglutination inhibition 

experiment showed that G glycoprotein of PVM has intrinsic hemagglutination effect 

on murine red blood cells. Ling and Pringle (1989b)  also reported that a monoclonal 

antibody directed against the G glycoprotein of PVM strain 15 (Warwick) strongly 

inhibited PVM from agglutinating murine erythrocytes. 

The lack of a suitable animal model for HRSV has hampered the study of 

different aspects in the pathogenesis of the virus. Occasionally BRSV, the bovine 

counterpart of HRSV, has been used to study the pathogenesis of pneumoviruses. PVM, 

has also been proposed as a good candidate to investigate unknown aspects of 

pneumovirus-host interaction. 

1.2 Molecular biology and replication cycle of pneumoviruses 

The replication cycle of pneumoviruses starts by binding of the virus at the 

cellular surface components, which is mediated by the G and/or F glycoproteins 

(section  1.2.1). Virus entry to the cell happens after the attachment and is mediated by 

the F glycoprotein which initiates fusion between the viral envelope and the cellular 

membrane. Following the fusion process, the nucleocapsid complex containing the viral 

genome is released into the cytoplasm (section  1.2.1.3). The viral RNA (vRNA) is used 

as a template in the RNA synthesis process involving transcription and replication. The 

transcription process involves synthesis of messenger RNA (mRNA) and the replication 

cycle involves the synthesis of a complimentary copy of vRNA (cRNA) which acts as 

the antigenomic RNA. The cRNA is then transcribed to the vRNA by the viral RNP 

complex (Section  1.2.4). In contrast to Sendai virus, PVM has been shown to be capable 

of growth in enucleated BS-C-1 cells indicating that nuclear functions provided by the 

cell are not necessary for the virus replication (Cash et al., 1979). The HRSV and PVM 

genomes comprise 10 genes separated by intragenic sequences.  
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Figure  1.2 Comparison between RSV and PVM vRNA. There are 10 genes across the genome 

responsible for coding 11 or 12 known proteins respectively. The name of each gene is 
indicated. Numbers in brackets refer to the number of nucleotides in the intergenic regions. The 
size of P2 and M2-2 genes and proteins are provided and separated from the number 
representing the size of P1 and M2-1 by “/”. 

During virus replication, at least 11 proteins are synthesised and processed: 

these are the viral structural proteins (M, SH, F, and G), nucleocapsid complex proteins 

(N, L, P and M2-1 proteins), and non-structural proteins (NS-1, NS-2, and M2-2). The 

replication cycle of pneumoviruses is completed by the assembly and release of the 

virus (Section  1.2.5.1). A schematic structure of the vRNA of PVM strain 15 Warwick 

and HRSV strain S2 is depicted in Figure  1.2. 

1.2.1 Attachment and entry 

HRSV uses glycosaminoglycan (GAG) proteins for attachment to the host cells 

with HRSV entry estimated to have a half life of 30 min (Techaarpornkul et al., 2002). 
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There is no report on the entry rates of other members of the Paramyxoviridae. The 

process of attachment of HRSV to host cells is not clearly understood. Two major 

glycoproteins of HRSV, glycoprotein G (the large glycoprotein) and glycoprotein F, 

have been shown to be responsible for the attachment and virus docking on the host 

cells. 

The G glycoprotein of HRSV was shown to be responsible for virus attachment 

(Levine et al., 1987). Subsequently, it was shown that monoclonal antibodies directed 

against the HRSV G glycoprotein are capable of preventing virus entry (Martinez & 

Melero, 1998). The observation that viruses lacking the gene encoding the G protein are 

able to infect in vivo and in vitro has raised question about the role of the G protein in 

virus attachment (Karron et al., 1997; Martinez & Melero, 1998). It has been proposed 

that the F protein may be able to attach to the cell surface through an unknown 

mechanism. 

1.2.1.1 G glycoprotein 

The G glycoprotein is a type II glycoprotein with a hydrophobic region near its 

N terminus. The G glycoprotein is smaller than, its counterpart, the HN glycoprotein, 

among the members of Paramyxovirinae, and its length varies from 282 to 319 amino 

acids among different strains of the HRSV (Lamb & Kolakofsky, 2001). No cellular 

receptor has been identified for the G glycoprotein, though there is evidence that cell 

surface GAG are important in the virus binding and infection (Feldman et al., 1999). 

The G glycoprotein appears not to be an essential glycoprotein for virus growth. HRSV 

lacking the G glycoprotein can grow efficiently in Vero cells but their growth was 

impaired in HEp-2 cell lines (Teng et al., 2001). 

Maturation of the G glycoprotein occurs in the endoplasmic reticulum and Golgi 

compartments of the cell. The G glycoprotein produces homo-oligomers in the 

endoplasmic reticulum and O-glycosylation follows after the oligomerisation in the 

trans-Golgi compartment (Collins & Mottet, 1992). 

The G protein of HRSV has an Mr of 36000 in its non-glycosylated state. Its 

glycosylated form is reported to have an Mr of 84000-90000 under reducing SDS-PAGE 

electrophoresis conditions. Recently a new form of the G glycoprotein of HRSV grown 

in human airway epithelium (HAE) reported, and described as a dimer of the Mr  90000 

form or a highly glycosylated form of the G protein with extensive O- linked 

glycosylation (Figure  1.3.A) (Kwilas et al., 2009). About 58% of the mass of the mature 
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G protein is occupied by O- and N-linked carbohydrates (55% O-linked and 3% N-

linked). The external portion of the G protein contains between 77 and 91 potential sites 

for the attachment of O-linked oligosaccharides depending on the strain. There are four 

sites reported for the attachment of N-linked glycoproteins (Lambert, 1988; Teng & 

Collins, 2002; Wertz et al., 1985). The number of potential N-glycosylation sites varies 

between different strains: four N-glycosylation sites were reported for strain A2 whereas 

there are eight N-glycosylation sites reported for the Long strain (Teng & Collins, 

2002). The O- and N-glycosylation sites make two distinct domains in the structure of G 

glycoprotein separated by a short central domain which is highly conserved among 

different HRSV strains. 

The central region of the HRSV G protein overlaps a stretch of four cysteine 

moieties, clustered in a 13-residue stretch (from amino acids 164 to 176) positioned 

close to each other which makes disulfide bonds between each other in a 1:4 and 2:3 

organisation (Teng & Collins, 2002). This generates a cysteine noose in the G 

glycoprotein structure. The fact that this domain is highly conserved among different 

strains of HRSV has led to the suggestion that it is a potential receptor binding domain 

of the virus. However, a recombinant HRS virus lacking the cysteine noose in the G 

protein was capable of efficient growth in vivo. The poor growth of the virus lacking G 

gene in vivo suggests the presence of other regions on the G glycoprotein that may play 

an important function in virus infectivity (Teng & Collins, 2002). The conserved region 

contains a CX3C chemokine motif at amino acid positions 182–186 (Harcourt et al., 

2006; Tripp et al., 2001).   

Figure  1.3 shows the schematic structure of the G protein (Figure  1.3.A), and 

compares G protein of different strains of HRSV with PVM (Figure  1.3.B). As it is 

depicted in the Figure  1.3.A, the hydrophobic region of the HRSV G protein lies 

between residues 38 to 66. In the G protein of HRSV strain A2 amino acids 38-63,  and 

in the G protein of PVM strain J3666 amino acids 37-59 serve as both signal sequence 

and the transmembrane anchor Figure  1.3.B. 

A temperature sensitive form of HRSV derived from HRSV strain B1 termed 

strain cp52, lacks both SH and G genes and instead contains a fusion between SH 

(Section  0) and G genes with 91 nucleotide in length and has five amino acid coding 

changes in F and L. The HRSV strain cp52 has been extensively used in HRSV studies 

to analyse the SH and/or G gene functions in the virus pathogenesis (Karron et al., 

1997). 
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The presence of abundant amounts of proline residues in the primary sequence 

gives another unique feature to the pneumovirus G glycoproteins. Approximately 30 

proline residues (approximately 10% of the total residues) are gathered at the carboxy 

terminus of the G glycoprotein. The presence of high proportions of serine, threonine, 

proline residues and extensive O-linked carbohydrates are features that the G 

glycoprotein shares with various mucinous glycoproteins (Wertz et al., 1985). 

G1 and G2 glycoproteins were reported as two different forms of the G 

glycoprotein for PVM strain 15 (Warwick), with G2 derived from G1 (Ling & Pringle, 

1989b). The estimated relative molecular mass for G1 and G2 glycoproteins of PVM 

strain 15 (Warwick) was calculated as 76400 and 62000, respectively. The molecular 

mass after removal of both N- and O- linked oligosaccharides were very close to each 

other. The relative molecular mass for G glycoproteins reported by Ling and Pringle 

(1989b) is listed in Table  1.2. 

 

 Glycosylated 
form 

N-linked sugars 
removed 

O-linked sugars 
removed 

Removal of both N- and O-
linked sugars 

G1 76400 58400 57600 39600 

G2 62000 48200 51000-58600 37200-44800 

Table  1.2 The relative molecular mass of G glycoproteins of PVM strain 15 (Warwick) adapted 
from (Ling & Pringle, 1989b).  
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A 

 

 
 
B 
 
PVMJ3666 
PVM15 W  
PVM15 ATCC 
HRSVA2 
HRSVB1 
 
 
PVMJ3666 
PVM15 W  
PVM15 ATCC 
HRSVA2 
HRSVB1 
 
 
PVMJ3666 
PVM15 W  
PVM15 ATCC 
HRSVA2 
HRSVB1 
 
 
PVMJ3666 
PVM15 W  
PVM15 ATCC 
HRSVA2 
HRSVB1 
 
 
PVMJ3666 
PVM15 W  
PVM15 ATCC 
HRSVA2 
HRSVB1 
 
 
PVMJ3666 
PVM15 W  
PVM15 ATCC 
HRSVA2 
HRSVB1 
 
 
PVMJ3666 
PVM15 W  
PVM15 ATCC 
HRSVA2 
HRSVB1 
 

MGRNFEVSGSIT-NLNFERTQHPDTFRTGVKVNQMCKLIAGVLTSAAVAVCVGVIMYSVF 
----------------------------------MCKLIAGVLTSAAVAVCVGVIMYSVF 
MGRNLEVSGSIT-NLNFERTQHPDTFRTVVKVNQMCKLIAGVLTSAAVAVCVGVIMYSVF 
MSKNKDQRTAKTLERTWDTLNHLLFISSCLYKLNLKSVAQITLSILAMIISTSLIIAAII 
MSKHKNQRTARTLEKTWDTLNHLIVISSCLYRLNLKSIAQIALSVLAMIISTSLIIAAII 
                                  : .:   .*:  *: :...:*: ::: 
 
---TSNHKANST----QNATTRNSTSTP----PQPTAGLPTTEQG-------TIPRFTKP 
---TSNHKANST----QNATTRNSTSTP----PQPTAGLPTTEQG-------TIPRFTKP 
---TSNHKANST----QNATTRNSTSTP----PQPTAGLPTTEQG-------TIPRFTKP 
FIASANHKVTPTTAIIQDATSQIKNTTPTYLTQNPQLGISPSNPSEITSQITTILASTTP 
FIISANHKVTLTTVTVQTIKNHTEKNITTYLTQVPPERVSSSKQPTTTSPIHTNSATTSP 
   ::***.. *    *  ... ... .      *   :..::         *    *.* 
 
PTKTATHHEITEPVKMATPSEDPYQCSSNGYLDRPDLPENFKLVLDVICKPPGPEHHNTS 
PTKTATHHEITEPVKMATPSEDPYQCSSNGYLDRPDLPENFKLVLDVICKPPGPEHHNTS 
PTKTATHHEITEPVKMATPSEDPYQCSSNGYLDRPDLPENFKLVLDVICKPPGPEHHNTS 
GVKSTLQSTTVKTKNTTTTQTQPSKPTTKQRQNKPP-------------SKPNNDFH--- 
NTKSETHHTTAQTKGRTTTSTQTNKPSTKPRLKNPP-------------KKPKDDYH--- 
 .*:  :   .:.   :*.. :. : :::   ..*              . *  :.*    
 
CYEKREINPGSVCPDLVTMKANMGLNNGGGEDAAPYIEVTTLSTYSNKRAMCVHNGCDQG 
CYEKREINPGSVCPDLVTMKANMGLNNGGGEDAAPYIEVTTLSTYSNKRAMCVHNGCDQG 
CYEKREINPGSVCPDLVTMKANMGLNNGGGEDAAPYIEVTTLSTYSNKRAMCVHNGCDQG 
-FEVFNFVPCSICSNNPTCWAICKRIPNKKPGKKTTTKPTKKPT---------------- 
-FEVFNFVPCSICGNNQLCKSICKTIPSNKPKKKPTIKPTNKPT---------------- 
 :*  :: * *:* :    .:      .      .  : *. .*                 
 
FCFFLSGLSTDQERAVLELGGQQAIMELHYDSYWKHYWSNSNCVVPRTNCNLTDQTEILF 
FCFFLSGLSTDQERAVLELGGQQAIMELHYDSYWKHYWSNSNCVVPRTNCNLTDQTEILF 
FCFFLSGLSTDQERAVLELGGQQAIMELHYDSYWKHYWSNSNCVVPRTNCNLTDQTEILF 
-------LKTT-KKD------------------------------PKPQTTKSKEV---- 
-------TKTTNKRD------------------------------PKTPAKTTKKE---- 
        .*  :.                               *..  . :.:      
 
PRFNNKNQSQCTTCADSAGLDNKFYLTCDGLLRTLPLVGLPSLSPQAYKAVPTQTTGTTT 
PRFNNKNQSECTTCADSAGLDNKFYLTCDGLLRTLPLVGLPSLSPQAYKAVPTQTTGTTT 
PRFNNKNQSQCTTCADSAGLDNKFYLTCDGLLRTLPLVGLPSLSPQAYKAVPTQTTGTTT 
PTTKPTEEPTINTTKTNIITTLLTSNTTGNPELTSQMETFHSTSSEG-NPSPSQVSTTSE 
TTTNPTKKPTLTTTERDTSTSQSTVLDTTTLEHTIQQQSLHSTTPEN-TPNSTQTPTASE 
.  : .::.  .*   .                *     : * :.:  .. .:*.. ::  
 
APTSESRHPTPAPRRSKPLSRKKRALCGVDSGREPKPTMPYWCPMLQLFPRRSNS 
APTSETRHPTPAPRRSKPLSRKKRALCGVDSSREPKPTMPYWCPMLQLFPRRSNS 
APTSETRHPTPAPRRSKPLSRKKRALCGVDSSREPKPTMPYWCPMLQLFPRRSNS 
YPSQPSSPPN-TPRQ---------------------------------------- 
-PSTSNSTQN-TQSHA--------------------------------------- 
 *:  .   . :  .                                        
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Figure  1.3.A Schematic structure of the G glycoprotein of HRSV. The structure of the G 
glycoprotein of HRSV, based on the description by Collins and colleagues (2001). The 
cytoplasmic tail (CT) and transmembrane domain (TM) are shown with blue and red colours, 
respectively. The presence of proline residues is shown by small dark blue circles. The O- 
glycosylation (blue spikes) and N- glycosylation (red spikes) sites are indicated. The conserved 
area is indicated between amino acid residues 164 and 176. The cysteine noose is shown by 
dotted lines and the di-sulphide binds are shown between cysteine molecules. B. Comparison of 
G protein sequences among pneumoviruses. HRSV strain A2 and B1 (as indicated) are 
compared with PVM strains (J3666, Warwick –shown as PVM 15 W, and 15 – shown as PVM 
15 ATCC). The predicted transmembrane domain across the molecule is indicated in red. The 
conserved area in the G protein of HRSV is indicated in cyan. The cysteine residues 
responsible for the cysteine noose are indicated in yellow. The presence of a potential furin 
cleavage site (Arg-X-(Lys/Arg)-Arg) in the G protein of PVM strains is indicated with green 
background. The “*” character indicates positions which have a single, fully conserved residue. 
The “:” character represents strongly and “.” characters indicates weakly conserved residues 
(Thompson et al., 2002). The prediction for the transmembrane domains was made using the 
HMMTOP server (Tusnady & Simon, 2001). The schematic structure of the G glycoprotein (A) 
and the sequences (B) are presented from N terminus to C terminus. 

PVM_15_W   3’ UCCUAUUCAUGAUAGGAUAACCUUGGUUUGCUCUGGACAUCUCGUCGAGUGUGUUCUCUU 
PVM_J3666  3’ UCCUAUUCAUGAUAGGAUAACCUUAGUUUACUCUGGACAUCUCGUCGAGUAUGUUCUCUU 
              ************************ **** ******************** ********* 
 
PVM_15_W      GGUGUUCGACUGAAGUGGAUCAUACCCUUCCUUGAAUCUUCACUCACCGUCGUAAUGGUU 
PVM_J3666     GAUGAUCAACUGAAGUGAAUCAUACCCUUCCUUGAAACUUCACUCACCGUCGUAAUGGUU 
              * ** ** ********* ****************** *********************** 
 
PVM_15_W      AAACUUGAAACUCUCUUGAGUCGUAGGACUGUGUAAAUCCUGACAACAUUUUUCACUUGG 
PVM_J3666     AAACUUGAAACUCUCUUGAGUCGUAGGACUGUGUAAAUCCUGACCACA-UUUUCACUUGG 
              ******************************************** *** *********** 
 
PVM_15_W      UUUACACAUUCGAAUAACGUCCACACGAGUGUUCACGACGACACCGUCAAACACACCCCC 5’ 
PVM_J3666     UUUACACAUUCGAAUAACGUCCACACGAGUGUUCACGACGACACCGUCAAACACACCCCC 5’ 
              ************************************************************   

Figure  1.4 Comparison of the nucleotide sequence (genomic sense) of the G gene of PVM 

strain 15 (Warwick) and PVM strain J3666. A uridine insertion in the sequence of PVM strain 15 
(Warwick) changes the open reading frame for the PVM strain 15 and causes a premature stop 
in protein synthesis. In the strain J3666, the open reading frame starts from the same place of 
the strain 15 (Warwick) and protein synthesis continues to the main stop codon of the ORF at 
position 1273 of the gene (not shown). PVM strain J3666 and PVM strain 15 (Warwick) are 
shown as PVM_J3666 and PVM_15_W respectively. Start codons are shown in green and stop 
codons are indicated in red. The mutation site is shown in yellow. The “*” character indicates 
positions which have a single, fully conserved residue. 

1.2.1.1.1 Second open reading frame in the PVM G gene 

Analysis of the sequence of the G gene of the non-pathogenic strain 15 

(Warwick) and the pathogenic strain J3666 showed that the G protein was encoded by 

the second ORF in the mRNA. This was also seen with the HRSV G gene. In strain 

J3666 G mRNA a small (37nt) ORF is located upstream of the major G protein coding 
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ORF. The strain J3666 G protein contains a cytoplasmic domain followed by a putative 

transmembrane domain. In contrast, the strain 15 (Warwick) G mRNA contains a first 

ORF which overlaps the G protein – coding major ORF. The strain 15 (Warwick) G 

protein does not contain a significant intracellular domain preceding the transmembrane 

region (Randhawa et al., 1995). The difference in gene organisation in the G protein 

coding ORFs of the two viruses is the result of the presence of an additional nucleotide 

in a string of U residues (4 in strain J3666 and 5 in strain 15 G mRNA) which results in 

a frame shift (see Figure  1.4). The organisation of the G gene of both viruses is shown 

diagrammatically in Figure  1.5. 

A short open reading frame (ORF) of 15 codons was described overlapping the 

start of major ORF of the HRSV G gene (Wertz et al., 1985). The function of the ORF 

or the function of its possible product has not been clearly described.  

 

Figure  1.5 Comparison of the G mRNA organisation in PVM strain 15 Warwick and PVM strain 

J3666. There is a second open reading frame in PVM strain 15 Warwick overlapping the main 
open reading frame. In PVM strain J3666, first ORF is upstream and separate from the second 
ORF (Randhawa et al., 1995). The numbers refer to the nucleotide position in the G gene mRNA. 
The G gene is presented from 5’ to 3’. 

1.2.1.1.2 Proteolytic processing of G glycoprotein 

It was first reported by Spring and Toplin (1983) that the “75K glycoprotein” (G 

glycoprotein) of HRSV is susceptible to tryptic digestion in vitro producing two 

fragments with Mr value of 40,000 and 29,000. However, the authors reported that 

digestion of a pool of HRS virus with trypsin, chymotrypsin, or elastase does not have 

any effect on the virus infectivity in vitro (Spring & Tolpin, 1983). Recently, it was 

reported that Vero grown viruses predominantly contain a form of G glycoprotein with 

Mr of 55,000 which lacks its C terminus whereas viruses grown in HEp-2 cells 

possessed the G glycoprotein with a relative molecular mass of 90,000 (Kwilas et al., 

2009). In the same report, it was shown that the virus grown in Vero cells is less 

infectious in vitro. The data indicated a vulnerability of the G glycoprotein to be 
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processed post-translationally, and the virus grown in cells capable of producing 

truncated G glycoprotein are less infectious and less dependent on GAG. The 

pathogenicity of viruses with the G glycoprotein lacking its C terminal has remained 

unclear. 

A soluble form of the HRSV G glycoprotein (Gs) is formed by initiation of 

translation from an alternative start codon in the G mRNA. This produces a protein 47 

residues shorter than the full-length G protein and this is processed further by 

proteolytic enzymes which digest  at amino acid residue at positions 66 and/or 75 

(Hendricks et al., 1988; Roberts et al., 1994). Roberts and colleagues (1994) reported a 

further processing possibility generating a third form which is also secreted. The precise 

role of the Gs form is unclear but it has been implicated in some aspects of 

pathogenicity. 

Ling and Pringle (1989b) reported a shorter form of the G glycoprotein in cells 

infected with PVM. Krempl and colleagues (2007) reported the presence of the same 

form of the G glycoprotein in infected cells. In both reports no secreted form of PVM G 

glycoprotein was detected. Thus, the shorter form of the G glycoprotein of PVM is 

thought to be not the counter part of the secreted G glycoprotein produced in cells 

infected with HRSV. 

1.2.1.2 Fusion (F) glycoprotein: 

The fusion (F) protein of RSV, similar to the fusion proteins of other members 

of the family Paramyxoviridae, is a type I transmembrane surface protein which 

mediates membrane and envelope fusion. The HRSV F protein  is synthesised as a large 

precursor polypeptide F0 with a length of 574 amino acids, which is activated by 

cleavage at two separate sites by a furin-like cellular endoprotease to produce two 

glycoproteins (F1 and F2) which are linked together by disulfide bonds (Johnson & 

Collins, 1988).  

The first cleavage site in the HRSV F protein is at residue 109 and consists of an 

arginine-rich sequence (RARR). The second cleavage site is at residue 136 and consists 

of a lysine and arginine-rich sequence (KKRKRR), with a 27 amino acid gap between 

the two sites. The second site at position 136 is equivalent to the cleavage site found in 

the other F proteins of members of the Paramyxoviridae family (Zimmer et al., 2001). 

A polypeptide of 27 amino acids in length (pep27) is released upon the proteolytic 

cleavage. The exact function for the polypeptide is not known. However, it has been 
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reported that the BRSV pep27 protein is related by sequence and function to tachykinins 

( 1.3.2.1) (Zimmer et al., 2003). There are three N-glycosylation sites in pep27 and it has 

been shown that mutation in at least one of the sites increases syncytia formation 

suggesting that differential glycosylation of pep27 may modulate fusion (Rawling et al., 

2008). 

The F proteins in Paramyxoviridae have three main hydrophobic domains: one 

appears in the N terminal of the F0 and acts as the signal peptide for translocation to the 

endoplasmic reticulum, the second is the fusion peptide and is close to the C-terminus 

of the F1 region, and the third is located at the N-terminus of the F2 region. The HRSV 

F protein is capable of attaching to cells and producing syncytia independently without 

the presence of the G glycoproteins. This is in contrast with the situation for the 

Paramyxoviruses where the presence of attachment HN protein is essential for docking 

of the virus (Rawling et al., 2008). 

Similar to the F protein of RS viruses, the F protein of PVM is a glycosylated 

protein which is activated by cleavage into F1 and F2 polypeptides. The presence of 

both F1 and F2 proteins in infected cells was described by Ling and Pringle (1989b). 

The results identified an F(1,2) glycoprotein with a mobility slower than that of F1 and 

two different forms of F1 with different motilities (Mr value of 20000 and 12000). This 

led to a proposal of two possible structures for the PVM F protein: the first one is the 

common F structure like the other Paramyxoviridae members in which F0 is processed 

and cleaved to F1 and F2 fragments which happens rapidly for the PVM F protein. The 

F2 protein was proposed to be very small, with Mr value of 5000 (Ling & Pringle, 

1989b). 

1.2.1.3 Uncoating 

The uncoating process involves the release of the ribonucleoprotein complex 

(RNP) from the virus particle into the cytoplasm. This involves removal of the M 

protein layer from the RNP complex. Asenjo and colleagues (2008) have demonstrated 

that the liberation of M protein from the RNP needs phosphorylation of the P protein  at 

the serine residue at position 54. Administration of LiCl inhibits the cellular kinase 

responsible for the phosphorylation and causes accumulation of P protein but not M 

protein in cytoplasmic inclusion bodies which suggests involvement of M protein with 

the RNP. 
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1.2.2 Genome structure and organisation 

A clear description of HRSV genome, its polarity and the number of mRNA 

encoded from the genome was reported by Huang and Wertz (1982). Figure  1.2 

compares genome structure of HRSV and PVM. HRSV possesses a monopartite single 

stranded negative sense genome with a length varying from 15140 to 15225 nucleotides 

(in HRSV strain B1). In PVM the genome length ranges from 14885 to 14887 

depending on the strain. Table  1.3 provides the genome length for different members of 

the pneumovirus genus. 

 

Virus Strain Nucleotide 
length 

Gene bank accession 
number 

PVM J3666 
14885 

14885 

NC_006579 

AY743909 

PVM 15 (Warwick) 14887 AY743910 

PVM 15 (ATCC) 14886 AY729016 

HRSV A2 15222 M74568 

HRSV Line 19 15191 FJ614813 

HRSV S2 15190 U39662 

HRSV B1 15225 NC_001781 

HRSV cp52 13933 AF013255 

BRSV A51908 15140 NC_001989 

Table  1.3 Comparison between HRSV, BRSV and PVM genome length. The nucleotide length 

and the relevant accession number in the gene bank are provided for each of the virus species.  

Unlike the situation with other members of the order Mononegavirales,  the 

genome of pneumoviruses do not follow the rule of six which requires the number of 

nucleotide of the genome to be divisible by number 6 (Samal & Collins, 1996). The 

vRNA in HRSV contains a complementary structure in both the 3’ and 5’ ends of the 

molecule (Mink et al., 1991). The leader region (Le), a 44 nucleotide region at the 3’ 

end of the genome, controls transcription, whereas replication is under the control of the 

trailer complement region (TrC), a 155 nucleotide region at the 5’ end of the genome. 
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Both trailer and leader sequences are highly conserved among different members of 

pneumoviruses. The leader and trailer regions are complementary and show 81% 

homology. However, despite the presence of the complementary structures, it was 

reported that the HRSV genome has a linear structure (Cowton et al., 2006). Among the 

conserved nucleotides the first 10 nucleotides are identical and nucleotides 11-26 share 

81% of similarity. Complete transcription of the vRNA results in production of 

complementary RNA (cRNA) which acts as the antigenome to mediate the genome 

replication (see  1.2.5). 

 The conserved nucleotides in the leader region are responsible for the efficiency 

of replication and transcription of the genome, and provide the possibility of balancing 

between transcription and replication. In the 3’ leader region the nucleotide at position 4 

has been shown to be particularly important in determining the frequency of replication 

compared to transcription. The presence of a G residue at this position yielded higher 

levels of transcription while in contrast the presence of an A residue reduced both 

transcription and replication to 25% of wildtype levels (Fearns et al., 2002). This and 

additional mutational analysis data suggest that the leader region is a critical cis-acting 

element which determines the rates of transcription and replication. Generally, the 

role(s) of the nucleotides in the leader region can be divided into three groups: 1. 

residues important for RNA replication but not transcription (1U, 2G, 6U and 7U); 2. 

residues important for both transcription and replication (3C, 5C, 8U, 9U, 10U and 

11U); 3. residues less important for transcription and replication and which tolerate 

alteration (residues 12-26). 

In the genome, each gene is flanked by a gene start and gene end sequence and a 

highly variable intragenic region separates genes from each other. The sequence of both 

gene start and gene end are not conserved among viral species, but the gene start is 

highly conserved and gene end is semi-conserved within each virus genome. Collins 

and Wertz (1985b) have( mapped and reported the gene start sequences in HRSV as 5’-

GGGGCAAAU-3’ and the semi-consensus gene end sequence as 5’-AGU(U/A)A(N)1–

4-poly(A)-3’ in the complementary RNA sense, and 3’-UCA(A/U)U(N)1-4-poly(U)-5’ in 

the genomic RNA sense. Table  1.5 compares the gene end sequence of HRSV strain 

A2. Transcription efficiency (Section  1.2.4.3) is controlled by the nucleotide 

arrangement of the sequences (Harmon et al., 2001). In PVM the gene start sequence is 

more variable in comparison with other members of pneumoviruses (Table  1.4)  

(Dibben & Easton, 2007). 
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HRSV genes are transcribed to produce 10 mRNA molecules responsible for 

synthesis of the structural (SH, G, F, M, N, P and L) and non-structural (NS1, NS2, M2-

1, and M2-2) proteins.  

 

Gene name Gene sequence 

NS1 
NS2 
M  
N 
P 
SH 
G 
F 
M2 
L 
 

AGGACAAGU 
AGGACAAGU 
AGGACAAAU 
AGGAUAAAU 
AGGAUAAAU 
AGGAUAAAU 
AGGAUAAGU 
AGGACAAAU 
AGGAUGAGU 
AGGAUCAAU 
****  * * 

Table  1.4 Alignment of the sequences of gene starts in PVM. Sequences are provided in their 
genomic order. The consensus nucleotides are indicated by a “*” sign (Thompson et al., 2002). 

Gene name and sequence Termination efficiency 

NS1             UCAAUUAUAUUUUG 
NS2             UCAUUAAAUUUUAA 
N               UCAAUUAUUUUUUA 
P               UCAAUGUUUUUUUC 
M               UCAAUUAUUUUUUA 
SH              UCAAUUAAUUUUUA 
G               UCAAUGAAUUUUUG 
F               UCAAUAUAUUUUGU 
M2              UCAAUAAAUUUUCC 
L               UCAAUAAUUUUUAA 
                *** *    ***   

+ 
+ 
++ 
++ 
++ 
+++ 
++ 
+ 
+ 
+ 

Table  1.5 Comparison of gene end sequence in HRSV strain A2. Termination efficiency is 

shown with +, ++, and +++ signs indicating inefficient (15 to 40%), efficient (65 to 80%), and 
highly efficient (95%) respectively (Harmon et al., 2001). The consensus nucleotides are indicated 
by a “*” sign (Thompson et al., 2002). 

1.2.3 RNA dependent RNA polymerase complex 

Transcription and replication in the subfamily Pneumovirinae is mediated and 

controlled by viral proteins (N, P, L and M2-1) and cis-acting genomic factors. 

Although the HRSV N, P, and L proteins are capable of directing transcription and 

replication functions, the presence of the M2-1 protein is essential to obtain fully 

processed transcription. Transcription requires interplay of the N, P, L and M2-1 

proteins. It has been suggested that replication does not require the activity of the M2-1, 
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but it requires the M2-2 protein for switching from transcription to replication (Melero, 

2006). 

1.2.3.1 Nucleocapsid (N) protein of pneumoviruses 

The nucleocapsid protein encoded by HRSV is 391 amino acids in length. The N 

protein, similar in function to the N protein of other members of the family, makes 

stable complexes with the vRNA to form the nucleocapsid structure, and binds to the 

replication intermediate cRNA to protect them against RNase activity and possibly to 

prevent formation of secondary RNA structures. The N protein is considered the major 

component of the virus particle. The N protein interacts with the vRNA in association 

with the virus P protein, and it appears that the fully phosphorylated form of the P 

protein is essential for obtaining a stable P:N complex (Castagne et al., 2004). It has 

been shown that when the N protein is expressed in eucaryotic or procaryotic hosts, it 

binds to the cellular RNA structures non-specifically and forms a nucleocapsid-like 

structure which is visible using electron microscopy. Moreover, the N protein is capable 

of self binding to produce ring-like structures (Murphy et al., 2003). 

The N protein in Paramyxovirinae has a modular structure (Karlin et al., 2003). 

Sequence similarity between the N protein of PVM and the N protein of 

Paramyxovirinae suggests structural similarities between N proteins (Barr et al., 1991). 

Two main domains were defined for the N protein: Ncore and Ccore. The Ncore occupies 

about two thirds of the amino-terminus of the N protein and contains in HRSV the 

region necessary for production of N:RNA and N:N structures (Murphy et al., 2003; 

Murray et al., 2001). The Ccore is essential for interaction with the P protein (Karlin et 

al., 2003). Figure  1.6 shows domains of the N protein of HRSV which are important in 

P and N interaction and the RNA binding domains. 
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Figure  1.6 The HRSV N protein structure. The potential P binding sites amino acids 48 to 65, 

241 to 260 and 301 to 335 are shown with turquoise colour. The region with a potential effect on 
helical stability is shown in pink colour (amino acids 121 to 160). The predicted functions of N 
terminus (amino acids 1 to 92) and C terminus ends of the protein (amino acids 200 to 392) are 
identified. Adapted from Murphy et al., (2003).  

There is a high level of similarities (60%) in amino acid sequence between the N 

protein of PVM and its HRSV counterpart. The C terminus (residues 245 to 315) is 

highly conserved (96% identity) suggesting a conserved function of this domain (Barr et 

al., 1991). 

During HRSV infection, inclusion bodies are formed in the cytoplasm of 

infected cells. There are believed to be the result of aggregations of the P and N 

proteins. The presence of RNA (both genomic and antigenomic polarities) has also been 

shown in these inclusion bodies (Garcia-Barreno et al., 1996; Garcia et al., 1993)  

1.2.3.2 Phosphoprotein (P) protein of pneumoviruses 

The phosphoprotein of HRSV with 241 amino acids is highly conserved 

between strains. Using a panel of mutations and a minigenome system, the function of 

the P protein of BRSV has been analysed thoroughly (Khattar et al., 2001). The P 

protein is highly structured and regulates the transcription and/or replication process. 

Amino acids 41 to 60 of the P protein appear to negatively regulate the replication 

process. It has been shown that the removal of a phosphorylation site on the P protein of 

BRSV (232S) appears not to have any effect on transcription (Khattar et al., 2001), 

confirming previous reports (Villanueva et al., 2000). Barik and colleagues (1995)  had 

previously suggested that phosphorylation of P protein at position 232 was essential for 

viral transcription and virus assembly. More recently, phosphorylation of threonine at 

position 108 has been shown to be responsible for the interaction of the P and M2-1 

proteins (Asenjo et al., 2006). 

A putative calcium binding domain (229-DESSDNDLSLEDF-241) has been 

proposed for the P protein of BRSV. The binding of calcium to this domain results in 
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conformational changes and exposure of hydrophobic residues allowing interaction with 

target protein(s) (Ikura, 1996; Khattar et al., 2001). Mutations in the calcium binding 

domain resulted in deficiency in binding to the N protein. It is noteworthy that the 

mutations did not affect the affinity of P protein to L protein (Khattar et al., 2001). 

Based on the immunoprecipitation studies done by Garcia-Barreno and 

colleagues (1996), the C terminus of the P protein appears to be essential for interaction 

with the N protein when both proteins are expressed in vivo with the first 6 amino acids 

from the C terminus being the most important in the interaction with the N protein 

(Garcia-Barreno et al., 1996). Slack and Easton (1998), using a yeast two hybrid 

system, identified two distinct sites near the C terminus of the P protein which were 

important in N and P protein interaction. Confirming the importance of the C terminus 

of the P protein in its interaction with N protein, two point mutations in the C terminus 

were identified which were responsible for producing temperature sensitivity for the 

interaction between the P and N proteins (Lu et al., 2002). 

In addition to the full length P protein, it has been shown that a protein (P-2) 

with Mr of 19,000 is produced from an internal in-frame start codon from the P protein 

mRNA of HRSV strain RSN-2 in vitro (Caravokyri & Pringle, 1992).  

The P protein of PVM (295 amino acids) is longer than that of HRSV. The 

homology between the two proteins is scattered across the molecule but suggests two 

conserved sites divided by a non-conserved region in the middle of the molecule (Barr 

et al., 1994). The precipitation of the P protein of HRSV with monoclonal antibody 

raised against PVM P protein suggested an antigenic relatedness between these two 

proteins (Ling & Pringle, 1989a). 

A second and internal ORF of the P protein in PVM with a product of 137 

amino acids was identified (Barr et al., 1994). The function of this protein is unknown. 

A reverse genetics approach by Dibben and Easton (2008) indicated that the P-2 protein 

of PVM was not essential for transcription or replication. 

1.2.3.3 Large polymerase (L) protein of pneumoviruses 

The large protein of HRSV is 2165 amino acids in length, with Mr of 250,226 

for strain A2 (Collins et al., 1987). The L protein is rich in leucine and isoleucine amino 

acids and in neutral pH has an estimated positive charge of +75 (Melero, 2006). 

Aligning five sequences from the order Mononegavirales, Poch and colleagues (1990) 

suggested six conserved regions in the L protein. Based on this comparison the main 



22 
 

catalytic domains of L protein were predicted to lie within the conserved blocks which 

were flanked by non-conserved sequences with the hinge function. The function of each 

domain was predicted based on the analogy and the biophysical characteristic of 

conserved amino acids and their surrounding residues, and it was suggested that region 

III acts as the active site; lysine residues within regions II and IV acts as ribonucleotide 

binding domains; a highly conserved region inside domain II acts as the template 

recognition site; and region VI acts as the polyadenylation or protein kinase site. Region 

III of the L polymerase contains the GDNQ motif which is present in the all DNA and 

RNA polymerase molecules (Poch et al., 1990; Poch et al., 1989; Stec et al., 1991). It 

was suggested that   a GDN motif is a modified form of the GDD polymerase motif and 

was suggested as the common ancestor of polymerase proteins (Kamer & Argos, 1984; 

Stec et al., 1991). 

1.2.3.4 M2-1 (22K) protein 

The HRSV M2-1 protein, previously called the 22K protein and a unique protein 

to the subfamily of  Pneumovirinae, is 194 amino acids in length and is one of the most 

important regulatory proteins of the virus affecting control of gene transcription and 

genome replication (Dibben et al., 2008). When first identified, it was believed the M2-

1 protein was a second matrix protein as it was dissociated from N protein in the same 

situation similar to that of the M protein (Collins & Wertz, 1985a; Huang et al., 1985). 

The main function of the M2-1 protein was first discovered by Hardy and Wertz  

(1998), and described as a transcriptional antitermination factor. Using EM analysis, the 

M2-1 protein was described as a tetramer with a Mr of 89,000 and with a diameter of 

7.6 nm. Using a panel of mutants, the oligomerisation domain was mapped across 

amino-acid residues 32-63 which form a potential α-helix structure (Tran et al., 2009). 

On a one dimensional SDS-PAGE system two different forms of M2-1 protein have 

been shown, while on the two dimensional SDS-PAGE system more than two forms 

have been reported (Routledge et al., 1987). More recently, it has been reported that the 

difference in the mobility of the two forms shown in the one dimensional SDS-PAGE 

system is due to differences in the phosphorylation of the M2-1 protein with the slower 

being phosphorylated and the faster form not being phosphorylated (Hardy & Wertz, 

2000). The phosphorylation site has been mapped by two groups individually. Using a 

mass spectrophotometry technique, Cartee and Wertz (2001)  identified the 
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phosphorylation sites as serine 58 and serine 61. In contrast, site directed mutagenesis 

confirmed the phosphorylation sites as threonine 56 and serine 58 (Cuesta et al., 2000). 

The M2-1 protein has a zinc binding domain known as Cys3–His1 motif (C7-

X7-C15-X5-C21-X3-H25). The cysteine and histidine residues in this motif have been 

predicted to be important in maintaining the readthrough ability of the RNP complex in 

a sub-genomic HRSV based system bearing the M-SH gene junction (Hardy & Wertz, 

2000). An M2-1 protein mutated at cysteine residues at positions 7 and 15, and histidine 

residue at position 25 was not able to act as a potent transcription factor in the RNP 

complex (Hardy & Wertz, 2000).  

Amino acid residues 59 to 80 of the M2-1 protein share a similarity of 95% 

among HRSV and BRSV strains. The similarity of this region in comparison with the 

region in PVM is only 45%. However, in the PVM M2-1 protein, residues 70 to 80 

show a higher level of similarity (90%) with the same region of the M2-1 protein of 

other members of the genus. The aromatic and hydrophobic nature of the amino acid 

residues in this region, and the high level of conservation among other strains and 

species of the genus suggest that this region may be the RNA binding domain of the 

molecule (Cuesta et al., 2000). 

1.2.4 Transcription and gene expression 

The HRSV genome contains a single promoter located in the leader region 

which controls RNA synthesis (Dickens et al., 1984). For the RNA synthesis in 

transcription or replication, two different models are hypothesised. In the first model, 

transcription and replication start at the same site of the leader sequence. Having been 

transcribed, the RNA faces three possibilities: 1. the synthesis of an immature RNA that 

dissociates from the template near the leader region, 2. RNA being packaged into the N 

protein and forms a stable complex which results in the synthesis of cRNA, and 3. RNA 

associates with the N protein and makes a stable complex, but RNA elongation ends at 

the leader region and reinitiates at the gene start region. In the second model, it is 

proposed that transcription and replication start at distinct but overlapping sites of the 

leader regions. Nucleotides 3C, 5C, 8U, 9U, 10U, and 11U of the leader sequence are 

the common elements of the two promoters (see Section  1.2.2 for description on the 

leader sequence). Nucleotides 1U, 2G, 6U, and 7U of the leader sequence are involved 

in the recognition of the RNP complex for replication complex and the gene start 
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signals for the transcription initiation (Fearns et al., 2002). There are other mechanisms 

proposed for transcription initiation which are reviewed by Cowton et al. (2006). 

It has been suggested that the transcriptional complex having been bound to the 

leader region, starts scanning the genome for the gene start sequence and initiates 

mRNA synthesis from the NS1 gene (Cowton & Fearns, 2005). The cis factor for 

termination of gene transcription is the gene end sequence (Section  1.2.2) (Harmon et 

al., 2001). It has been shown that if the polymerase does not recognise the gene end 

signal, it will result in the production of a polycistronic RNA containing the intergenic 

junction (Dickens et al., 1984). 

One of the fundamental differences between the genomic structure of PVM and 

HRSV is the overlap of the M2 and L genes seen in HRSV. The L gene shares its 5’ 

sequence with 3’ end of M2 gene. In PVM, however, both M2 and L genes form 

separate and distinctive genes on the genome (Figure 1.1) (Collins et al., 1987). 

1.2.4.1 Gene expression gradient 

Early reports indicated that after termination in transcription, the RNP complex 

dissociates from the cRNA templates and a proportion of the RNP complex restart 

transcription by relocating to the promoter sequence in the 3’ end of vRNA. The 

remaining proportion continues transcription of the next gene  (Dickens et al., 1984). 

This stop-start process generates a gradient of transcription with mRNAs representing 

leader proximal genes being more abundant than those from leader-distal genes. The 

gradient of expression of HRSV genes was confirmed by Barik (1992) in which the 

concentration of individual viral mRNA molecules were calculated using a slot blot 

assay and the molar ratio of mRNA was calculated against the NS1 mRNA. The 

percentage of mRNA for each gene of RSV is shown in Table  1.6. 

 

Gene NS1 NS2 N P M SH G F M2-1 L 

Molar ratio 100 95 90 68 52 32 21 18 15 3 

Table  1.6 Percentage molar ratio of HRSV mRNA indicating the genome expression gradient 
(Barik, 1992). 
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1.2.4.2 mRNA capping   

Neither the vRNA nor cRNA contain a 5’ cap structure. However, mRNA 

molecules are capped (m7G(5')ppp(5')Gp) and polyadenylated (Barik, 1993). Barik 

(1993), using radioactive S-adenosyl-methionine, showed that the methyl group, but not 

the G residues, is added by host enzymes. In the same study it was shown that both the 

cap structure formation and the cap methylation are coupled to transcription and on-

going transcription is required for cap formation and methylation and that the cap itself 

does not have any effect on transcription.  

More recently, it has been reported that the L protein of vesicular stomatitis 

virus (VSV), a member of family Rhabdoviridae within the order Mononegavirales, is 

responsible for capping of pre-mRNA molecules (Li et al., 2006), and specifically that 

the region V of the L protein is responsible in the pre-mRNA capping process (Li et al., 

2008b). Mutational analysis has shown that the capping process happens not in the 

conventional way of mRNA capping, but in a unique way using histidine residue in the 

V domain of the L protein (known as the HR motif) (Ogino et al., 2010). It is likely that 

a similar process occurs in pneumoviruses with the L protein carrying out the capping 

process. The proposed mechanism for capping mRNA is shown in Figure  1.7 in 

comparison with the normal cellular capping process. 

 

Figure  1.7 The process involving cap synthesis in eukaryotes and in VSV. A. In eukaryotic cells 
the γ phosphate of  pre-mRNA is removed by the action of RNA 5′-triphosphatase (RTPase) (1). 
In the next steps (2 and 3) a GMP is transferred by a guanylyltransferase (GTase) enzyme 
action to the pre-mRNA to produce the 5’ cap structure. B. In VSV the L protein mediates both 
reactions and removes two phosphate groups from the tri-phosphate-pre-mRNA structure (1a) 
and transfers a GDP to the pre-mRNA structure by its RNA:GDP polyribonucleotidyltransferase 
(PRNTase) activity (2a and 3a). Adapted from Ogino et al. (2010). 
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1.2.4.3 Transcription termination and polyadenylation 

Harmon and colleagues (2001) have summarised the cis factors involving in the 

transcription termination in three categories: the two conserved regions of the Gene End 

sequence (the 3’-UCAAU-5’ and the U track) and the central region which is located 

between the conserved regions (Section  1.2.2). Analysis of the gene end sequence of the 

M gene of HRSV vRNA has shown that nucleotides at positions 2 to 6 are important for 

transcription termination, whereas the nucleotides at positions 1 and 7 are not important 

to obtain efficient transcription termination. At position 8 of the gene end sequence, an 

A or U residue allows termination. The presence of four U residues is necessary for 

efficient transcription termination, and genes of HRSV with shorter U residues have 

been shown to fail to produce mRNA efficiently and produce readthrough polycistronic 

RNA templates (Harmon et al., 2001). Poly-adenylation occurs when the polymerase 

complex reaches to the gene end sequence. The presence of a U rich sequence in the 

gene end directs the RNP complex to generate the poly A sequence. 

In contrast with the gene start sequence, the gene end sequence is not well 

conserved among the pneumoviruses. In PVM the gene end sequence consists of 

uAGUuAnnn(A)n and in HRSV it consists of AGU(U/A)Annnn(A)n (Chambers et al., 

1991; Melero, 2006). The gene end sequence is followed by the non-conserved 

intergenic sequence (Chambers et al., 1991). It was shown that the length or structure of 

the intergenic sequence does not affect the termination of transcription (Kuo et al., 

1996). This finding was challenged with another report describing the importance of the 

M/SH gene junction variation in the expression of the SH (Moudy et al., 2004). Moudy 

and colleagues (2004) reported the P/M gene junction as the most variable gene junction 

with no detectable variation in the gene expression. 

1.2.5 Genome replication 

It has been proposed that the RNP complex which carries out genome 

replication is the same complex used in transcription. However, the switch from 

transcription to replication is not completely understood. The study of Sendai virus, a 

paramyxovirus, has suggested that the abundance of the N protein is important in 

controlling the switch between the RNA transcription and replication processes. The 

presence of the N protein in the cytoplasm of the infected cells may cover the gene end 

and gene start signals, and as a result the RNP complex does not respond to the gene 

end signals and instead reads through the cRNA (Vidal & Kolakofsky, 1989). 
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 As for transcription, genome replication is controlled by the leader (Le) 

sequence of the genomic RNA to synthesis cRNA and the complementary sequence of 

trailer region of the vRNA (TrC) to synthesis vRNA from the cRNA template 

(Figure  1.8). Figure  1.9 shows the Le region from several pneumoviruses, and 

Figure  1.10 compares the Le and the TrC regions of HRSV. Genome replication 

requires switch of the RNP complex from transcription phase to the replication 

(Figure  1.8). 

Recently, it has been shown that the HRSV RNP complex tends to start RNA 

synthesis with a purine residue and specifically it prefers adenosine to start vRNA or 

cRNA synthesis. Deletion of the first nucleotide of  the template RNA or introduction of 

a mutation substituting a U residue in the template urges the RNP complex to start the 

RNA synthesis from the first available pyrimidine residue in the template (the third 

nucleotide residue of the template) (Noton et al., 2010). The RNP polymerase binds to 

the nucleotides 3, 5, 8, 9, 10 and 11, facing its active site towards nucleotides 1 and 2. 

The RNA polymerase then uses ATP molecule to start RNA synthesis independently of 

the template to start synthesis of RNA (Noton et al., 2010). It has been suggested that 

the de novo addition of ATP to the nascent RNA in HRSV is mediated by the same 

secondary ATP binding site which was recognized in the VSV L protein (Massey & 

Lenard, 1987; Noton et al., 2010). 

Initiation of the assembly of the nascent RNA before the RNP complex reaches 

to the first intergenic region increases the possibility of the read-thorough RNA 

synthesis and hence leads to replication rather than transcription (Vidal & Kolakofsky, 

1989). Further studies on Sendai virus have confirmed coupled packaging of the nascent 

RNA with the RNP complex making the replication occur with a higher processivity in 

comparison to transcription (Gubbay et al., 2001). In a recent study of HRSV, Noton 

and colleagues (2010) observed that if the RNA synthesis begins at position 3 of the 

leader sequence it fails to proceed more than 50 nucleotides. They have linked this 

phenomenon to the possibility of the attachment of the N protein to the first two 

nucleotides of the leader sequence during coupled RNA synthesis and packaging 

process, with the binding of the N protein ensuring processivity of RNA synthesis 

during replication. 
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Figure  1.8 HRSV genome replication. The RNP complex (depicted as a compartment in blue 

and red colors) recognizes the genomic leader (Le) sequence or the trailer complementary 
sequence (TrC) sequence to dock on the RNA template and starts RNA synthesis. The blue 
arrows show the direction that the RNP complex moves. The Le and leader complementary 
sequences (LeC) are shown in red color. The trailer (Tr) and TrC sequences are shown in green 
color. The red compartments of the RNP complex represent P, N, and M2-1 proteins, and the 
blue compartment represents the large polymerase protein.  

 
 
 
 
 
 
 
PVM15(Warwick)      UGCGCUUUUUUACGUAU--UGUUUUGAUAGUUGGACUUUUUUCAAUCCUGUU-- 
PVM15(ATCC)         UGCGCUUUUUUACGUAU--UGUUUUGAUAGUUGGACUUUUUUCAAUCCUGUU-- 
PVMJ3666            UGCGCUUUUUUACGUAU--UGUUUUGAUAGUUGGACUUUUUCAAUCCUGUUC-- 
BRSV                UGCGCUUUUUUACGCAUAUUGUUUGGACAUGUAGGUUUUUUCUAGCCCCG---- 
HRSVB1              UGCGCUUUUUUACGCAUGAUGUUUGAACGUGUAAGCCUUUUUUACCCCGU---- 
HRSVA2              UGCGCUUUUUUACGCAUGUUGUUUGAACGUAUUUGGUUUUUUUACCCCGU---- 
HRSV19              ----CUUUUUUACGCAUGUUGUUUGAACGCAUUUGGUUUUUUUACCCCGUUUAU 
                        ********** **  *****  *    *     ****  *  *        
  

Figure  1.9 Genomic sequence of the leader domain of pneumoviruses. The leader sequence of 

members of genus pneumovirus are compared together. The genomic sequence of the RNA is 

shown. See Table  1.3 for the accession numbers of the sequences in the genebank. The 

identical nucleotides are shown in yellow. The “*” character indicates positions which have a 
single, fully conserved residue (Thompson et al., 2002).  
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cRNA_Leader      UGCUCUUUUUUUCACAGUUUUUGAUUAUAGAGCAUUAAAU--- 
vRNA_Leader      UGCGCUUUUUUACGCA--UGUUGUUUG-AACGUAUUUGGUUUU 

              *** ******* * **  * *** **  *  * ***   * 

Figure  1.10 Comparison between leader sequence in the genome and antigenome of HRSV. 

The leader sequence of genome is indicated by vRNA_Leader and the genome sequence of the 
antigenome is indicated by cRNA_Leader. The “*” character indicates positions which have a 
single, fully conserved residue (Thompson et al., 2002). 

1.2.5.1 M2-2 protein 

The M2-2 protein (with a Mr value of 9-10,000) is synthesised from the second 

ORF of the M2 gene, partially overlapping the M2-1 open reading frame (Ahmadian et 

al., 1999; Collins et al., 1996a; Collins & Wertz, 1985a). From three tandem AUG 

codons at the 5’ end of the M2-2 ORF, only the first and the second codons can be used 

to synthesise the M2-2 protein which is functional in the minigenome system (Cheng et 

al., 2005). Expression of the M2-2 ORF from the M2 mRNA requires termination of the 

expression of the first ORF and re-initiation of expression of the second ORF (M2-2) in 

a process called coupled translation (Ahmadian et al., 2000). In the coupled translation 

process the overlapping sequence between M2-1 and M2-2 directs the ribosome towards 

the initiation signal of the M2-2 ORF, with an efficiency determined by the sequence 

upstream of the overlap region (Gould & Easton, 2007). 

In a HRSV sub-genomic mini-replicon system, it was shown that the M2-2 

protein acts as a negative regulatory protein in RNA synthesis (Collins et al., 1996a; 

Hardy & Wertz, 1998). It has been suggested that the M2-2 protein maintains the 

balance between the genome replication and transcription (Bermingham & Collins, 

1999). In cells infected with HRSV strain A2 there is a rapid increase in mRNA 

production until it levels off, whilst in cells infected with a HRSV strain A2 lacking the 

M2-2 gene an initial delay was observed in the mRNA synthesis followed by a sudden 

increase in the level of mRNA higher than that of the wildtype which led to an 

accumulation of mRNA. In contrast, in comparison with the wildtype virus there was a 

significant reduction in the accumulation of cRNA with the M2-2 deleted virus  

(Bermingham & Collins, 1999). It has been also reported that over-expression of M2-2 

protein in HRSV infected cells completely inhibits virus growth (Cheng et al., 2005). 
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In HRSV, the M2 mRNA overlaps the beginning of the L gene by 68 nt. 

Transcription from the L gene start sequence frequently terminates at the M2 gene end 

sequence which  has the effect of down regulating expression of the L gene mRNA and 

hence the level of L protein (Collins et al., 1987). Comparison between mRNA and 

protein synthesis of an M2-2 deleted recombinant HRSV and rescued HRSV strain A2 

are similar (Jin et al., 2000a). Attenuation of HRSV with deleted M2-2 in BALB/c mice 

and cotton rats has also been reported (Jin et al., 2000a). 

1.2.6 Virus assembly and release 

Similar to other members of Paramyxoviridae, assembly of HRSV occurs in the 

cytoplasm of the infected cells in assembly sites close to the plasma membrane. The 

virus glycoproteins are transferred to the assembly sites of the infected cells using 

cellular proteins. 

Assembly in Paramyxoviridae occurs in two steps; assembly of the RNP 

complex and assembly of the envelope. The assembly of RNP complex to the RNA 

occurs during replication of the new genomic RNA. 

1.2.6.1 Matrix (M) protein 

The matrix (M) protein of pneumoviruses acts as a connecting layer between the 

viral nucleocapsid and the viral membrane. Its interaction with different viral proteins 

including N, G, F and M2-1 has been demonstrated. There are two main functions 

reported for the M protein; switching off viral transcription and directing virus assembly 

towards budding. It has been shown for members of the order Mononegavirales that the 

M protein is essential for virus budding, suggesting it has intrinsic capabilities of 

directing virus budding (Mebatsion et al., 1996; Mebatsion et al., 1999; Teng & Collins, 

1998). The cytoplasmic domain of the G protein, in particular the first 6 amino acids 

and especially serine at position 2 and asparagine at position 6, play a major role in the 

interaction of G and M proteins (Ghildyal et al., 2005). The interaction between the F 

and M proteins is independent from the interaction between the G and M proteins 

(Ghildyal et al., 2005). This suggests that there are separate domains on the M protein 

responsible for interaction with F and G glycoproteins. 

It has been shown that the first 110 amino acids from the N-terminus of the N 

protein are responsible for the interaction between M and N proteins (Li et al., 2008a). 
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1.2.6.2 Virus release 

Sample titration from the apical and basolateral surfaces of polarised human 

airway epithelial (HAE) cells grown on 0.4 µm semipermeable membranes indicated 

that virus budding occurs from the apical surface of cells and the virus is released into 

the luminal periciliary fluid and/or possibly into overlaying mucus layer in vivo. This 

would result in a “vectorial pattern”, forming a circular form of infection with each 

initial focal point in the centre and radial spread of the progeny HRSV into adjacent 

cells (Zhang et al., 2002). 

1.3 Pneumovirus pathogenicity 

1.3.1  Virus factors affecting pathogenicity  

Pathogenesis in viruses is frequently multifactorial, and requires interaction 

between many viral and host proteins. Other factors such as regulatory sequences may 

also play a role. For example, certain attenuated derivatives of HRSV have a 4C 

nucleotide substitution at their leader position which has been shown to affect the 

amount of genome replication (Section  1.2.2). Other viral factors affecting the 

pathogenicity are described below (Fearns et al., 2002). 

1.3.1.1 Non-structural (NS) protein 1 and 2 

The HRSV non-structural proteins 1 and 2, previously known as 11K and 14K 

proteins, are found in abundance in the infected cells, but in little amounts associated 

with virion extracts. Therefore, they are designated as non-structural proteins (Huang et 

al., 1985). The NS1 and NS2 proteins are unique to pneumoviruses and lack 

counterparts among other negative strand non-segmented RNA viruses. The NS1 gene 

of HRSV strain A2 is 552 nucleotides in length and encodes a polypeptide of 139 amino 

acids. The NS2 gene is 503 nucleotides in length and encodes a polypeptide of 124 

amino acids in length (Collins & Wertz, 1985b). The NS1 and NS2 gene positions close 

to the leader/promoter region makes them the most abundantly transcribed genes in 

HRSV infected cells (Collins & Wertz, 1985b; Glazier et al., 1977). 

In a novel experiment, recombinant rabies viruses carrying either the BRSV 

NS1 or NS2 genes were generated to assess the ability of these genes to confer reduced 

sensitivity to interferon. The data showed that both NS1 and NS2 can inhibit the IFN 

response in the host cell but that both act together synergistically for the greatest effect 
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(Schlender et al., 2000). It has been proposed that the NS1 and NS2 proteins may also 

contribute to host specificity by exerting the greatest effect on the IFN systems of the 

relevant host animal (Bossert & Conzelmann, 2002; Schlender et al., 2000). 

The importance of NS1 and NS2 proteins in antagonizing the host innate 

immune response was also analysed using recombinant BRSV virus deleted in either or 

both of the genes (Schlender et al., 2000). It was shown that BRS recombinant viruses 

lacking NS1, NS2 or both proteins grow efficiently in Vero, HEp-2 and BSR-T7/5 cells. 

However, their growth was reduced by 100-fold in MDBK cells, suggesting further that 

NS1 and NS2 proteins are IFN antagonists. The evidence from the experiment was 

confirmed by co-cultivating Vero cells with MDBK cells in a two-chamber culture 

system in which the chambers were isolated from each other by a permeable filter. The 

analysis showed that cells responded to soluble factors released from MDBK cells by 

inhibition of the growth of the viruses. A similar result was observed with macrophages 

as the effector (Schlender et al., 2000; Valarcher et al., 2003).   

The function of NS1 and NS2 proteins in virus replication and plaque 

morphology of HRSV strain A2 was analysed by Jin and colleagues (2000). It was 

shown that the presence of the NS1 and NS2 genes in the HRSV genome is not essential 

for recombinant virus recovery or replication in vivo or in vitro (Jin et al., 2000b). 

However, deletion of NS1 and/or NS2 genes in the recombinant viruses resulted in the 

generation of smaller plaque morphology and 100-fold reduction in virus replication in 

Vero and HEp-2 cells. Replication of the recombinant viruses in the lower respiratory 

tract of cotton rats was also reduced (Jin et al., 2000b). 

The function of the NS1 and NS2 proteins and their impact in virus replication 

and interferon antagonism in PVM strain 15 (ATCC) was studied by Buchholz et al. 

(2009). It was shown that the deletion of either the NS1 or NS2 genes did not affect the 

ability of the recombinant PVM to grow in interferon negative Vero cells. However, 

recombinant viruses lacking NS1 or NS2 genes did not grow in mouse embryonic 

fibroblast cells (Buchholz et al., 2009). 

1.3.1.2 Effect of the G glycoprotein in pneumoviruses pathogenesis 

The G glycoprotein of pneumoviruses has been identified as one of the major 

determinant factors of pathogenesis. As noted earlier (Section  1.2.1.1) the structural 

similarity between the CX3C motif of the G glycoprotein and fractalkine chemokine 

suggests an interaction between the CX3C motif and CXCR1 (fractalkine receptors) 
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which enables the G glycoprotein to mimic fractalkine function (Tripp et al., 2001). 

This function of the G protein was attributed to the CX3C motif of the G protein (2006). 

Mice infected with recombinant HRSV deficient in the CX3C motif or lacking the G 

gene showed significantly higher levels of pulmonary CX3CR1+, CD4+ and CD8+ cells 

than in mice infected with the HRSV strain A2 (Harcourt et al., 2006). These data 

suggest the importance of the G glycoprotein in controlling the influx of cytotoxic CD8+ 

T cells, which have an important role in controlling the infection and virus clearance. 

HRSV G protein stimulation of naive spleen cells induces IL4 and CXCL1 

production (Harcourt et al., 2006). The mechanism of this function of the G protein has 

not been identified, but this is attributed to the interaction between the G protein and 

extracellular heparin molecules, or the interaction between the cysteine noose and 

fractalkine receptors (Harcourt et al., 2006). 

The conserved cysteine rich region of the G glycoprotein acts as an 

antiinflamatory factor to antagonize the proinflammatory effect of F glycoprotein 

(Polack et al., 2005). The G glycoprotein has also been shown to change cytokine 

production of the infected cells by blocking production of inflammatory cytokines, 

decreasing nuclear translocation of NF-κB. The similarity between the GCRR domain 

of the G protein (see  1.2.1.1) and the fourth sub-domain of TNFR1 suggests an 

interaction between these two molecules which may explain the G gene contribution in 

immunomodulatory function (Langedijk et al., 1998). 

More recently it has been shown that the G glycoprotein inhibits TLR 3 and 4 

mediated type I interferon response by modulating the TICAM-I pathway (Shingai et 

al., 2008). The down regulation of IFN-β in MLE-15 cells (mouse lung epithelial cells) 

infected with a recombinant virus lacking the G gene was related to down regulation of 

interferon stimulated gene-15 (ISG-15) protein which its expression of which rapidly 

increases in response to viral infections (Moore et al., 2008). In cells infected with 

recombinant HRSV lacking G gene, the mRNA and expression levels of suppressor of 

cytokine signalling 3 (SOCS3) were significantly higher in comparison with cells 

infected with the wildtype HRSV or HRSV lacking NS1 and NS2 genes (Moore et al., 

2008), indicating the effect of the G protein in inhibiting the innate immunity cellular 

signalling pathway. 

The fast release of the Gs from the infected cells (after 24 hr of infection) helps 

the virus to modulate both cellular and humoral immunity by using the Gs as a decoy 
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for anti-G specific neutralising antibodies and as an imitative protein for CX3C 

chemokine in controlling monocyte trafficking (Collins & Graham, 2008). 

G glycoprotein activates the humoral response. However, the antibody response 

to the G glycoprotein is sub-group specific (Section  1.1) and cross reactivity between 

anti-G antibodies rarely happens (Oshansky et al., 2009). In contrast, anti-F antibodies 

are effectively capable of neutralizing the virus (Kao et al., 1984; Melero et al., 1997; 

Trudel et al., 1991). 

1.3.1.3 Effect of the F glycoprotein in pneumoviruses pathogenesis 

Unlike other paramyxoviruses, cleavage of the pneumovirus F protein is not a 

key determinant of pathogenicity and virus virulence. In contrast with the G 

glycoprotein, the HRSV F glycoprotein has been reported to interact with toll like 

receptor 4 (TLR4) and activates the signalling pathway leading to up-regulation of 

TNFα, IL-6 and IL-12 production (Collins & Graham, 2008; Oshansky et al., 2009). 

Antibody response is against two types of F protein: the mature form which is 

present on the virus particles and the immature form which is the unfolded form of the F 

protein. The immature form does not contain all of the epitopes necessary for 

neutralisation (Lopez et al., 1998). Early release of the immature form from lysed 

infected cells results in an inefficient antibody response (Oshansky et al., 2009). The 

major neutralising antibodies are against F protein. 

It has been reported that the F protein in HRSV strain Line 19 is more 

mucogenic than its counterparts in HRSV strain A2 or HRSV strain Long (Moore et al., 

2009). Moore and colleagues (2009) have shown that BALB/cJ mice infected with a 

chimeric HRSV virus strain A2 carrying the F gene from the strain Line 19 showed 

lower IFN-α production, higher lung viral load, higher lung IL-13 level, higher airway 

mucin production level and higher airway hyper responsiveness than those were 

infected with recombinant HRSV strains A2 and Long. In comparison with the 

sequence of the F protein in the strains A2 and Long, the F protein of HRSV strain Line 

19 contains 4 unique amino acid substitutes in its sequence (Moore et al., 2009). 

The importance of pep27 of BRSV and the furin like cleavage sites of the F 

protein (Section 1.2.1.2) in BRSV replication in the cell culture has been investigated 

(Zimmer et al., 2002). Although the pep27 or the furin cleavage sites are not required 

for efficient virus growth in the cell culture (Zimmer et al., 2002), in a separate study 

(Valarcher et al., 2006), it was shown that calves infected with recombinant viruses 
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carrying mutations in the furin cleavage sites of the F protein or lacking the pep27 

demonstrate a less gross and microscopic pulmonary pathology in comparison with the 

calves infected with the recombinant viruses carrying the authentic F glycoprotein. 

Small hydrophobic (SH) protein 

The SH protein is a small (64 amino acids for HRSV strain A2, subgroup A, and 

65 amino acid for HRSV subgroup B) and highly conserved transmembrane 

glycoprotein transcribed and translated from the SH gene. The amino acid sequence of 

the SH protein is highly conserved among both HRSV subtypes (Carter et al., 2010).  

The SH protein was shown to be non-essential in HRSV replication and was 

categorised as an accessory protein of HRSV (Bukreyev et al., 1997; Whitehead et al., 

1999). The SH protein accumulates in different forms (designated SH0, SHp, SHt and 

SHg) inside infected cells.  SH0 is the non-glycosylated and full length form of the SH 

protein with a relative molecular mass of 7,500, SHg contains an N-linked carbohydrate 

side chain (Mr 13,000-15,000), SHp has more modification by addition of 

polylactosaminoglycan oligosaccharides to the N-linked side chain (Mr 21,000-65,000) 

and SHt is distinct nonglycosylated form of the SH protein with a shorter N-terminus as 

its translation starts from the second start codon of the SH gene (Anderson et al., 1992; 

Collins & Mottet, 1993). The N-linked glycosylation sites and the central hydrophobic 

region are highly conserved among HRSV and BRSV subtypes (Anderson et al., 1992). 

Lipid rafts in the cellular secretary pathway such as the endoplasmic reticulum, Golgi 

compartment and cell surface are the main sites that SH protein is observed in 

abundance in the infected cells. The appearance of SH protein in viral filamentous 

structures is minimal (Rixon et al., 2004). 

The function of the SH protein is not clearly known. However, an anti-apoptotic 

function has been reported (Fuentes et al., 2007), and large plaque formation 

phenomenon seen in SH deleted recombinant HRSV is attributed to the anti-apoptotic 

function of the SH protein (Bukreyev et al., 1997; Techaarpornkul et al., 2002). 

There is evidence that the SH protein is phosphorylated via a MAPK p38-

dependent pathway during the virus infection cycle, and the phosphorylated SH protein 

is linked with a pentamer homo-oligomer structure (Rixon et al., 2005). Observations 

using electron microscopy techniques suggest the presence of pentamer and hexamer 

homo-oligomer viroporin channels formed by the SH glycoprotein (Carter et al., 2010; 

Gan et al., 2008; Kochva et al., 2003). The function of these channels in the viral and 
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cellular life cycle, their effect on the apoptosis (Lang et al., 2005), and the possibility of 

their contribution in the virulence remains to be clarified. 

Deletion of the SH gene from recombinant HRSV viruses did not have any 

significant effect on the virus growth in vitro (Bukreyev et al., 1997). However, a 

deleted SH recombinant virus showed 40-fold reduction in replication in the lower 

respiratory tract of chimpanzees infected with the virus and the chimpanzees showed 

less rhinorrhea in comparison with the chimpanzees receiving the wild-type HRSV 

(Whitehead et al., 1999). 

Sequence analysis of the SH gene among clinical isolated showed little or no 

sequence variability (Chen et al., 2000), indicating conservation of SH gene among the 

clinical isolates and suggesting an evolutionary importance of the SH gene for 

maintaining viral pathogenicity. 

The expression of MIP, MCP-1, and IP-10 was related to the biological function 

of G and/or SH glycoproteins. The mRNA expression level for MIP, MCP-1 and IP-10 

was reported as being higher in the bronchoalveolar lavage (BAL) cells of mice infected 

with HRSV strain cp52 than those of mice infected with HRSV strain B1. The 

difference between the expression levels was related to the lack of biological activity of 

G and/or SH glycoproteins in the strain cp52 (Tripp et al., 2000a). 

1.3.2 Host factors affecting pathogenicity 

There are host factors that may affect the severity of disease associate with  

HRSV infection. The importance of these host factors in the infection of HRSV was 

observed by Prince et al. (1979). To develop a mice model for HRSV infection, 20 

strains of inbred mice were infected with HRSV strain Long (Prince et al., 1979). 

Among the infected mice strains  the CBA/CaCHN strain of mice was reported as the 

most resistant while the strain DBA/2N was reported the most permissive strain (Prince 

et al., 1979). In a separate study, Anh et al. (2006) tested susceptibility of 6 different 

strains of mice (129/Sv, BALB/c, C3H/HeN, C57BL/6, DBA/2 and SJL) to PVM 

infection. the strain SJL showed the most resistance to PVM infection while the rest 

showed high susceptibility to the infection with a greater degree for the strain 129/Sv 

which was followed by the strains DBA/2, C3H/HeN, BALB/c and C57BL/6 in order.  

The host factors affecting the pathogenicity related with HRSV infection may 

include age, gender, race, congenital heart disease, bronchopulmonary dysplasia, 

immunosuppression or immunodeficiency, narrow airways, premature birth, low birth 
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weight and the level of immunity of individuals during the time of infection (Collins & 

Graham, 2008; DeVincenzo, 2005; Leader & Kohlhase, 2003; Oshansky et al., 2009; 

Walsh et al., 1997; Welliver, 2003). The relation of nucleotide polymorphism in certain 

genes with severity of disease caused by HRSV also has been examined. These include 

genes involved in immune response including genes encoding cytokines and 

chemokines (including IL-4, IL-8, IL-10, IL-13, IL-18, RANTES/CCL5), or surface and 

signal transduction elements (including TLR-4, CD14, IL-4R, CX3CR1, CCR5 and 

surfactant proteins) (Amanatidou et al., 2006; Awomoyi et al., 2007; Collins & 

Graham, 2008; Hull et al., 2003; Miyairi & DeVincenzo, 2008; Paulus et al., 2007; 

Puthothu et al., 2007).  

1.3.2.1 The effect of tachykinins on respiratory disease 

Mammalian tachykinins are traditionally categorized as neurotransmitters. They 

all are short polypeptides (about 11 amino acids) processed and post-translationally 

modified from longer polypeptides (Page, 2005). Despite early reports indicating 

production of tachykinins solely from neural cells, there are several reports suggesting 

the production of tachykinins in other tissues and cells including inflammatory sites, 

macrophages, eosinophils, lymphocytes, and dendritic cells (Bost & Pascual, 1992; 

Killingsworth et al., 1997; Weinstock et al., 1988).  There are also reports showing the 

presence of tachykinins in the peripheral circulation and even in placental tissue (Page, 

2005; Page et al., 2000). The tachykinins in these cells exert their effects in different 

regulatory and inflammatory mechanisms. 

Five tachykinin peptides have been identified in mammals; substance P (SP), 

neurokinin A (NKA), neuropeptide K (NKK), neuropeptide-  (NKY), and neurokinin 

B (NKB). All of the tachykinins share a similar C-terminal of                                    

Phe-X-Gly-Leu-Met-amid where X is an aromatic or hydrophobic amino acid (Hietala 

et al., 2005). The conserved C terminal region acts as the central activation factor to 

activate tachykinin receptors  (Page, 2005). At least three receptors have been reported 

to interact with tachykinins: the neurokinin-1, neurokinin-2 and neurokinin-3 receptors 

(NK-1R, NK-2R, and NK-3R). It has been shown that different tachykinins have 

different affinities in binding to the receptors, as SP binds to NK-1R more efficiently 

than the others. NKA and NKB bind to NK-2R and NK-3R with a higher affinity in 

comparison with the others (O'Connor et al., 2004; Page, 2005).  
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SP was first discovered in 1931 and was subsequently isolated from bovine 

hypothalamus and characterized in 1971. In humans and animals, SP increases 

ventilation (Saaresranta & Polo, 2002). It has been shown that SP has a broncho-

constriction effect in vitro, though no such effect is reported in vivo (Saaresranta & 

Polo, 2002).  The amount of SP in HPLC purified tracheal and lung extracts has been 

measured at 13.0 and 5.4 pmol/g tissue, respectively (Groneberg et al., 2006). 

It seems likely that human respiratory inflammation causes SP and NKA 

production from neuronal or non-neuronal cells located in the respiratory system. In 

guinea pig models, 24 hr after allergen challenge the amount of SP and NKA was 

increased 3- to 4-fold. In a study on NK-1R depleted animal models it was shown that 

deletion of the receptor did not have any significant effect on the accumulation of 

inflammatory factors such as antigen specific IgE and inflammatory cells in 

bronchoalveolar lavage (BAL) fluids (Tournoy et al., 2003). The effect of tachykinins 

in signal transduction in respiratory systems and its importance in the inflammation 

remains to be understood (Groneberg et al., 2006).  

It has been shown that SP is produced in association with the G and/or SH 

glycoproteins in lungs of mice acutely infected with HRSV (Tripp et al., 2000b). In this 

study the level of SP in the BAL of naïve mice was measured by a competitive ELISA 

test and compared to those of HRSV strain B1 and HRSV strain cp52 infected mice 

(Karron et al., 1997). It was shown that that SP was significantly lower in the group of 

mice infected by cp52. The absence of G and SH glycoproteins in the strain cp52 

suggested that either or both of the glycoproteins contributed to the alteration of the 

level of SP detected.  

1.3.3 Long lasting HRSV infection 

The contribution of HRSV to chronic obstructive pulmonary disease (COPD) 

has been sought for some time. As with acute respiratory disease caused by HRSV the 

main site of inflammation in COPD is the small airways where obstruction and 

inflammation happens upon the infection (Wilkinson et al., 2006). The infection of a 

recombinant HRSV expressing GFP persisted for more than one month in well 

differentiated human airway epithelium (WD-HAE) culture, with normal cilia 

movement and no obvious cytopathology or syncytia formation (Zhang et al., 2002). 

This suggested that long term infection may be possible.  
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Two reports have described long-lasting pneumovirus infection in vivo. To 

investigate the mechanisms involved in latency, persistency or immune evasion, no 

virus was detected in broncho alveolar fluid isolated from BALB/c mice infected with 

HRSV, while the virus was detectable in lung homogenates of the mice using PCR after 

100 days of post infection (Schwarze et al., 2004). The mice did not demonstrate any 

signs of infection during the period. In a similar study BRSV was isolated directly from 

tracheobronchial and mediastinal lymph nodes of  calves infected with BRSV in up to 

71 days post infection (Valarcher et al., 2001). 

1.3.4 Using PVM to study the pathogenesis of HRSV 

Generally speaking, mouse models are not fully permissive to HRSV infection. 

Mice least sensitive to HRSV are  CBA/CaHN and the most sensitive are DBA/2N 

(Byrd & Prince, 1997). In comparison with mice, cotton rats are more permissive to 

HRSV infection replicating to a 100 times greater titre than that in DBA/2N mice (Byrd 

& Prince, 1997; Prince et al., 1978). However, the lack of reagents in characterising the 

details of the immunity against HRSV infection is one of the major limiting factors in 

HRSV studies in cotton rats. The availability of congenic, transgenic and knock-out 

strains of cotton rats is another limiting factor in HRSV studies (Byrd & Prince, 1997). 

Another limitation in using mice models of HRSV is the difference between human and 

mice eosinophils in their response to disease (Rosenberg et al., 2009). Considering that 

eosinophils play an important role in the HRSV infection, using mouse models in 

studying HRSV pathogenesis may not reflect the aspects of the eosinophil’s 

contribution in the virus pathogenicity. 

Another alternative way to study the pathogenesis of HRSV is studying the 

pathogenesis of PVM in mice and extrapolating the findings to HRSV. PVM infection 

in mice reflects the same pathology  as HRSV infection in human patients. It has been 

reported that intranasal inoculation of mice with 250 pfu of PVM in a volume of 50 µl 

causes fatal disease in mice (Cook et al., 1998). In contrast, a virus load of 104 – 106 pfu 

is necessary to infect mice (Cannon et al., 1987; Easton et al., 2004; Taylor et al., 

1984). Moreover, the pathogenic PVM develops clear symptoms including weight loss, 

abnormal gait, and tremor during its replication in mice which makes monitoring the 

progress of the disease simpler without the need for obtaining histopathology samples. 

As in HRSV infection in human tissues, PVM infection in mice is accompanied 

by an influx of granulocytes into the lower respiratory system. Production of eosinophil 
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attractants like MIP-1α, eotaxin and RANTES is a common feature between the 

infection caused by PVM in mice and the infection of HRSV in human tissues, and  

using a gene microarray expression of MIP-2 (mouse orthologue for IL-8) and MCP-2 

has been shown (Bonville et al., 2006; Domachowske et al., 2000a; Domachowske et 

al., 2000b).  

1.3.5 Aims 

The main challenge in the study of pathogenesis of HRSV is the lack of a 

suitable animal model. Mouse models are partially permissive for HRSV infection but 

the study of the pathogenicity can be achieved only through histopathological analysis. 

PVM is genetically close to HRSV and displays a pathology in mice which resembles 

that of HRSV in humans. It therefore has been proposed that the PVM infection in mice 

may be suitable model for the study of pneumoviruses in their host.  

The aims of this project were: 

• To establish a reverse genetics system for PVM which could be used to 

study the effects of specific mutations on pathogenicity. 

• To investigate the pathogenicity in mice of a series of stocks of PVM 

which had been progressively passaged in tissue culture and to determine 

the nucleotide sequence of the genes of pathogenic and non-pathogenic 

viruses. This data would be compared with the published sequences of 

pathogenic and non-pathogenic PVM strains. 

• To introduce specific mutations into the G gene of recombinant PVM 

viruses and determine the effect on pathogenicity in mice. 

• To investigate possible consequences of specific mutations associated 

with pathogenicity on molecular processes such as the level of gene 

expression. 
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2.1 Solutions 

2.1.1 AEC peroxidase substrate 

AEC (3-amino-9-ethylcarbazole) was dissolved in DMSO at a concentration of 

3.3 mg/ml and kept frozen in small aliquots at -20˚C until the time of use. 20 mM of 

CH3COONa (pH 5.6) and 0.6ml AEC solution were added to water in order, and 16 μl 

of H2O2 was added to the mixture prior to use to have a final volume of 10 ml of the 

substrate. 

2.1.2 ABTS Substrate 

ABTS (2,2'-azino-bis-[3-ethylbenzothiazoline-6-sulfonic acid]) substrate was 

prepared by dissolving 100 mg of ABTS (SIGMA) in 100 ml of buffer. To prepare the 

buffer 1.67 g of the buffer powder (Roche; consists of sodium perborate, citric acid, and 

disodium hydrogen phosphate) was dissolved in 100 ml of distilled water. 

2.1.3 Carbonate coating buffer 

Coating buffer contained 0.34% (w/v) Na2CO3 (anhydrous), 0.57% (w/v) 

NaHCO3, pH 9.6. The pH was adjusted using NaHCO3. 

2.1.4 Luria-Bertani broth and agar media 

10 g of tryptone, 5 g of yeast extract and 10 g of NaCl were dissolved in one 

litre of water. Bacteriological agar (10 g/l) was added to prepare LB agar.  After being 

autoclaved the solution was aliquoted in appropriate tubes or dishes. 

2.1.5 Ketamine and xylazine cocktail 

To obtain the anesthetic condition in mice a ketamine/xylazine cocktail was 

used.  The mixture contained 10 mg/ml of the anesthetic ketamine and 1.8 mg/ml of the 

analgesic xylazine dissolved in sterile phosphate buffered saline (PBS). Adult BALB/c 

mice were anaesthetized by intraperitoneal injection with 150 µl of the mixture. 

2.1.6 Phenol:chloroform mixture 

A mixture of phenol (50% v/v) and chloroform (50% v/v) was used to purify 

DNA from protein contaminants. 
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2.1.7 SDS-PAGE sample buffer 

For preparing 10 ml of 4x sample buffer, 3 ml of 20% (w/v) SDS solution, 3 ml 

of glycerol, 1.6 ml of β-mercaptoethanol and 0.006 g bromophenol blue were mixed 

together. The solution was made prior to use and kept at 4˚C for short term storage. 

2.1.8 SDS-PAGE electrophoresis buffer 

SDS-PAGE electrophoresis buffer (1x) was made by dissolving 25 mM Tris, 

250 mM glycine (pH 8.3) and 0.1% (w/v) SDS in distilled water. 

2.1.9 TAE Buffer 

Tris-acetate (TAE) buffer was specifically used to run low melting agarose gels.  

To make 50x of Tris acetate buffer 242 g of Tris base, 57.1 ml glacial acetic acid and 

100 ml of 0.5 M EDTA (pH 8.0) were mixed together and dissolved into one litre of 

distilled water. 

2.1.10 TB solution 

TB solution composed 10 mM PIPES, 55 mM MnCl2 and 15 mM CaCl2 and 250 

mM KCl. After dissolving the PIPES CaCl2 and KCl in distilled water and adjusting the 

pH to 6.7, MnCl2 was added to the solution. The solution was prepared freshly prior to 

use and filter sterilized. 

2.1.11 TBE Buffer 

Tris-borate (TBE) buffer was prepared in a 10x concentrated format. The 

concentrated solution was diluted to 1x to prepare the working concentration. To make 

the 10x concentrated solution 54 g of Tris base, 27.5 g of boric acid and 20 ml of 0.5 M 

EDTA (pH 8) were dissolved in one litre of distilled water. 

2.1.12 TBS and TBST buffers 

50 mM Tris and 150 mM NaCl were mixed together and the final volume was 

adjusted to 1L. For making 1X TBST 1 ml of Tween-20 was added to 1X TBS. 

2.1.13 X-Gal and IPTG solutions 

A 20 mg/ml stock of X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galacto-

pyranoside) in DMF (dimethylformamide) was prepared. The solution was kept at -20˚C 
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and stored in the dark. A 100 mM stock solution of IPTG (isopropyl-β-D-

thiogalactopyranoside) in distilled water was prepared filter sterilized and kept at -20˚C 

and in the dark until the time of usage. 

2.2 Cell culture and classic virology techniques 

2.2.1 Viruses and cell lines 

BS-C-1 (African green monkey kidney cell lines) and BSR-T7/5 (BHK21 cells 

expressing bacteriophage T7 RNA polymerase) cells were obtained from Dr. R. Ling, 

pneumovirus Laboratory, University of Warwick (Buchholz et al., 1999). All cell lines 

were grown at 37˚C in Glasgow minimum essential medium (GMEM) supplemented 

with 10% fetal calf serum (FCS), 2 mM glutamine, 100 units/ml penicillin and 100 

µg/ml streptomycin. A maintenance medium with the same amount of antibiotics and L-

glutamine, but with 2% FCS was prepared and used to keep cells. 

PVM strain J3666 and PVM strain 15 (Warwick) were obtained from Prof.  A. 

Easton, pneumovirus Laboratory, University of Warwick.  

2.2.2 Mammalian cell culture 

BS-C-1 cells were grown to confluence in Glasgow modified Eagles’ medium 

(GMEM) supplemented with 10% fetal bovine serum (FBS), Penicillin (100 units/ml), 

streptomycin (50 mg/ml) and L-glutamine (2 mM final concentration). After obtaining 

confluence, cells were detached from the surface by washing with trypsin 1:250 prior to 

dispersal in growth medium to obtain a single cell suspension. The cell suspension was 

divided between tissue culture dishes to have a final suspension of cells containing 

5x105 cells/ml.  The tissue culture dishes were incubated at 37°C in 5% (v/v) CO2 and 

air. 

For the BSR-T7/5 cell line, the same procedure was repeated. GMEM medium 

supplemented with Geniticin (Invitrogen) to a final concentration of 1 mg/ml was used 

to cultivate the cells. 

2.2.3 Freezing of mammalian cells 

Mammalian cells were frozen in a mixture of 90% serum plus 10% DMSO. 

Freshly prepared confluent cells were detached from the growth surface and pelleted at 

low speed. The cells were resuspended in freezing mix which had been freshly prepared 
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and filter sterilized prior to use.  The number of cells and the volume of freezing 

mixture were adjusted to approximately 5x105 per ml. The suspension was placed into 

cryo-tubes in 1 ml aliquots. The cryo-tubes were moved to a 1˚C freezing container (Mr. 

Frosty™, Nalgene Labware) to control the reduction of the temperature to a rate of 1˚C 

for every minute. The freezing container containing the samples was moved to a -70˚C 

freezer. The frozen samples were moved to the gas phase of liquid nitrogen for longer 

storage. 

2.2.4 Transfection of mammalian cell lines using Lipofectamine 2000 

Lipofectamine 2000 (Invitrogen) was used to transfect BSR-T7/5 cells. Briefly, 

sub-confluent BSR-T7/5 cells were freshly prepared in 10 cm2 tissue culture plates the 

day before transfection. Prior to transfection, the medium was replaced with GMEM 

supplemented with 2% FBS. The DNA mixture (see Sections  4.7 and  5.11 for the 

quantities) and Lipofectamine 2000 were mixed separately in 250 µl of OPTIMEM® 

(Invitrogen). For each 1 µg DNA, 3 µl of Lipofectamine 2000 was used. After a 

minimum of 5 min of incubation at room temperature, both the diluted DNA and the 

transfection agent were mixed together. The mixture was incubated for a minimum of 

30 min, and then added drop-wise to the prepared cell culture. 

2.2.5 Transfection of mammalian cell lines using Turbofect 

The medium bathing the cells was replaced with GMEM containing 2% (v/v) 

FBS immediately prior to the transfection. The DNA to be transfected was resuspended 

in 400 µl of OPTIMEM® (Invitrogen). For every 1 µg DNA 1.5 µl of Turbofect was 

used. The desired amount of Turbofect reagent was added to the DNA suspension and 

mixed thoroughly. After 15 to 20 min incubation at the room temperature the 

DNA:Turbofect mixture was added to the cell culture medium. 

2.2.6 Virus cultivation 

Roller bottles containing sub-confluent BS-C-1 cells were infected with PVM 

virus in such a way to obtain a final moi of 0.05 pfu/cell. Both PVM strain J3666 and 

strain 15 (Warwick) were incubated at 31˚C until 80-90% cell destruction was achieved. 

At this point the roller bottles were frozen and thawed. The freeze and thaw cycle was 

followed by scraping the attached cells into the medium using sterile glass beads. The 

suspension of virus and cell lysates were kept at -70˚C in small aliquots.  
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2.2.7 Micro-plaque assay 

Serial dilutions of virus were prepared in the maintenance GMEM medium 

containing 2% (v/v) FBS immediately before the titration and kept on ice during the 

assay. Freshly prepared sub-confluent BS-C-1 cells in a 96-well plate were used to 

quantify the titre of the viruses (section  2.2.1). The medium bathing cells was replaced 

with 100 µl of the virus dilutions in triplicates. Cells were incubated for 1 hr at 31°C to 

complete adsorption. The adsorption was followed by washing cells to remove unbound 

viruses, and the cells were overlaid with maintenance medium. The titre of all of viruses 

was measured at 31˚C after 24 hr incubation. Cells were fixed with 1:1 (v/v) mixture of 

chilled methanol and acetone for 30 min at room temperature. The fixed cells were 

washed with PBS 3 times, and incubated with 1/40 dilution of the monoclonal antibody 

(26/C3/B5) which is specific for the P protein of PVM (Ling & Pringle, 1989a). The 

mAb was diluted in PBS containing 1% gelatin (Ling & Pringle, 1989a). The cells were 

incubated with the antibody for 1 hr at 37˚C. After removing antibody, the cells were 

washed 3 times with PBS. Goat anti-mouse antibody (BioRad) was used as the 

secondary antibody and cells were incubated with 1:2000 concentration of this for 1 hr. 

The incubation was followed by washing the cells 3 times with PBS. The washing 

process was followed by addition of AEC peroxidase substrate (section  2.1.1) and plates 

were observed until a brown color was developed. The number of plaques represented 

by brown cells was counted and the titre of virus stock was calculated. 

2.3 Molecular biology techniques 

2.3.1 Plasmid DNA extraction 

QIAGEN® plasmid preparation columns were used to prepare stocks of DNA. 

Briefly, for DNA preparation in mini scale, 5 ml of an overnight bacterial culture grown 

in LB broth supplemented with the appropriate antibiotic (mainly Ampicillin at final 

concentration of 100 µg/ml) was used. Bacterial cells were pelleted by centrifugation at 

2500 g for 5 min and resuspended in 250 μl of buffer P1 (provided in the kit). The cells 

were lysed by the addition of 250 μl of buffer P2 (provided in the kit). The tube 

containing the lysate was inverted 4-6 times to mix the solution thoroughly. The 

mixture was neutralized using 350 μl of buffer N3 (provided in the kit), and centrifuged 

at 18000 g for 15min. The supernatant was transferred to a QIAprep spin column and 

centrifuged down for 1 min to remove the solution from the column leaving the DNA in 
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the column. The column was washed using 0.75μl of buffer TE and centrifuged for 

1min. DNA was eluted using 50μl of the elution buffer provided in kit (EB buffer, 

provided in the kit). 

For larger scale DNA preparation (maxi-preparation), 500 ml of freshly prepared 

bacterial culture was used. A cell lysate was obtained by adding 10 ml of P2 buffer to 

10 ml of resuspended cells in P1 buffer. The lysate was neutralized using 10 ml of 

chilled P3 buffer. A QIAGEN-tip 500 column was equilibrated by applying 10 ml of 

QBT buffer (provided in the kit). The supernatant was transferred to the column and 

washed twice by adding 30 ml of QC buffer (provided in the kit). The buffer was passed 

through the column by gravity. DNA was eluted in 15 ml of buffer QF (provided in the 

kit) and precipitated using 10.5 ml of isopropanol. The DNA pellet was washed in 5 ml 

of 70% ethanol, air dried and reconstituted in an appropriate volume of buffer EB 

provided in the kit. 

2.3.2 DNA Digestion  

To carry out a single or double digestion with a restriction endonuclease, the 

appropriate amount of DNA was diluted into the appropriate buffer for the enzyme 

according to the manufacturers’ instructions. BSA was added to the DNA mixture if 

required. At the final step the relevant enzyme(s) were added to the mixture and the 

reaction was incubated according to the enzyme manufacturers’ instructions. 

2.3.3 Gel extraction 

To prepare DNA fragments from agarose gels, the DNA was separated by 

electrophoresis in a 1% agarose gel in 1x TBE buffer. The desired fragment was excised 

from the agarose gel using a new razor blade or scalpel blade. Gel extraction was 

carried out using a QIAGEN® gel extraction kit following the manufacturer’s 

instruction. Briefly, the excised gel was dissolved at 65°C in the QG buffer (provided in 

the kit) at pH 7.5. The solution containing the DNA fragment was passed through the 

silica membrane column provided. The DNA trapped in the column was eluted with the 

buffer provided. 

2.3.4 DNA ligation and low melting point agarose dependent ligation 

T4 DNA ligase (Fermentas) was used to ligate DNA fragments together. To 

avoid repeated freeze and thaw the 10x ligation buffer provided with the enzyme was 
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aliquoted in 2 µl volumes and used only once. DNA fragments ready to be ligated 

(insert and vector) were mixed with water, buffer and enzyme to achieve 20 µl of 

reaction in total. The reaction mix was incubated at 16˚C for 2 hr. In ligations of two 

fragments with cohesive ends, the molar ratio of insert and vector was adjusted in such 

a way that insert was 3 times more than the vector. For ligation of fragments with blunt 

ends 3-fold excess of vector was used. Aliquots of the ligation product were used in 

transformation of Escherichia coli (E. coli)(section  2.3.6). 

In situations where it was not possible to get an appropriate concentration of a 

DNA fragment after gel purification, low melting point (LMP) Agar (TopVision® 

Genetic Quality LMP, Fermentas) was used. LMP agarose gels were prepared in 1x 

TAE buffer. The electrophoresis was conducted at 4˚C. The desired fragment was 

excised from the gel and the agarose containing the DNA was melted at 60̊ C . The 

molten agarose was added directly to ligation reaction. The concentration of LMP 

agarose was calculated not to exceed 5% of total volume (20 µl) of the ligation mix. 

Finally, the ligation tube was incubated at appropriate temperature, either at 16°C for 3 

hr, or at 4˚C for overnight ligation. 

2.3.5 Preparation of competent bacterial cells 

Competent bacterial cells were produced using the method of Inoue, et. al. 

(1990). A freshly prepared E. coli liquid culture originating from one single colony, was 

grown at 18-20˚C in a 250 ml volume of LB medium until the optimal turbidity was 

achieved (A600 = 0.6). The cultures were centrifuged at 2500 g for 10 min at 4˚C in 50 

ml volumes, and pellets were   resuspended in 20 ml of ice cold TB solution, 

individually. The suspensions were incubated in an ice bath for 10 min and bacteria 

were pelleted as before. The pellets were gently resuspended in 5 ml of TB solution 

individually. DMSO was added with gentle swirling to a final concentration of 7% 

(v/v). Following incubation in an ice bath for 20 min, the cell suspension was dispensed 

into 100 or 200 μl aliquots. The aliquots were immediately frozen using liquid nitrogen 

and kept at -70˚C until required. 

2.3.6 Heat-shock based transformation of E. coli 

The competent cell aliquots were thawed in an ice bath. The DNA suspension 

was added in a volume less than 10% of the volume of competent cell solution and 

mixed gently prior to incubation on ice for 45 min. The incubation was followed by a 
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heat shock at 42˚C for 1 min. Sterile LB medium was added to make 1 ml of bacterial 

suspension and this was transferred into a sterile polypropylene tube and incubated at 

37˚C with vigorous shaking. The transformed bacteria were grown on LB agar plates 

containing the appropriate antibiotic. 

2.3.7 RNA isolation 

RNA was isolated using Trizol-LS® (Invitrogen) reagent and manufacturer’s 

instructions were followed thoroughly. To minimize the effect of cell culture passages 

on the sequence of viruses, the RNA extraction was performed directly using virus 

stocks with known titre. The number of the passages of the virus is specified where 

required. The yield of RNA extracted from 0.25 ml of virus suspension was enough for 

RT-PCR experiments ( 2.3.10). 

2.3.8 pBS-T vectors preparation 

EcoRV digested pBlueScript II vectors (2961 bp) were purified from a 1% 

agarose gel (Section  2.3.3). T residues were added to the 3’ ends of the fragment in a 

polymerase reaction containing 5 units of Taq DNA polymerase, 100 µM of dTTP and 

Taq DNA polymerase buffer (Fermentas) containing 1.5 mM Mg2+. The reaction was 

conducted at 72˚C for 2 hr. The reaction product was phenol:choloroform purified 

(Section  2.1.6) and self ligated to remove the digested DNA lacking the 3’T residues. 

The linear fragment of pBS-T, with an estimated molecular weight of 3000 bp, was 

visualized and purified on a 0.7% agarose gel. 

2.3.9 Blue and white colony screening 

From IPTG and X-Gal stocks (Section  2.1.13), 1 ml of each was added to 1 litre 

of molten LBA (Section  2.1.4) ready to be dispensed into 10 cm diameter bacterial 

culture dishes. The appropriate antibiotic for selection was added, mixed evenly and 

poured into the dishes. 

2.3.10 Reverse transcription polymerase chain reaction (RT-PCR) 

For producing cDNA from viral RNA templates RevertAid™ H minus reverse 

transcriptase (Fermentas) was employed. The reaction was set following the 

manufacturer’s guidance. Briefly, RNA samples (0.1 – 5 ng), gene specific (10 µM) or 

random primers (0.2 µg or 100 µM) and RNase free water were mixed together to 
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obtain 12.5 µl of the mixture. At this point, the sample was heated to 65˚C for 5 min and 

chilled on ice immediately. The reaction buffer containing DTT, RiboLock™ RNase 

inhibitor (Fermentas), dNTPs (100 µM of each dATP, dCTP, dGTP and dTTP) and 200 

units of the reverse transcriptase were added to the mixture to end up having a total 

volume of 20 µl. The sample was incubated at 25˚C if random primers were used and 

was followed with incubation of samples at 42˚C for 60 min. Otherwise the sample was 

incubated for 43˚C for 60 min. To clear the cDNA product from RNA templates, 

incubation of the sample with RNase H (Fermentas) for 30 min was carried out, and 

was followed by stopping the RNase reaction at 65˚C for 30 min. The cDNA was 

phenol:chloroform (section  2.1.6) purified and ethanol precipitated, and was used 

appropriately in PCR reactions.  

2.3.11  Polymerase Chain Reactions (PCR) 

The polymerase chain reaction technique was employed for three major 

purposes: 

1. Amplification of specific DNA fragments from DNA or cDNA templates using 

standard PCR procedure for detection, cloning or sequencing purposes. 

2. Introducing site-specific mutations into a target plasmid DNA. 

3. Ligase independent adhesion of DNA fragments; which was achieved using 

overlap PCR technique. 

The use of PCR technique in site specific mutation and overlap PCR is 

explained separately in sections  2.3.12,  2.3.13 and  2.3.14. In the standard PCR for 

sequencing and detection, Taq DNA polymerase (Fermentas) enzyme was employed 

unless otherwise specified. For PCR to produce DNA for cloning purposes, Pfu DNA 

polymerase (Fermentas) was used. To minimize the error rate in DNA amplification, the 

proofreading KOD DNA polymerase (Novagen) was employed to produce DNA 

fragments from single-stranded cDNA templates for sequencing purposes. It is specified 

in the text if a sequence was obtained from DNA fragments amplified with KOD DNA 

polymerase enzyme. 

 For the standard PCR, the reaction mixture was prepared following the 

manufacturers’ guidance. Each PCR mixture contained 100 µM of appropriate pair of 

primers, the appropriate PCR buffer, 2 mM of Mg2+ salt, and dNTP mix (100 µM of the 
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each of dATP, dCTP, dGTP, and dTTP). Primers were designed using Lasergene 

PrimerSelect software. In the primer design, extra care was taken to avoid secondary 

structure formation, intra molecular interaction and GC content less than 50%. Most of 

the primers were designed ending at their 3’ end with C or G rich content to prevent 

“breathing of 3’ ends” unless the situation was inevitable. The PCR condition was 

adjusted according to enzyme manufacturers’ instructions. 

2.3.12 Quick change site-directed mutagenesis 

Quick change site-directed mutagenesis was carried out using a suitable 

proofreading polymerase enzyme. For fragments less than 5kb, Pfu polymerase 

(Fermentas) was used, and for fragments with longer length, Phusion polymerase (NEB 

Biolabs) was used. The thermocycler machine was programmed to run 18 cycles to 

amplify DNA based on the enzyme manufacturers’ instructions. The extension time was 

calculated for each enzyme specifically (2 min per 1 kb for Pfu polymerase, and for 30 

seconds for Phusion polymerase). Thereafter, the reaction mixture was digested with 

DpnI enzyme to remove the parental DNA. Aliquots of the DpnI digested mixture were 

used to transform competent E. coli. 

2.3.13 Primer design for Quick change site-directed mutagenesis 

Primers designed for the mutagenesis reaction had three main characteristics: 

they were complementary and designed to anneal to the same sequence on opposite 

strands of the plasmid; they had the mutation site embedded in the middle of the primer; 

and they were not shorter than 25 base pairs with a Tm of not less than 78˚C. The Tm was 

calculated using the equation: Tm= 81.5 + 0.41(%GC) - 675/N - %mismatch. 

The “%mismatch” was defined as zero for calculating Tm for primers intended to 

introduce insertions or deletions, and for mutagenesis was calculated by dividing the 

number of nucleic acids to the total length of the primer and multiplied to 100. An 

annealing temperature of 55˚C was used uniformly. 

2.3.14 “Round the horn” site directed mutagenesis PCR 

This technique was designed based on the standard PCR. The primers used in 

this mutagenesis technique were designed in a way that they abut at the 5’ ends 

(Figure  2.1), and ligation of the fragments amplified with these primers would produce 

the plasmid carrying the desired mutation or lacking a specific part of the template 
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plasmid to induce a deletion. Before running the PCR reaction the primers were 

phosphorylated at their 5’ ends using T4 polynucleotide kinase (Fermentas). The PCR 

reaction was carried out as described in section  2.3.11. The resulting PCR product was 

digested with DpnI to remove the parental, methylated, plasmid template. The PCR 

product was separated on an agarose gel and the desired fragment was excised from the 

gel. The purified DNA was ligated to itself using T4 DNA ligase (Fermentas). The 

ligation mixture was used to transform competent E. coli, and the recombinant bacteria 

were grown in the presence of the appropriate antibiotic.  Single colonies were isolated 

from the culture plates and plasmid DNA was isolated for confirmation of insertion of 

the described mutation. 

 

Figure  2.1 “Round the horn” site directed mutagenesis PCR.  A. The pair of primers was 

designed at both sides of the deletion site. The deletion site is depicted in dotted lines. B. 
Primers carrying the mutagenesis sites were designed abut each other. The tail of the primers 
carrying the mutated sequence is depicted in light blue color. After completion of the DNA 
amplification, pre-phosphorylated primers were ligated together to obtain the full plasmid. 

2.3.15 DNA sequencing 

All sequencing samples were prepared individually in 0.5 ml tubes or in 96 well 

sequencing grade plates. It was ensured the samples were containing the advised 

amounts of template DNA and primer. The samples were sent to the genomics facilities 

of university of Warwick, department of life sciences, and they were sequenced using 

Sanger sequencing method. The sequencing was performed using ABI PRISM 3130xl 

Genetic Analyser systems. 

2.3.16 Nucleotide similarity searches 

MUSCLE on-line software (available on EBI server: 

http://www.ebi.ac.uk/Tools/sequence.html) was used to find sequence similarities 

between DNA fragments. Seqman from the DNA star laser gene suit (Lasergene) was 

used to compile sequencing results. 
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2.3.17 SDS - polyacrylamide gel electrophoresis (SDS-PAGE) 

To prepare a mini SDS-PAGE gel (BioRad Protean III gel), the components 

(Table  2.1.A) were mixed and the gel was cast into the sealed mould. About two third of 

the cast was filled with the resolving gel (Table  2.1.A) and the edge of the gel was 

levelled and covered with isopropanol to remove air bubbles from the gel liquid and to 

prevent the gel from oxidation. The ready stacking gel mix (Table  2.1.B) was added to 

the mould containing polymerised and washed resolving gel. At this point the teflon 

comb was inserted between the two glass sheets and into the liquid gel to prepare wells. 

The gel was left until complete polymerisation was achieved in the stacking gel. Then 

combs were removed and the wells were washed with distilled water to remove any 

non-polymerised acrylamide. The electrophoresis unit was assembled based on the 

manufacturer’s instruction and filled with the SDS-PAGE electrophoresis buffer 

(section  2.1.8).  Samples were prepared in the electrophoresis sample buffer 

(section  2.1.7), and boiled for 5 min or incubated at 37˚C for 30 min, and the samples 

were applied into the prepared wells. A voltage of 8 volt/cm was applied to the unit 

until the bromophenol blue dye reached to the resolving gel. A voltage of 15 volt/cm 

was applied until the bromophenol blue dye reached to the bottom of the gel. 
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A 

Ingredients 
Amount required 
for 10 ml of 8% 
resolving SDS-

PAGE gel 

Amount required for 
10 ml of 10% 

resolving SDS-PAGE 
gel 

Amount required for 
10 ml of 12% 

resolving SDS-PAGE 
gel 

H2O 4.6 4 3.3 

30% Acrylamide / 0.8% 
bisacrylamide mix 2.7 3.3 4 

1.5 M Tris (pH 8.8) 2.5 2.5 2.5 

10% SDS 0.1 0.1 0.1 

10% ammonium 
persulfate 0.1 0.1 0.1 

TEMED 0.006 0.004 0.004 

 
B 

Ingredients Amount required for 10 ml of 
5% stacking SDS-PAGE gel 

H2O 1.4 

30% Acrylamide mix / 0.8% 
bisacrylamide 0.33 

1.5 M Tris (pH 6.8) 0.25 

10% SDS 0.02 

10% ammonium persulfate 0.02 

TEMED 0.002 

Table  2.1 Ingredients to prepare a 8%, 10% and 12% SDS-PAGE electrophoresis gel. 

Ingredients were mixed in order and poured into the prepared and sealed cast as it is explained 
in the text. A. Ingredients for preparing the resolving gel. B. Ingredients for preparing the 
stacking gel. 

2.3.18 Western blot  

A Trans-Blot® SD semi-dry electrophoretic transfer cell was used. Prior to the 

transfer, the SDS-PAGE gel was trimmed and equilibrated with transfer buffer (24 mM 

Tris base, 192 mM glycine, and 20% methanol) for 5 min. Whatman papers and 

polyvinylidene fluoride (PVDF) membranes were cut to the dimensions of the gel. The 

PVDF membrane was soaked in methanol for 2 min and thereafter was soaked in the 
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transfer buffer. A stack of Whatman papers was made and soaked with the transfer 

buffer. These were placed on top of the anode electrode. Any air bubbles trapped 

between the soaked membranes were removed. The PVDF membrane and the gel were 

placed on the stack of the Whatman papers, leaving the gel on top of the PVDF 

membrane. More Whatman papers soaked with transfer buffer were then placed on the 

gel. Air bubbles between the layers were removed and the cathode plate was placed 

carefully on the stack leaving the stack in the space provided between the cathode and 

the anode. Constant voltage of 10 volt was used to perform the transfer for 20 min and 

the PVDF membrane was then removed for further processing. 

A blocking procedure was performed on the membrane with 5% bovine serum 

albumin (BSA) mixture in TBS (Section  2.1.12) in a rocking platform, at room 

temperature for 1 hr. The blocking was followed by washing the membrane in TBST 

(Section  2.1.12)  3 times each for 15 min. The membrane was then incubated with 

rabbit anti-GFP polyclonal antibody (Abcam) diluted 1:5000 in TBS containing 5% 

BSA for 1 hr. The membrane was then rinsed as before and incubated with horse radish 

peroxidase (HRP)-conjugated goat anti-rabbit antibody at 37°C and for 1 hr. The 

membrane was rinsed, and incubated with Lumi-Light western blotting substrate 

(Roche) for 5 min according to the manufacturer’s guidance. The membrane was blot-

dried and transferred to a radiography cassette. X-ray medical film (Fuji) was exposed 

to the membrane for different periods of time. The exposed films were developed using 

a Curix 60 Agfa film developing machine. 

2.3.19 Fluorescent detection of PVM P protein 

A monolayer of the BS-C-1 cells were prepared on a sterile glass coverslip and 

subsequently infected as required for the experiment. The cells were fixed at room 

temperature for 30 min using an ice cold methanol:acetone (50:50) mixture. 

Subsequently, the cells were washed 3 times with PBS for 15 min each time. The cells 

were then incubated in 5% BSA in PBS for 1 hr. The incubation was followed by 3 

washes, each for 15 min as before. Monoclonal antibody against the PVM P protein, 

designated 26/3/B5, (Ling & Pringle, 1989a) was used at a 1/40 dilution in PBS. The cells 

were incubated with the antibody for 1 hr. The incubation was followed by 3  washes with 

PBS as before. The coverslips were then incubated with anti mouse Alexa® Fluor 488 goat 

anti-mouse IgG (Invitrogen), (1:3000) diluted in PBS containing 1% (w/v) BSA. From 

this point, the experiment was carried out in the dark. The coverslips were washed in 
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PBS 3 times, each for 15 min and incubated with  0.2 µg of DAPI (Sigma) in PBS for 5 

min, and were washed 3 times as before and,  air-dried, and mounted onto glass slides 

using Vectorshield (Vector laboratories) and sealed and fixed using fast dry nail 

varnish. 

Fluorescence was analysed using a Leica SP2 confocal microscope linked to a 

DM RE7 upright microscope. AlexaFluor488 was excited at 488 nm and the emitted 

light between 505 and 550 nm was recorded. DAPI was excited at 405 nm and the 

emitted wavelength between 410 and 550 mm was collected. Images were analyzed 

with Leica software. 

2.4 Reporter genes assay 

The eGFP and Luciferase genes were employed as the reporter genes in the 

experiments (Chapter 3). To quantify the expression level of GFP and the activity of 

luciferase, GFP and luciferase assays were used. 

2.4.1 GFP ELISA 

The required numbers of wells (ELISA Immulon 2HB plates) were coated with 

a 1:3000 dilution of 1 mg/ml stock of goat anti-GFP polyclonal IgG antibody 

(Rockland) in coating buffer (Section  2.1.3). The binding process was carried out at 4˚C 

overnight. After binding, the wells were washed with PBS/Tween (0.1% Tween 20 in 

1x PBS) 3 times. Irrelevant non-specific interactions were blocked using 0.2 ml of 

blocking buffer (1% BSA in PBS) for 2 hr at room temperature.  The ELISA plate was 

dried and after being wrapped in cling film, and stored at -20˚C until required. 

Prior to the usage of coated ELISA plates, the antibody coated wells were re-

hydrated with 0.2 ml/well of PBS/Tween. Standard GFP (Clontech) was prepared in the 

blocking buffer from 300 to 0 pg concentrations, and used to plot a standard curve to 

quantify the amount of GFP in each sample. Thereafter, desired samples and the 

previously prepared GFP standards were added to wells. After 1 hr of incubation at 

37˚C a rabbit anti-GFP polyclonal antibody (Abcam) was diluted to 1:32000 in 

PBS/Tween (0.1% Tween 20 in 1x PBS) and was added to the wells. After 1 hr 

incubation at 37̊C the wells were was hed with PBS/Tween.  Anti-rabbit goat HRP 

conjugated antibodies (Bio Rad) were diluted to 1:1000 in PBS/Tween (0.1% Tween 20 

in 1x PBS) and added to the wells. The ELISA plate was incubated for 1 hr at 37̊ C, 

followed by 5 washes with PBS Tween. The ABTS substrate was added until a visible 
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green color appeared in wells treated with standard amounts of GFP. The absorbance 

was measured using a Labsystems Multiskan RC plate reader machine at a wave length 

of 405 nm. The OD405 of samples were converted to concentrations using the standard 

curve using the Labsystems Multiskan software. 

2.4.1.1 Rabbit anti-GFP polyclonal antibody 

Rabbit anti-GFP polyclonal IgG known as Ab290 (Abcam) was diluted in water 

to obtain a 1:80 dilution of the antibody. The antibody-water mixture was diluted in 

glycerol to obtain a 1:1 mixture of antibody and glycerol with a final concentration of 

1:160 of the antibody. The solution was kept at -20˚C in small aliquots until the time of 

usage. 

2.4.2 Luciferase activity assay 

Prior to the measurement of luciferase activity, the wells containing transfected 

cells were washed with PBS and lysed in Luciferase Cell Culture Lysis Buffer (CCLR) 

reagent (25 mM Tris-Phosphate, 2 mM DTT, 2 mM 1,2-diaminocyclohexane-

N,N,N’N’-tetraacetic acid, 10% glycerol, and 1% Triton® X-100). Cells were scraped 

from the surface of the wells into the CCLR buffer. This material was centrifuged for 1 

min at 18000 g. Finally, 10 μl of cell lysate was transferred to each opaque well of 

white luminescence micro-wells (LumiNunc, Nunc), and 50 μl of luciferase assay 

reagent (Promega) was added to the wells containing the cell lysate. The light intensity 

was measured immediately for a period of 10 seconds using a Luminoskan® Ascent 

microplate luminometer (Thermo Scientific) immediately after addition of the luciferase 

assay reagent. 

2.5 Animal studies 

In this research 4-8 weeks old BALB/c male or female mice were obtained from 

in-house facilities and Charles river laboratories. The mice obtained from Charles river 

laboratories were specific pathogen free (SPF) and were used to breed mice in the in-

house facilities. To study the pathogenesis of PVM, BALB/c mice were anesthetized 

with intraperitoneal injection of ketamine and xylazine cocktail (Section  2.1.5), and 

after obtaining full anesthetic condition were infected intranasally with 50 µl of the 

known titre of virus suspension. A group of control mice were inoculated intranasally 

with PBS. The weights of mice in each group were monitored on a daily basis. Clinical 
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examination was performed every day and signs of infection were recorded using the 

scoring system (Table  2.2) developed by Cook, et. al. (1998). Mice were euthanized by 

cervical dislocation if weight loss exceeded 25%. Experiments were conducted for a 

minimum of 14 days, and at the end of the experiment, all of the remaining mice were 

euthanized by cervical dislocation. Subsequently, the lungs were removed for virus 

isolation. Removed tissues were kept at -70˚C until the day required for analysis.  

Clinical score Clinical signs 

1 Healthy with no signs of illness 

2  
Consistently ruffled fur, especially on neck, Piloerection, 
breathing may be deeper and mice less alert 

3 Laboured breathing. Frequently showing tremors and lethargy 

4 
Abnormal gait and reduced mobility. Laboured breathing. 
Frequently emaciated. May show cyanosis of tail and ears 

5 Death 

Table  2.2 Clinical scoring system from (Cook et. al. 1998). Five categories were defined: 

Categories 1 and 6 were defined as healthy and dead respectively. Categories 2 was defined as 
sick. Category 3 was defined as sicker. Category 4 was defined as very sick with the signs of 
cyanosis and abnormal gait in the infected mice.  
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3.1 Introduction 

As discussed in chapter 1, PVM has at least two distinguishable strains. PVM 

strain 15 (Warwick) has been shown to be non-pathogenic and PVM strain J3666 and 

PVM strain 15 deposited with the ATCC were reported as being pathogenic (Anh et al., 

2006; Cook et al., 1998; Domachowske et al., 2004; Krempl & Collins, 2004; 

Rosenberg et al., 2005). Sequence analyses identified several differences between the 

two pathogenic and the non-pathogenic strains raising the possibility of the contribution 

of the sequence differences to the pathogenesis that were observed (Krempl et al., 2005; 

Thorpe & Easton, 2005). Among these, the differences in the G gene, encoding the 

attachment glycoprotein of the virus, have been linked with the pathogenesis (Krempl et 

al., 2005; Krempl et al., 2007; Randhawa et al., 1995).  

In many cases the passage of viruses in tissue culture leads to a loss of 

pathogenicity (Claassen et al., 2005; Cohen et al., 1989; Dardiri, 1969; Hearn et al., 

1966; Taylor et al., 1993). PVM strain 15 (ATCC) has been continuously passaged in 

mice since its deposition, whereas PVM strain 15 (Warwick) has been extensively 

passaged in BS-C-1 cells in tissue culture. It is possible that the passage of the virus in 

tissue culture has led to the loss of pathogenicity in mice (Cook et al., 1998; Krempl & 

Collins, 2004). To investigate this, virus stocks were prepared following sequential 

passage of the pathogenic strain J3666 in tissue culture and the pathogenicity was 

investigated in mice. Stocks of the pathogenic PVM strain J3666 which had previously 

been passaged exclusively in mice were prepared by sequential passage in BS-C-1 cells. 

Initial analysis showed that five passages in tissue culture did not eliminate the ability 

of the virus to induce a fatal pneumonia in mice (Prof. A. J. Easton, personal 

communication).  

3.2 Evaluation of the pathogenicity of a working stock of PVM strain 

J3666 

It was necessary to prepare a reference stock of PVM strain J3666 for the 

experiments in this study. A working stock of PVM strain J3666 was prepared by taking 

as a seed stock virus which had been passaged 3 times in BS-C-1 cells and which 

retained pathogenicity. This was then used to prepare a large volume of a single stock 

by growth in BS-C-1 cells as described in section  2.2.6. The titre of the virus was 

calculated as 1.6 x 106 pfu per millilitre. On the basis of previous data, it was 
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anticipated that 500 pfu of PVM was likely to be a lethal dose (A. Easton, personal 

communication). This was taken as the initial starting point and two-fold dilutions of 

virus were prepared for infection of mice. 

Each group contained typically five mice. Following infection with the various 

dilutions of PVM strain J3666, as described in section  2.5, mice were checked daily. 

The body weight and the clinical score for each group in the experiment were recorded. 

The daily difference of the body weight throughout the experiment compared to that of 

the first day of the experiment and expressed as a percentage was calculated for each 

group. The data are shown in Figure  3.1. The clinical score for each mouse was 

monitored daily based on the scoring system described in section  2.5. The mean clinical 

score was calculated for each group and the data are shown in Figure 3.2. 

 

Figure  3.1. Weight loss of BALB/c mice infected with different amounts of PVM strain J3666 

passaged 4 times in BS-C-1 cells. After inoculation with different doses of virus, mice were 
examined daily and the percentage of their body weight compared to day one was determined 
for each group and expressed as a percentage. Weight loss is presented until the first animal in 
any group died or was humanely killed. The data shown is representative of two independent 
experiments. The amount of virus (pfu) in each 50 µl inoculum: 500 pfu , 250 pfu , 125 
pfu , 62.5 pfu , 31.2 pfu , and 15.5 pfu .  

For the groups that were inoculated with 500 and 250 pfu of PVM, weight loss 

began on day 6, and progressed quickly. At day 11 post-infection, one of the mice in the 

group infected with 250 pfu died due to the severe symptoms of the infection. The 

severity of disease for mice inoculated with either 500 pfu or 250 pfu was sufficiently 

extensive on day 11 that all animals were humanely killed to prevent further suffering 

(Figure 3.2), as required by the Home Office license under which this work was done. 
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The group which received 125 pfu of the virus first showed weight loss on day 6 

post infection, as for the groups receiving 500 and 250 pfu. However, the rate of weight 

loss subsequently proceeded at a slower pace. The rate of weight loss in this group of 

mice reached 25.47% on day 11 post infection day and began to recede on day 13 as the 

mice recovered. The mice did not achieve the starting weight by the end of the 

experiment, and one of the mice did not recover from the infection (Figure  3.1). 

Mice in the groups inoculated with 62.5 and 31.2 pfu of virus were the last to 

show onset of weight loss which first occurred on day 9. The weight loss was transient 

and mild, with a maximum of 9.48% for the mice treated with 62.5 pfu. This group of 

mice recovered quickly from the infection. The group of mice infected with 31.25 pfu of 

the virus, however, did fully recover to their original weight by the end of the 

experiment (Figure  3.1). Mice treated with 15.6 pfu of PVM did not show any weight 

loss. These data demonstrated that an inoculum containing 250 pfu of this virus stock 

was a lethal dose for BALB/c mice. 

In mice infected with 500 pfu and 250 pfu inocula, the signs of disease started 

from days 5 and 6 post infection and progressed rapidly until day 9 when the mice were 

culled for humane reasons. The onset of clinical signs of disease  in the group of mice 

infected with 125 pfu was on day 7 post infection. In the group infected with 125 pfu, 

the signs of disease progressed until day 10 when they reached a plateau and the mice 

started recovering from day 12 post infection. In the groups infected with 62.5 and 31.2 

pfu the signs of disease started on day 10. The group infected with 62.5 pfu fully 

recovered while the group infected with 31.2 pfu showed the lowest clinical score until 

the end of the experiment. Clinical signs of disease  were not observed in the group 

infected with 15.5 pfu (Figure  3.2). 
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Figure  3.2. Clinical score of BALB/c mice infected with different amounts of PVM strain J3666 

passaged 4 times in BS-C-1 cells. The scoring system described in section  2.5 was used to 

show the severity of infection in mice infected with PVM strain J3666. Mean clinical score for 
each group of mice was calculated and shown in the graph. The data shown is representative of 
two independent experiments. Clinical score is presented until the first animal in any group died 
or was humanely killed. The amount of virus (pfu) in each 50µl inoculum: 500 pfu , 250 pfu 

, 125 pfu , 62.5 pfu , 31.2 pfu , and 15.5 pfu . 

3.3 Effect of consecutive passages of PVM strain J3666 on the 

pathogenicity of the virus 

As described above, passage in tissue culture has been shown to reduce 

pathogenicity of many viruses and it was of interest to investigate this for PVM. If it 

was possible to generate stocks of non-pathogenic virus from a pathogenic virus it may 

be possible to investigate the changes responsible for the altered characteristics. The 

virus that was tested by Cook and colleagues (Cook et al., 1998) had been subjected to 

5 continuous passages in cell culture after being isolated from mice lungs and retained 

its pathogenicity (Prof. Andrew Easton, personal communication). In the work 

presented here, the ability of the virus from the same number of passages and other 

virus stocks from further consecutive passages (from passage 6 to 10) to generate 

disease in mice was tested. 

For this purpose successive passages from the stock virus (passage 4) described 

in section  3.2, were made on BS-C-1 cells, and the number of passages was extended to 

10. The viruses were kept at -70˚C until the day of challenge. The titre of the stock 

prepared from each passage was calculated and BALB/c mice were infected with 5000, 

500 and 250 pfu of virus in an inoculum volume of 50 µl. 
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As can be seen in Figure  3.3, virus from passages 5 and 6 were capable of 

producing clinical signs of disease and weight loss when 5000 pfu was administered. 

The progress of weight loss and clinical signs  were more rapid in the passage 5 

compared to the passage 6. In mice infected with passage 5 virus, as for passage 6 virus, 

weight loss and clinical signs of disease started in day 6. The weight loss alongside the 

clinical syndrome proceeded quickly and led to very severe disease in passage 6, but in 

passage 6 from day 6 onwards clinical signs and weight loss progressed until day 10. At 

day 10, both infection and clinical symptoms reached a plateau, and started to increase 

from day 10 onwards resulting a second phase of the infection with more severe signs. 

Similar to passages 5 and 6, the onset of clinical signs of disease and weight loss in the 

group infected with passage 7 virus was day 6, and the symptoms reached to a plateau 

in the same period of time as in passage 6, but in contrast with passage 6 virus, mice 

started to recover quickly from day 10 onwards indicating the virus after 7 successive 

passages has lost its virulence (Figure  3.3.A and B). 

Mice inoculated with passage 4 virus (Section 3.2) demonstrated clinical signs 

and weight loss from day 5 when they were inoculated with 500 pfu of the virus 

(Figures 3.1 and 3.2). Comparing the results with those obtained from mice inoculated 

with the same amount of virus from passage 5 indicates that the the onset of clinical 

manifestations is on the same day and the virulence of the virus from both passages are 

similar. However, comparison between the clinical signs demonstrated by mice 

inoculated with 250 pfu of the passages 4 and 5 indicate that the virus in passage 5 is 

less virulent than the virus in passage 4, as the mice inoculated with passage 5 started 

recovering from the infection while mice inoculated with passage 4 did not recover.  
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Figure  3.3. Weight loss and clinical score of mice infected with 5000, 500 and 250 pfu of PVM 

passages 5 (A & B), 6 (C & D) and 7 (E & F). The body weight differences (A, C & E) and 
clinical scores (B, D & F) were monitored on a daily basis.. Weight loss is presented until the 
first animal died or was humanely killed because of the severe symptoms. The data shown is 
representative of two independent experiments. The inocula were 5000 pfu , 500 pfu 

, and 250 pfu . 

In the groups of mice infected with 500 pfu of the passage 5 virus stock the 

clinical score did not begin to rise until day five post infection (Figure  3.3.C). Clinical 

signs and weight loss developed quickly among the mice within the group (Figure  3.3.C 

and D). In contrast with the results achieved from passage 5, no sign of disease 
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appeared in the groups in which mice were infected with 500 pfu of passages 6 and 7 

virus stocks, indicating that infection with passage 5 is more severe than the infection 

with passage 6, and the infection with passage 6 is more severe than the infection with 

passage 7.  

Data obtained from groups of mice infected with 250 pfu of passages 5, 6 and 7 

confirmed the above conclusions. Among the mice infected with 250 pfu, only the 

passage 5 virus stock was able to cause clinical signs of disease. As can be seen in 

Figure  3.3.E and 3.3.F, mice started to recover from the clinical signs of infection with 

this stock from day 11 onwards. However, the rate of recovery was slow and the mice in 

this group did not fully recover by the end of the experiment. 

3.4 Analysing the effect of consecutive passages on virus genome 

nucleotide sequence 

Spontaneous mutagenesis is a characteristic of RNA viruses.  It has been 

calculated that the mutation rate for RNA viruses is between 10-3 to 10-6 per site per 

replication (Schrag et al., 1999). As a result, RNA virus populations evolve into 

genetically related but diverse subpopulations known as quasispecies. Here, it was 

decided to analyse the sequence of the PVM strain J3666 stocks used in the 

pathogenicity study described in Section  3.3. 

While it was desirable to determine the entire genome sequence of the stocks, 

the limited amount of the stock of PVM strain J3666 passages 5, 6 and 7 made this 

impractical. Therefore, an alternative technique was chosen to amplify large fragments 

of the genome and sequence the areas that are more prone to spontaneous mutagenesis. 

The complete sequence of PVM strains J3666, 15 (Warwick) and 15 (ATCC) have been 

determined (Krempl et al., 2005; Thorpe & Easton, 2005). Comparison between the 

sequences suggests little variation among the NS1, NS2 and L genes of PVM. 

Therefore, to concentrate on the parts of the genome that are more prone to 

mutagenesis, the rest of the genome except the NS1, NS2, and L genes were sequenced. 

The approach employed involved amplifying four fragments (F2, F3, F4 and F5; 

Figure  3.4). This would amplify from the N gene to the first third of the L gene. For this 

purpose, total RNA from PVM strain J3666 passages 5, 6 and 7 stocks (Section  3.3) 

was prepared. The synthesis of the cDNA for fragment 2 used primer pair P15FLN3.2  

and P15FLM2.2 (Appendix I), for fragment 3 primer pair P15FLSH3.2 and P15FLF2.2 
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(Appendix I), for the Fragment 4 primer pair P15FLM23 and P15FLM25 (Appendix I), 

and for the Fragment 5 primer pair P15FLL5 and P15FLL7 (Appendix I). The 

fragments were then sequenced in their entireties and the data assembled. A comparison 

with the sequence of PVM strain J3666 (Accession number: NC_006579) was made.  

 

Figure  3.4 The PVM genome and the location of primers on the genome. Primer pair 

P15FLN3.2 and P15FLM2.2 amplifying fragment 2 (F2) with 3083 bp in length are shown in 
black (F2), primer pair P15FLSH3.2 and P15FLF2.2 amplifying fragment 3 (F3) with 3446 bp 
length are shown in red, primer pair P15FLM23 and P15FLM25 amplifying fragment 4 (F 4) with 
874 bp in length is shown in cyan, and primer pair P15FLL5 and P15FLL7 amplifying fragment 5 
(F 5) with 3465 bp in length is shown in green. 

3.4.1 The fragment 2 region 

Primer pair P15FLN3.2 and P15FLM2.2 was used to amplify the fragment 2 

from cDNA templates. DNA amplification was carried out using KOD DNA 

polymerase (see  2.3.11) to reduce the possibility of causing random mutations during 

DNA amplification. As indicated in Figure  3.4, fragment 2 contains the N, P and M 

genes. The sequence of the fragment 2 was obtained using primers NS2B, N1, N5, N3, 

N4, P.3, P2F, P2R, P1, P.2, and P15FLM2.2 (Appendix I). No sequence conflict 

reflecting spontaneous mutations was identified. 
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3.4.2 The fragment 3 region 

Fragment 3 was amplified from cDNA made from PVM strain J3666 passages 5, 

6 and 7 using P15FLF2.2 and P15FLSH3.2 (Figure  3.4). The sequence of fragment 3 

was obtained using primers SH2, G7, P15FLSH3, G(4878)R, SH32, SH4360, G9, F14, 

F7, F9, F22, F11, P15FLSH3.2, F22, and P15FLF2.2 (Appendix I). Unlike the sequence 

of the fragment 2, several sequence changes were identified in the sequences of 

fragment 3 of the passages 5, 6 and 7 virus stocks when they were compared against the 

published sequence of the strain J3666 (Accession number: NC_006579). All three 

passages of the virus stock had the same sequences, though they differed from the 

published sequence of PVM strain J3666 (Accession number: NC_006579). The 

identified sequence differences are summarised in Table  3.1. 

Compared with the sequence of PVM strain J3666 (accession number: 

NC_006579), the SH gene from passage 5, 6 and 7 viruses carry 6 point mutations: a 

silent mutation at position 70 (CU), a mutation at position 269 (CU) resulting in an 

H87  Y87 change in the amino acid sequence of the SH glycoprotein, a mutation at 

position 283 (CU) causing a premature stop codon, two mutations at positions 292-

293 (CCUU) and a mutation at position 299 (CU). Table 3.1 summarizes the 

mutations affecting the sequence of SH gene in PVM strain J3666 passages 5, 6 and 7. 

The amino acid sequence of the SH glycoprotein is compared against the sequence of 

the SH glycoprotein of PVM strain J3666, 15 Warwick and 15 ATCC in Figure 3.5. 

The most striking difference in the G gene of the strain J3666 (Accession 

number: NC_006579) and strain J3666 passages 5, 6 and 7 was the mutation at 

nucleotide 65 of the G gene changing a UGA stop codon to AGA. As a result, the first 

ORF of the G gene (Sections  1.2.1.1 and  3.5) was placed in frame with the second ORF 

such that the G glycoprotein in strain J3666 passages 5, 6 and 7 is 18 amino acid longer 

at the N-terminal than that of PVM strain J3666 and PVM strain 15 (ATCC) (Section 

3.5). This feature of the G glycoprotein of the passages 5, 6 and 7 was investigated in 

more depth and the results are discussed in Section  3.5. The other mutations appearing 

in the G genes of the strain J3666 passages 5, 6 and 7 were at positions 68 (CU), 104 

(AG), 118 (CU), 165 (GU), 236 (GA) and 1121 (UA). The mutation at 

position 68 is in the noncoding region of the G gene of the strain J3666. The mutations 

at positions 104, 165, 236, and 1121 resulted in amino acid changes in the G 

glycoprotein. The amino acid sequence of the G glycoprotein of the strains J3666, 15 
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(ATCC), 15 (Warwick) are compared with the amino acid sequence of the G protein of 

PVM strain J3666 Passages 5, 6 and 7 in Figure  3.6. 

 
 
PVM strain J3666 

 
PASSAGE 5 

 
PASSAGE 6 

 
PASSAGE 7 

 
NUCLEOTIDE CHANGE 

C(4381) U U U 
SH.269 
His  Tyr 

C(4395) U U U 
SH.283 
SL 

C(4399) U U U 
SH.287 
Stop 

CC(4404-4405) UU UU UU 
SH.292-293 
NC* 

C(4411) U U U 
SH.299 
NC (Stop)* 

U(4575) A A A 
G.65 
Amber  Lys 

C(4578) U U U 
G.68 
NC  Leu† 

A(4614) G G G 
G.104 
Ser  Gly 

C(4628) U U U 
G.118 
NS 

G(4675) U U U 
G.165 
Gly  Val 

G(4746) A A A 
G.236 
Gly  Arg 

U(5631) A A A 
G.1121 
Ser  Thr 

U(6581) G G G 
F.721 
Ile  Glu 

U(6826) A A A 
F.966 
SL 

U(6852) C C C 
F.992 
Val  Ala 

Table  3.1 Nucleotide differences between PVM strain J3666 passages 5, 6 and 7 used in this 

study and PVM strain J3666 (Accession number: NC_006579). The antigenomic sequences of 
the viruses were compared together. The genomic positions of the nucleotides in strain J3666 
genome are provided in parentheses. The nucleotide changes in the passages 5, 6 and 7 are 
provided. The result of the nucleotide changes in the amino acid sequence of the SH protein is 
shown. The mutation site in the SH gene is shown in “gene.nucleotide position” format. The 
occurrence of the mutations in non-coding sequences of each gene is shown by NC and the 
silent mutations are indicated as SL. * The effect of mutation is shown after considering the 
mutation at position 299 of the SH gene. † The effect of mutation is shown after considering the 
mutation at position 65 of the G gene.   
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Figure  3.5 Alignment of the SH protein of PVM strain J3666 and PVM strain J3666 passages 5, 

6 and 7.   Differences in aminoacid sequences are indicated in black background. Mutated 
amino acids of the protein chains are shown in a black background the presence of a 
termination in the protein sequence is shown by a “*” sign in each sequence. Numbers on the 
right represent the length of the protein molecule. Each protein molecule indicated on the left. 
SH: SH protein of PVM strains J3666, SH P.5, P.6, and P.7: SH proteins of PVM strain J3666 
passages 5, 6, ad 7 respectively. 

 

Figure  3.6 Amino acid comparison between G proteins of PVM strain J3666 (Accession 

number: NC_006579), G protein of strain 15 (ATCC) (Accession number: AY729016), G protein 
of strain J3666 passages 5, 6 and 7. The differences between the aminoacid sequences are 
indicated in black. The consensus sequence among all of the viruses is shown in the last line of 
each row. Numbers on the right indicate the corresponding protein chain length. 

             
             
J3666      : 
15-Warwick : 
15-ATCC    : 
PVM-P.5    : 
PVM-P.6    : 
PVM-P.7    : 
             

                                                  
         *        20         *        40         *
MDPNMTSYQITFEINMTSSRIGTYITLALTALLLACAVINTVCALIMACS
MDPNMTSHQITLEINMTSSRIGTHTTPAPTAPLLACAVINTVCALIMACS
MDPNMTSHQITLEINMTSSRIGTYTTPAPTALLLACAVINTVCALIMACS
MDPNMTSYQITFEINMTSSRIGTYITLALTALLLACAVINTVCALIMACS
MDPNMTSYQITFEINMTSSRIGTYITLALTALLLACAVINTVCALIMACS
MDPNMTSYQITFEINMTSSRIGTYITLALTALLLACAVINTVCALIMACS
MDPNMTS QIT EINMTSSRIGTy T A TAlLLACAVINTVCALIMACS

      
      
 :  50
 :  50
 :  50
 :  50
 :  50
 :  50
      

             
             
J3666      : 
15-Warwick : 
15-ATCC    : 
PVM-P.5    : 
PVM-P.6    : 
PVM-P.7    : 
             

                                                  
        60         *        80         *       100
SRSIATSGIVSSQCTVHPNHPPPSYGVNVTGLPGNLHSRNTTQHHKQQKL
SRSTATSGIVSSQCTVHPNHPPPSYGVNVTGLPGNLYSRNTT*---*---
SRSTATSGIVSSQCTVHPNHPPPSYGVNVTGLPGNLYSRNTT*---*---
SRSIATSGIVSSQCTVHPNHPPPSYGVNVTGLPGNLYSRNTT*---*---
SRSIATSGIVSSQCTVHPNHPPPSYGVNVTGLPGNLYSRNTT*---*---
SRSIATSGIVSSQCTVHPNHPPPSYGVNVTGLPGNLYSRNTT*---*---
SRS ATSGIVSSQCTVHPNHPPPSYGVNVTGLPGNLySRNTT        

      
      
 : 100
 :  92
 :  92
 :  92
 :  92
 :  92
      

             
             
J3666      : 
15-Warwick : 
15-ATCC    : 
PVM-P.5    : 
PVM-P.6    : 
PVM-P.7    : 
             

               
         *     
SFNKPQARQLYPAR*
---------------
---------------
---------------
---------------
---------------
               

      
      
 : 114
 :   -
 :   -
 :   -
 :   -
 :   -
      

             
             
J3666      : 
15-Warwick : 
15-ATCC    : 
PVM-P.5    : 
PVM-P.6    : 
PVM-P.7    : 
             

                                                  
         *        20         *        40         *
------------------MGRNFEVSGSITNLNFERTQHPDTFRTGVKVN
--------------------------------------------------
------------------MGRNLEVSGSITNLNFERTQHPDTFRTVVKVN
MRPVEQLIQENYKLTSLSMGRNFEVGGSITNLNFERTQHPDTFRTVVKVN
MRPVEQLIQENYKLTSLSMGRNFEVGGSITNLNFERTQHPDTFRTVVKVN
MRPVEQLIQENYKLTSLSMGRNFEVGGSITNLNFERTQHPDTFRTVVKVN
                  mgrn ev gsitnlnfertqhpdtfrt vkvn

      
      
 :  32
 :   -
 :  32
 :  50
 :  50
 :  50
      

             
             
J3666      : 
15-Warwick : 
15-ATCC    : 
PVM-P.5    : 
PVM-P.6    : 
PVM-P.7    : 
             

                                                  
        60         *        80         *       100
QMCKLIAGVLTSAAVAVCVGVIMYSVFTSNHKANSTQNATTRNSTSTPPQ
-MCKLIAGVLTSAAVAVCVGVIMYSVFTSNHKANSTQNATTRNSTSTPPQ
QMCKLIAGVLTSAAVAVCVGVIMYSVFTSNHKANSTQNATTRNSTSTPPQ
QMCKLIAGVLTSAAVAVCVRVIMYSVFTSNHKANSTQNATTRNSTSTPPQ
QMCKLIAGVLTSAAVAVCVRVIMYSVFTSNHKANSTQNATTRNSTSTPPQ
QMCKLIAGVLTSAAVAVCVRVIMYSVFTSNHKANSTQNATTRNSTSTPPQ
qMCKLIAGVLTSAAVAVCV VIMYSVFTSNHKANSTQNATTRNSTSTPPQ

      
      
 :  82
 :  49
 :  82
 : 100
 : 100
 : 100
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3.4.3 The fragment 4 region 

Primer pair P15FLM23 and P15FLM25 (Appendix I) was used to synthesise the 

fragment 4. After obtaining the purified fragment 4, its sequence was obtained using 

P15FLM23, P15FLM25, and 22K7 primers (Appendix I). No nucleotide changes were 

identified between the sequenced fragment 4 and the sequence of PVM strain J3666 

(Accession number: NC_006579). 

3.4.4 The fragment 5 region 

Primer pair P15FLL5 and P15FLL7 (Appendix I) was used to amplify the 

Fragment 5. The sequence of Fragment 5 was obtained after being purified using PL1, 

PL23, L1D, L1F, L1H, L1J, L2C and PL29 primers (Appendix I). No changes were 

observed among the sequence of the fragment 5 of the passages 5, 6, 7 in comparison 

with PVM strain J3666 (Accession number: NC_006579). 

3.5 Analysing the SH gene end and G ORF start sequence consistency 

in PVM strain J3666 population 

The sequencing data presented in section  3.4 revealed that the sequences 

obtained from passages 5, 6 and 7 have a difference in the sequence of the G gene in 

comparison with the sequence of PVM strain J3666 which were reported by Randhawa 

et. al. (1995). These results were consistent with the sequencing results obtained from 

cDNA constructs which were amplified from PVM strain J3666 for use in the 

construction of G-GFP minigenomes (Chapter 5).  The sequences studied in Section  3.4 

and Chapter 5 did not contain the stop codon for the first ORF of the G gene 

(Section  1.2.1.1). Instead, a point mutation was present which resulted in a change of 

the stop codon “UGA” into “AGA” in the mRNA. This point mutation would have 

changed the structure of the G gene, resulting in the generation of a single ORF through 

the fusion of ORFs 1 and 2. The G protein arising from this would therefore contain an 

amino terminal sequence derived from the first ORF. A different type of PVM G gene 

which is lacking the first ORF at AUG29  was described by Krempl and Collins (2004). 

It was reported that the main ORF in PVM 15 (ATCC) contains a single ORF starting 

from position 83 (Figure 3.7). The data suggested that the sequence obtained from the 

virus resulted from a mixture of two subpopulations of PVM, one with two ORFs as 

described in Section  1.2.1.1.1 and reported by Randhawa and colleagues (1995) and the 
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other one containing one single ORF. A diagram representing these two G gene 

organisations is shown in Figures 1.5 and 3.7. 

 

Figure  3.7 Describing the G mRNA organisation in PVM strain 15 (ATCC), PVM strain J3666 

and PVM strain 15 (Warwick). In PVM strain 15 (ATCC) the presence of one unique ORF 
provides a longer N terminal for the G gene. In contrast, in the strain J3666 the stop codon at 
position 65 of the gene makes two separate ORFs. In the strain 15 (Warwick) a premature stop 
codon generates an ORF starting from AUG(83). Furthermore, an “A” insertion in the sequence 
of the ORF causes a frameshift mutation resulting in production of a stop codon at position 190. 
Subsequently, a start codon at position 190 of the G gene of the strain 15 (Warwick) is formed. 
For more details refer to the text. 

Because of the importance of the organisation of the G gene in our studies, it 

was decided to explore the G gene organisation in the Warwick PVM strain J3666 

working stock of passage 4 virus (Section 3.2) in more depth. For this, the G gene was 

amplified from total virus RNA extracts using RT-PCR with primers SH4360 and 

G4878(R) (Appendix I).  Primer SH4360 anneals to the SH gene (nucleotides 206 and 

227), and  primer G4878(R) anneals to the G gene nucleotides 304-324. This made it 

possible to amplify a fragment from the SH and G genes with 517 nucleotide in length 

which contained 150 nucleotides from the SH ORF (responsible for encoding 49 amino 

acids from the C terminal of the SH protein) and 296 nucleotides from the two G ORFs 

of the strain J3666 (Accession number: NC_006579) (responsible for encoding the first 

ORF and 81 amino acids from the N terminal of the second ORF of the G gene of PVM 

strain J3666).  A standard PCR was conducted amplifying the SH-G fragment using Taq 

polymerase. The SH-G fragment (Figure  3.8) was purified from an agarose gel. The “T” 

overhangs in the pGEM-T (Promega) and pBS-T vectors (Section  2.3.8) and the “A” 

sequence in the SH-G fragment added by Taq DNA polymerase were ligated together to 

construct the pBS-SHG and pGEM-SHG plasmids prior to transformation. 
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Figure  3.8 RT-PCR amplification, amplifying the SH-G fragment from cDNA of PVM strain 

J3666. Lane 1 Hyper ladder I, Lane 2 contains negative control, lanes 3, 4 and 5 contain the 
518 nt PCR product, designated as SH-G fragment, from the RT-PCR.  

The presence of the SH-G fragment in pBS-SHG clones was confirmed by XhoI 

and EcoRI restriction enzyme digestion of pBS-SHG (data not shown), and EcoRI 

digestion of pGEM-SHG (Figure  3.9). Prior to the sequencing, the presence of the SH-

G fragments was confirmed by PCR with primers SH4360 and G4878(R) (Appendix I). 

 

 Figure  3.9 EcoRI digestion of pGEM-SHG plasmids. Plasmids pGEM-SHG1-11 digested with 
EcoRI restriction enzyme. The pGEM vectors are designed in a way to release the insert when 
they are digested with EcoRI enzyme. The SH-G fragments are visible at 518 bp. Lanes 1 to 12 
in order contain ladder and pGEM-SH-G1-11. Plasmids pGEM-SH-G6 and pGEM-SH-G11 do 
not contain the 518 bp fragment. 
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The nucleotide sequence of 14 plasmids, 5 from one ligation reaction with pBS-

T vector and 9 from an independent RT-PCR/ligation reaction with pGEM-T vector 

were determined. The sequences were compared against the reference sequence of the 

strain J3666 in the GenBank (accession number: AY743909). It was found that 12 of 

the sequences represent a G gene containing only one ORF (Figure  3.7). In contrast, the 

sequences obtained from pBS-SHG2 and pB-SHG9 clones (15% of the clones) reflected 

the organisation of the G gene published by Randhawa and colleagues (1995).  

The results suggest the presence of at least two subpopulations of PVM strain 

J3666: a population containing two ORFs in the G gene as previously published 

(Randhawa et al., 1995) (from now on strain J3666-A), and a population containing a 

single ORF as described above (Figure 3.7) (from now on strain J3666-B). Two of the 

14 (15%) sequenced plasmids   (pBS-GSH2 and pBS-GSH9) reflected the organisation 

of the G gene of the subpopulation J3666-A, and the rest (85% of the sequenced clones) 

showed the organisation of the G gene for the subpopulation of J3666-B.  

Table  3.2 compares the sequences of the pBS-SHG2 and pBS-SHG9 with the 

sequence of PVM strain J3666 (accession number AY743909). Both pBS-SHG2 and 

pBS-SHG9 contain the first ORF preceding the main ORF of the G gene. The first ORF 

contains 12 codons and is terminated by a “UAG” stop codon as indicated. There is a 

gap of 15 non-coding nucleotides between the first ORF and the second ORF 

(Figure  3.7). 
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Gene 
Changes in the 
nucleic acids 

sequence 

Changes in the 
amino acids 

sequence 

SH U(262)  C SL 

 U(267)  C Lys  His 

 U(383)  C NC 

 U(387)  C NC 

G U(21)    C NC 

 C(118)  U SL 

 U(196)  C SL 

 U(229)  C SL 

Table  3.2 Sequence differences among the SH-G clones and PVM strain J3666 sequence. 

Sequence comparison was made among clones pBS-SHG2, pBS-SHG9 and PVM strain J3666 
(accession number: AY743909). The nature of each nucleotide change is indicated. The 
numbers in the parentheses indicates the nucleotides position in each gene. The effects of the 
mutation in the aminoacid sequences are shown. The occurrence of the mutations in non-
coding sequences of each gene is shown by NC and the silent mutations are indicated as SL.  

Table  3.3 compares the sequence of pGEM-SHG-1, 2, 3, 4, 6, 7, 8, 9, and 10 and 

pBS-SHG-5, 6 and 7, in which the G gene organisation was that of the subpopulation 

J3666-B, with the sequence of PVM strain J3666 (Warwick). 
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Gene 
Changes in the 
nucleic acids 

sequence 

Changes in the 
amino acids 

sequence 
Plasmids 

SH U(250)  A SL pGEM-SHG7 

 C(269)  U His  Tyr 
pGEM-SHG-1-4,6-10 

pBS-SHG-5-7 

 C(283)  U SL 
pGEM-SHG-1-4,6-10 

pBS-SHG-5-7 

 C(287)  U Gln  Stop codon 
pGEM-SHG-1-4,6-10 

pBS-SHG-5-7 

 A(291)  G NC * pGEM-SHG-6 

 C(299)  U NC * 
pGEM-SHG-1-4,6-10 

pBS-SHG-5-7 

G U(65)  A Stop codon  Lys 
pGEM-SHG-1-4,6-10 

pBS-SHG-5-7 

 A(66)  U Lys  Met * pBS-SHG-7 

 A(83)  G Met  Val pGEM-SHG-2 

 A(104)  G Ser  Gly 
pGEM-SHG-1-4,6-10 

pBS-SHG-5-7 

 A(113)  U Ile  Phe pBS-SHG-7 

 G(165)  U Gly  Val 
pGEM-SHG-1-4,6-10 

pBS-SHG-6 † 

 U(234)  C Val  Ala pGEM-SHG-4 † 

 G(236)  A Gly  Arg 
pGEM-SHG-1-4,7-10 

pBS-SHG-5 ‡ 

Table  3.3 Sequence differences among the SH-G clones and PVM strain J3666 sequence. 

Sequence comparison was among clones pGEM-SHG-1, 2, 3, 4, 6, 7, 8, 9, and 10; pBS-SHG-
5, 6 and 7; and PVM strain J3666. The nature of each nucleotide change is indicated. The 
numbers in parentheses indicate the nucleotide position in each gene. The possible effects of 
the mutation in the amino acid sequences are shown. The occurrence of the mutations in non-
coding sequences of each gene is shown by NC and the silent mutations are indicated as SL.  
(*) The result of the mutation was determined after applying the mutation affecting the ORF. (†) 
In pBS-SHG-5 and 7 remained undefined. (‡) In pBS-SHG-6 and 7 remained undefined. 

3.6 Conclusion and discussion 

As has been described for other viruses (Churchill et al., 1969; Cohen et al., 

1989; Dardiri, 1969; Hearn et al., 1966; Kwilas et al., 2009; Taylor et al., 1993), 

successive passage of a pathogenic stock of PVM in BS-C-1 cells generated attenuation 

in disease (Figure 3.3).  This may explain the different pathogenicity seen with PVM 

strain 15 (Warwick) (which was obtained from ATCC then extensively passaged in 

tissue culture) and PVM strain 15 (ATCC) which has been passaged only in mice. 



77 
 

The pattern in the onset of the clinical signs of disease and weight loss in the 

group of mice infected with PVM strain J3666 (Working stock) was consistent with 

what was reported by Krempl et al. (2007). In results presented here, for the group of 

mice that received 500 pfu and 250 pfu, the weight loss and signs of disease started 

from day 5 and extending to day 10 when mice were euthanatized (Figure  3.1). For the 

group of mice infected with 125 pfu of PVM strain J3666 initially the same pattern was 

observed, but mice started recovering after day 10. In Krempl et al. (2007), a group of 

mice infected with 500 pfu showed weight loss one day earlier than observed here, and 

the experiment was terminated at day 8 post infection. The slight difference between the 

data reported by Krempl et al. (2007)  and the results reported in this chapter could be 

explained by the 80 µl volume of the inocula used by Krempl et al. (2007). As shown by 

Cook et al. (1998), inoculum volume contributes to pathogenicity, as larger volumes are 

likely to deliver the virus deeper into the lungs. 

Comparison between results reported by Cook et al. (1998) and those here 

suggest an inconsistency. Cook et al. (1998) reported that mice infected with 60 pfu of 

PVM strain J3666 developed severe disease which resulted in death of 20% of the 

animals (Cook et al., 1998). However, the data reported here indicate that mice 

receiving 62.5 pfu developed mild disease. A significant difference in experimental 

protocol between the experiments here and those of Cook et al. (1998) was in the 

anaesthetic agent used; Cook et al. (1998) used ether and here mice were anaesthetised 

with ketamine (Section  2.1.5 2.1.5). The possible role of anaesthetic agents in mice 

infected with respiratory viruses cannot be neglected (Knight et al., 1983; Shope, 1934). 

In the experiments conducted with Cook et al. (1998) the virus was passaged 3 

times in the cell culture (Prof. Andrew Easton, personal communication), while in this 

research the experiments were conducted using the passage 4 of PVM which was 

prepared during the time of experiment and was derived directly from the passage 

number 3 which was used by Cook et al. (1998). The experiments conducted with 

passages 5, 6 and 7, the virus obtained from the available stocks in the laboratory, all 

derived directly from the stock used by Cook et al. (1998). 

Passage 5 virus was shown to be more pathogenic than passage 6 and 7 virus 

stocks. The passage 5 virus was able to produce clinical disease in the three 

administered doses (Figure 3.3). As expected the onset of infection with passage 5 was 

more rapid and produced more disease when 5000 pfu was administered, with 

progressively less severe disease seen when the inoculum was reduced to 500 pfu and 
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250 pfu. Passage 6 virus was capable of producing clinical signs of disease when the 

inoculum contained 5000 pfu, but not with 500 pfu or 250 pfu, as can be seen in 

Figure  3.3. When 5000 pfu of passage 7 virus was used, the clinical score peaked on 

day 8, after which the animals recovered.  

In pneumoviruses, production of defective interfering (DI) particles has been 

reported for HRSV strain Randall during passage of the virus in cell culture and when 

the moi for the virus was calculated between 1 and 5 (Treuhaft & Beem, 1982). While 

they are not competent to replicate alone, DI particles require factors provided by a 

helper virus to be able to replicate. A protective effect for DI particles against 

heterologous or homologous viruses in animal models has been reported (Doyle & 

Holland, 1973; Easton et al., 2011; Scott et al., 2011). This is due to interferon 

induction and interference with the viruses in their replication cycle (Doyle & Holland, 

1973; Easton et al., 2011; Scott et al., 2011). Although the presence of DI particles in 

batches of PVM strain J3666 passages 5, 6 and 7 was not directly examined the possible 

effect of DI particles in reducing the pathogenesis of the virus can’t be ignored. 

However, virus stocks were prepared using very low moi (typically 0.01-0.05 pfu/cell or 

lower). This significantly reduces the likelihood of DI virus production. It is likely that 

among the factors affecting the pathogenicity of PVM strain J3666, adaptation to 

growth in monkey kidney cells thorough consecutive passage of PVM in cell culture is 

one of the main determinants in the attenuation of the virus. The molecular cause of the 

attenuation remains to be determined. 

The genome sequence of PVM passages 5, 6 and 7 was determined and 

compared to understand its correlation with nucleotide changes and the differences in 

pathogenesis. As discussed above, the pathogenicity of PVM strain passages 5, 6 and 7 

reduced gradually from the highest (in the passage 5) to the lowest (in the passage 7). 

Surprisingly, no genome sequence changes among PVM strain J3666 passages 5, 6 and 

7 were identified. As mentioned in section  3.4, it was designed to sequence a part of 

genome divided into 4 fragments. The sequence of the NS1 and NS2 genes and the 

majority of the L gene remained undetermined. Thus, it is possible that the attenuation 

is due to mutations in the areas of the genome whose sequence remained unknown. 

Also, it wouldn’t be possible to identify the presence of mutations when they are in low 

frequencies. To identify such mutations different clonal isolates of the population of the 

virus need to be sequenced, although the cloning experiment increases the risk of 

nucleotide change. 
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 Comparing the sequences of passages 5, 6 and 7 with PVM strain J3666 

(accession number: NC_006579) indicated mutations across the fragment 3. Table 3.1 

summarizes the mutations in the fragment 3. Briefly, the coding mutations seen in the 

SH gene were C(4381)U changing a histidine residue to a tyrosine residue and 

C(4399)U mutating glutamine residue to a stop codon resulting in the synthesis of a 

SH protein with a truncated C terminal; the coding mutations in the G gene are 

U(4575)A changing an amber stop codon to a lysine residue resulting in the 

production of a G glycoprotein with a larger N-terminal, C(4578)U changing the 

noncoding sequence between the two ORFs to a leucine codon, A(4614)G changing a 

serine residue to a glycine residue, G(4675)U changing a glycine residue to a valine 

residue, G(4746)A changing a glycine residue to an arginine, U(5631)A  changing 

a serine residue to a threonine residue; in the F gene: U(6581)G changing an 

isoleucine residue to a glutamine residue and U(6852)C changing a valine residue to 

an alanine residue. 

In an attempt to investigate the possible presence of subpopulation of viruses in 

the working stock of PVM strain J3666, 14 independent clones containing parts of the 

SH and G genes derived from two separate RT-PCR amplifications from virus genomic 

RNA or antigenomic RNA were sequenced. The analysis showed that at least two 

distinct subpopulations of viruses were present. The minor subpopulation, (J3666-A) 

represented by 2 clones, had a G gene with two ORFs organised as reported by 

Randhawa et al. (1995). The remaining clones represented a major subpopulation 

generated a single, large ORF which would encode a G protein with an amino terminal 

extension (J3666-B). These data indicate that PVM stocks contain a population of 

viruses with some sequence variation. Using these stocks it is not possible to be 

confident about the role(s) of specific gene sequences in pathogenicity. It is therefore 

more desirable to generate homogenous populations using reverse genetics. 

A further possibility is that factors like post-translational processing of proteins 

including changes in the glycosylation patterns of glycoproteins and proteolytic 

cleavage may affect the pathogenesis. Recently, comparison of HRSV grown in HEp-2 

cells with HRSV grown in Vero cell lines showed that the HEp-2 grown virus contained 

a smaller G glycoprotein lacking its C terminal (Kwilas et al., 2009), and the progeny 

viruses recovered from Vero cells were inefficient in using cellular glycosaminoglycan 

(GAG) molecules as the receptor. However, these viruses were able to initiate an 

infection in well-differentiated human air-way cells that do not produce GAG molecules 
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at their apical sites. It is therefore possible that the attenuation seen in the passages 6 

and 7 was due to the accumulation of post-translational processing in the virus 

population. 

Sequence analysis of the SH gene (Section 3.5) revealed the presence of two 

subpopulations. The major subpopulation (J3666-B) expressed a truncated SH protein 

and a minor subpopulation (J3666-A) expressed a full length SH protein. The mutations 

discussed in Section  3.5 could affect the structure and function of SH protein, causing a 

defective virus particle. Considering that the SH protein of HRSV is a transmembrane 

protein and forms a transmembrane channel across the membrane (Carter et al., 2010) 

the hydrophobicity of the SH protein was determined to  analyse the effect of the 

mutations on the hydrophobicity (Kyte & Doolittle, 1982). To predict the possible 

effects on the hydrophobicity of the SH protein, the HMTOP sever was used (Kyte & 

Doolittle, 1982; Tusnady & Simon, 2001). Analysing the results (data not shown) 

suggested that the SH protein of PVM strain 15 (Warwick) may lack a transmembrane 

domain, while in the SH protein of PVM strain J3666, the amino acids 24 to 46 produce 

transmembrane helices. 

Unlike in PVM, the SH gene of HRSV strains has been reported to vary very 

little in coding capacity (Chen et al., 2000). In contrast, the SH gene of human 

metapneumovirus is very vulnerable to mutations when it is grown in vitro (Biacchesi et 

al., 2007). It is possible that the SH gene of PVM studied in this research has been 

mutated during passages in tissue culture. HRSV lacking the SH gene was only partially 

attenuated in chimpanzees’ lower respiratory tract (Whitehead et al., 1999). Studying 

the differences in the SH proteins of PVM strains could explain the importance of the 

SH gene in the virulence of the virus. 
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TO STUDY THE EFFECT OF THE G 

GENE ORGANISATION IN PVM 

PATHOGENICITY   
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4.1 Introduction 

A reverse genetics system for HRSV was first described in 1991 by rescuing 

synthetic HRSV genome homologue in which a CAT gene replaced virus genes in the 

genome (Collins et al., 1991). Soon after this achievement, Collins et. al. (1995) 

reported production of infectious virus from cDNA of HRSV strain A2. Since then, the 

technique has been used to investigate a wide range molecular aspect of HRSV in vitro 

and in vivo. However, the main obstacle in studying the pathogenesis of HRSV, lack of 

a suitable animal model, has hampered the study of pathogenesis. As discussed in 

chapter one, PVM is a versatile substitute to study molecular aspects of pneumoviruses, 

and employing a reverse genetics system for PVM would be beneficial in extending its 

ability as a model system. 

In chapter 3, the possibility of the contribution of genetic factors to the 

pathogenicity of pneumoviruses was analysed. A reverse genetics system for PVM was 

developed by Dibben (Dibben, 2006). However, the early attempts to obtain infectious 

virus from cDNA failed (Dibben, 2006). Another reverse genetics system for PVM 

from which virus could be generated was developed by Krempl et. al (2007). The work 

presented in this chapter, describes the establishment of a reverse genetics system for 

PVM and its use in studying the pathogenicity of the virus. Using this reverse genetics 

system, infectious viruses were rescued carrying either of the two organisations of the G 

gene (Section  1.2.1.1). To study the effect of the organisation of the G gene, the first 

ORF of the G gene was deleted and infectious viruses were rescued. The infectious 

viruses were used in a BALB/c mouse model to analyse the pathogenicity of the virus. 

The clinical scoring system (Section  2.5) was used to evaluate the pathogenicity. The 

differences between the results obtained from the reverse genetics system described in 

this section and the reverse genetics system developed by Krempl and colleagues (2007) 

are discussed below. 

4.2 Plasmid p15FL-2G 

The plasmid carrying a cDNA copy of the PVM strain 15 (Warwick) genome, 

p15FL-2G, was constructed by Dr. O. Dibben and was available in the pneumovirus 

Laboratory, University of Warwick (Dibben, 2006). This was constructed from  6 

different fragments with  four  (fragments 2 to 5) defined by  restriction enzyme sites 

inserted during the cloning process (SexAI at positions 1006, SalI at position 4089, 
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XmaI at position 7261 and NotI at position 8134),  and  one natural site (SexAI at 

position 11600) (Figure 4-1). The cDNA was cloned between a bacteriophage T7 

transcription promoter and the hepatitis delta ribozyme in such a way that T7 

transcription would result in the production of an antigenomic copy of the PVM genome 

shown to be required for efficient recovery of infectious virus for other negative sense 

RNA viruses. The construct has 2G residues at the 5’ end of the antigenome RNA to 

ensure efficient transcription by the T7 RNA polymerase. These are presumed to be 

eliminated during virus replication as seen for all other recombinant negative sense 

RNA viruses. 

 

Figure  4.1 Plasmid p15FL-2G (17944 bp). The genes, restriction sites, ribozyme and T7 

polymerase transcription promoter are shown. P2 and M2-2 overlapping genes are shown. 

Plasmid p15FL-2G was subjected to further modifications to synthesise pFL2G-

G15, pFL2G-G15∆ORF1, pFL2G-GJ3666 and pFL2G-GJ3666∆ORF1. The cloning 

procedure is explained in the text and summarized in Figure 4.2. 
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Figure 4.2 – The syntheses of p15FL2G-GJ3666, pFL2G-GJ3666∆ORF1, pFL2G-G15 and pFL2G-G15∆ORF1. To synthesise plasmid pF3-BSHTI-BGLII, the 
plasmid pSH120 was subjected to two Quick Change mutagenesis reactions using primer pair QCF3BGL2F and QCF3BGL2R (arrows shown in black) as 
indicated in step A. Plasmid pF3-BSHTI-BGL2 was subjected to a Quick Change PCR reaction using primer pair QCFL2GA4728F and QCFL2GA4728R  
(arrows shown in black) to synthesise the pF3-BSHTI-BGL2-A plasmid (step B). The fragment 3 from pF3-BSHTI-BGLII was excised using SalI and XmaI 
restriction enzymes and ligated into p15FL-2G double digested with SalI and XmaI restriction enzymes, leading to production of pFL2G-GJ3666∆ORF1 (step 
C). Primer pair G_Round(F) and G_Round(R), arrows shown in red, were designed to introduce the nucleotide differences between PVM strain 15 and strain 
J3666 into the first ORF of the G gene using the round the horn site directed mutagenesis PCR reaction (step D) to produce pFL2G-GJ3666. To produce 
pFL2G-G15, the fragment 3 from pF3-BSHTI-BGLII-A (obtained in step B) was excised using SalI and XmaI restriction enzymes and ligated into p15FL-2G 
double digested with SalI and XmaI (step E). Plasmid pFL2G-G15 was then mutated using primer pair 1stORFOut-15-F and 1stORFOut-15-R (arrows shown 
in black) and Quick Change mutagenesis reaction to synthesis pFL2G-G15∆ORF1 (step F). The black lines indicated with “G gene” define the organisation of 
ORFs in the various G gene constructs. 
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4.3  Complete sequencing of p15FL-2G 

Before starting the rescue process, the complete nucleotide sequence of the full 

length genome plasmid was determined. For this purpose the plasmid p15FL-2G was 

sequenced using G9, J1, J4E, J5, M1, M2, N1, N3, N5, NS1B, NS2A, NS2B, P2A, P3, 

P4, SH2, 22K7, F7, F9, F11, F14, F17, G7, J7, L1F, L1H, L1J, L2C, L2F, L10, PL23, 

PL29, L2G, L2H, L3C, L3D, L3E, L3F, L3G, PL48, and L50 primers (Appendix I). 

Sequencing data were analysed and 30 changes between the sequenced plasmid and the 

published sequence of PVM strain 15 (Warwick) (GenBank; accession number 

AY743910.1) were identified. These are shown in Table 4.1, and some, as indicated, 

confirmed the location of restriction endonuclease sites inserted during the cloning 

process of p15FL-2G. Two of those were introduced in the coding region of the second 

ORF of the M gene which caused sequence changes in a hypothetical polypeptide 

synthesised from a short second ORF [A(4048)  G (4089) resulting in the change of a 

histidine residue to a valine residue, A(4051)  C resulting in the change of a histidine 

residue to an asparagine residue, A(4063)  C resulting in the change of a threonine 

residue to a proline residue]. The rest of the restriction sites introduced by Dibben 

(2006) were placed in the noncoding regions (NTR) of the M, SH, F and M2 genes. 

Table 4.1 describes the changes found across the full length genome of PVM 

strain 15 (Warwick). Briefly, in the M gene, an  A(3690)C mutation changes a 

tyrosine residue to a serine residue, G(3705)A changes a glycine residue to asparagine 

residue; in the G gene G(5465)C changes a glutamic acid residue to a glutamine 

residue; in F gene A(5954)T changes of a tyrosine residue to a phenylalanine residue 

and C(7278)G changes  a phenylalanine residue to a leucine residue. These mutations 

were observed and reported by Dibben (2006) during constructing the p15FL-2G 

plasmid. 

 

Sequence of 
PVM 15 

(Warwick) 
Sequence of 

p15FL-2G 
 

Position 
 

Comments 

970 CA 1012 GT NTR of NS1 Introduction of SexAI restriction 
site 

3690 A 3731 C M gene, 1st ORF Tyr  Ser 

3705 G 3746 A M gene, 1st ORF Gly  Asp 

3796 A 3837 G M gene, 1st ORF SL 

4048 A 4089 G M gene, 2nd ORF His  Val 
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4051 A 4092 C M gene, 2nd ORF 
His  Asp 

Introduction of SalI restriction site 

4059 A 4100 C M gene, 2nd ORF SL 

4063 A 4104 C M gene, 2nd ORF Thr  Pro 

4065 A 4106 C M gene, 2nd ORF SL 

4218 C 4259 T SH gene SL 

5465 G 5506 C G gene Glu  Gln 

5548 A 5589 G G gene SL 

5954 A 5995 T F gene Tyr  Phe 

5958U 5999 C F gene SL 

6127U 6168 C F gene SL 

6531 C 6572 C F gene SL 

6720U 6761 C F gene SL 

7278 C 7319 G F gene Phe  Leu 

7296-7499 
AAAC 

7537-7540 
CGGG 

NTR of F gene. Non-coding region between F and 
G genes. Introduction of XmaI 

8370-8374 
AGUAA 

8409-8413 
GGCCG 

NTR of M2 gene. 
Non-coding region between M2-2 

and L gene. Introducing NotI 
restriction site 

8902 U 8943 C L gene SL 

12247 A 12288 G L gene SL 

13030 A 13071 G L gene SL 

13516 A 13557 G L gene SL 

Table  4.1 Comparison of sequence of PVM strain 15 (Warwick) and p15FL-2G.  Silent 

mutations are indicated as SL. 

4.4 Amending plasmid p15FL-2G 

The structure of the PVM G gene for the non-pathogenic strain 15 and the 

pathogenic strain J3666 was described in chapter one. To understand the effect of these 

different organisations of the G gene on the pathogenesis of PVM, it was necessary to 

amend the plasmid carrying the full-length PVM strain 15 viral genome in such a way 

to make it feasible to swap the G gene with G gene from other viruses such as PVM 

strain J3666. For this purpose, two further restriction sites were inserted, one before and 

one after the G gene. The presence of restriction sites would make it possible to remove 

the G gene entirely from the full length genome and replace it with the desired gene. 

Two restriction enzymes, BshTI and BglII were inserted into the plasmid 

pSH120 (Figure 4.2), the plasmid carrying fragment 3 used to create the full length 

PVM genome cDNA using the quick change mutagenesis technique. The use of plasmid 
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pSH120 as the template provided advantages including a wider choice from the 

restriction enzymes which are frequently present on the full length genome, use of pfu 

proof reading enzyme which potentially is not able to amplify very large constructs such 

as the full length genome, and the ease of confirming the sequence in the smaller 

construct. 

To insert the BshTI and BglII restriction sites into pSH120, two different Quick 

Change mutagenesis PCR reactions were performed. First, the plasmid pSH120 was 

used as the template and the quick change mutagenesis PCR primer QCF3BSHT1F and 

QCBSHT1R pair (Appendix I) designed to insert the BshTI restriction site used. Having 

been digested with restriction enzyme DpnI to remove the template, the PCR product 

was used to transform competent E. coli. Liquid cultures were grown from individual 

colonies and the presence of mutated pSH120 was confirmed by restriction digestion of 

the isolated DNA from the individual bacterial cultures by BshTI restriction enzyme. 

The mutated plasmid was named pF3BshT1. Plasmid DNA from four colonies was 

individually sequenced with QCF3BSHT1F, QCBSHT1R, SH95+, SH2, G4E, G7, G7, 

F7, F14, F9, and F11 primers (Appendix I) to confirm that no additional mutations had 

been inserted. The plasmid DNA mixture was then used as the template to insert the 

second restriction site (BglII) into the plasmid.  

Quick change mutagenesis PCR was performed with the primer pair 

QCF3BGL2R and QCF3BGL2F (Appendix I) designed to insert a BglII restriction site. 

Having been digested with DpnI to remove the template, the PCR product was used to 

transform competent E. coli. Plasmid DNA from individual colonies was prepared and 

the presence of the BglII site confirmed by digestion followed by nucleotide 

sequencing. The mutated plasmid was named pF3-BSHT1-BGL2 plasmid. Using J5 and 

F14 primers, a PCR fragment was amplified from the pF3-BSHTI-BGL2. Digestion of 

the DNA fragment with BshTI and BglII is shown in Figure 4.3.  
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Figure  4.3 Digestion of the 2718 bp fragment generated by PCR amplification from pF3-BSHT1-
BGL2 plasmid using J5 and F14 primers. Following digestion with BshTI and BglII restriction 
enzymes, three fragments were generated of 434 bp, 1339 bp and 945 bp (A); lane 1 
Hyperladder I DNA size markers, Lanes 2 – 6 the digested PCR fragment. The strategy was 
used to amplify the 2718 bp fragment and the position of the restriction endonucleases are 
shown in B.  

As discussed in Chapter 1, a significant difference in nucleotide sequence 

between PVM strain J3666 and PVM strain 15 (Warwick) is in their G gene 

organisation which in the strain 15, contains 2 overlapping ORFs, the second and largest 

of which encodes the G protein. In contrast, the strain J3666 G gene contains a short 

ORF upstream of the main ORF which encodes the G protein (Figure  1.5). Originally, 

plasmid p15FL-2G was amplified from PVM strain 15 (Warwick), so it was expected to 

have a genome structure similar to that published. However, sequencing data (Dibben, 

2006)  revealed that the major ORF of the G gene in the plasmid p15FL-2G had the 

same structure of the major ORF of the G gene in PVM strain J3666 i.e. it lacked the 

additional U residue. However, only one ORF was present.  To return the sequence to 

that of PVM 15 (Warwick) an A residue was inserted into the G gene in pF3-BSHT1-

BGL2 (from now on pF3BB). The presence of the A residue at position 169 of the G 

gene in the mutated plasmid (pF3BBA) would generate a G gene with a structure 

similar to that found in PVM strain 15 (Warwick) with two overlapping ORFs. This 

would generate two plasmids similar to each other with a difference only in the 
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organisation of the G gene, making it possible to compare the effect of the mutation on 

pathogenesis. 

To construct the mutation, pF3BB was used as the template and a primer pair 

(QCFL2GA4728F and QCFL2GA4728R) designed to insert the A residue at position 

4725 of p15FL-2G. After DpnI digestion, the PCR product was used to transform 

competent E. coli. Four colonies (designated as pF3BBA-C1, pF3BBA-C2, pF3BBA-

C3 and pF3BBA-C4) were selected and their sequence obtained using T7, J4, SH2, 

SH95+, G4E, G7, G9, F17, F7, F14, F9 and F11 primers (Appendix I). Following 

confirmation of the sequence, the plasmid pF3BBA-C3 was chosen to use in the 

experiments. 

4.5  Insertion of fragment 3 into p15FL2G 

In order to clone the fragment 3 into p15FL2G, the fragment 3 from the plasmid 

pF3-BB was digested with the restriction enzymes SalI and XmaI and was replaced with 

fragment 3 from either pF3-BB or pF3-BBA. The presence of BglII restriction site in 

the fragment 3 of the full length genome was confirmed by restriction double digestion 

of the full length plasmid with BglII and EcoRI, and NdeI and BglII (not shown). 

4.6 Description of the full length genomes 

The adenosine deletion in pF3-BB plasmid caused an extension in the open 

reading frame responsible for coding the G glycoprotein to achieve the same sequence 

of the G glycoprotein described for PVM strain J3666. However, because the rest of the 

full length genome is similar to PVM strain 15 (Warwick), the G gene lacked the first 

ORF found in the G gene of PVM strain J3666 (Randhawa et al., 1995). Therefore, the 

p15FL-2G construct carrying the F3-BB fragment was called pFL2G-GJ3666∆ORF1. 

On the same basis, the full length plasmid carrying the fragment 3 with the composition 

similar to that was found in the PVM strain 15 (Warwick) was called pFL2G-G15. 

For the purpose of this research it was necessary to synthesise two more full 

length genome plasmids based on the sequence of pFL2G-GJ3666∆ORF1 and pFL2G-

G15 plasmids which are different only in the presence or absence of the first ORF of the 

G gene in comparison with their parental plasmids. “Round the horn” site directed 

mutagenesis PCR (Section  2.3.14) was used to insert the nucleotide changes in the G 

gene of plasmid pFL2G-GJ3666∆ORF1. For this purpose the G_Round(R) and 

G_Round(F) primer pair (Appendix I) were designed to contain the sequence of the G 
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gene strain J3666. The position of the primers were chosen in such a way that annealing 

at their 5’ ends would  result in generation of a fragment spanning the beginning region 

of the G gene of PVM (Figure 4.4). The mutagenesis was carried out as explained in 

Section 2.3.14. The successfully mutated plasmid, designated as pFL2G-GJ3666, was 

identified by sequencing of the G gene. To make pFL2G-G15∆ORF1 the Quick Change 

mutagenesis PCR method (Section  2.3.12) was carried out to delete the first ORF in 

pFL2G-G15 using the primer pair 1stORFOut-15-F and 1stORFOut-15-R (Appendix I) 

which were designed to mutate the AUG codon of the first ORF to GCG. The 

successfully mutated plasmids were selected after analyzing the sequence of G gene.  

 
 

Figure  4.4 The position of the G_Round(F) and G_Round(R) primers to each other. The 

phosphorylated 5’ ends of the primers are indicated (Section 2.3.14). The G_Round(R) primer is 
shown in blue and G_Round(F) is shown in red. 

4.7 Rescue of plasmid p15FL-2G 

The sequence of p15FL-2G obtained in Section 4.3 showed that there were no 

significant changes between sequences of the  the p15FL-2G clone and PVM strain 15 

(Warwick) sequence submitted to the GenBank (Accession number: AY743910) that 

might hamper the process of rescuing infectious virus. The genome of negative stranded 

RNA viruses is not able to start infection de novo, and require the viral polymerase 

complex to synthesis antigenomic RNA to act as the intermediary RNA from the 

genomic RNA. Hence, it is necessary to provide the viral polymerase complex to 

support replication of the virus. In order to provide the polymerase complex, four 

plasmids encoding the PVM N, P, M2-1 and L proteins were co-transfected with the 

p15FL-2G plasmid. As discussed in chapter one, the stoichiometry of individual 

proteins in the polymerase complex is highly important to achieve successful replication 

and/or transcription. It was therefore necessary to find the right combination of 

concentrations for the polymerase complex plasmid to obtain a successful rescue. 
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Successful rescue systems for other members of pneumoviruses were reviewed and 5 

methods which had been used previously to rescue HRSV, BRSV and APV were 

considered.  Methods 1 and 2 were used to rescue BRSV from cDNA (Buchholz et al., 

1999; Yunus et al., 2001), and method 3 and 4 (Collins et al., 1995; Jin et al., 1998) 

were used to rescue HRSV from cDNA. Method 5 was employed by Dr. Roger Ling to 

rescue APV (Dr. R. Ling, unpublished data). Table 4.2 describes the concentrations of 

the helper plasmids which were used in these methods. 

The various amounts of DNA shown in Table 4.2 were mixed and BSR-T7/5 

cells were transfected as described in Section  2.2.4. The transfected cells were kept at 

31˚C and checked regularly for the presence of CPE. To passage the material the 

transfected BSR-T7/5 cells were subjected to a freeze and thaw cycle before being 

scraped into the medium and one third of the culture was transferred to a fresh BS-C-1 

cell culture. This point was considered as the first passage. Passaging of viruses was 

continued until extensive cell death was observed. Among the methods of rescue 

mentioned in Table 4.2, methods 1 and 5 resulted in successful production of 

recombinant viruses. The method 5 was used throughout as the method to rescue 

recombinant viruses and further experiments were planned based on the viruses 

obtained from this method. The process for passaging viruses following transfection is 

summarised in Figure 4.5. The recombinant viruses were defined as rPVM. Rescue of 

pFL2G-G15, pFL2G-G15ΔORF1, pFL2G-GJ3666, pFL2G-GJ3666ΔORF1 and p15FL-

2G resulted in production of rPVM-G(15), rPVM-G(15ΔORF1), rPVM-G(J3666), 

rPVM-G(J3666ΔORF1) and rPVM, respectively. The recombinant viruses were 

subjected to continuous passages until a titre greater than 1x105 pfu/ml for each was 

achieved. rPVM-G(J3666ΔORF1) and rPVM-G(15) were subjected to six continuous 

passages in BS-C-1 cells to obtain this titre. rPVM-G(J3666) and rPVM-G(15ΔORF1) 

were subjected to two passages in BS-C-1 cells to obtain the desired titre. 

Method used 
to rescue virus 

Full 
length 

pN pP pM2-1 pL References 

1 10 µg 4 µg 4 µg 2 µg 2 µg (Buchholz et al., 1999) 

2 0.4 µg 0.4 µg 0.2 µg 0.4 µg 0.4 µg (Jin et al., 1998) 

3 0.4 µg 0.4 µg 0.4 µg 0.1 µg 0.1 µg (Collins et al., 1995) 

4 1 µg 0.4 µg 0.3 µg 0.1 µg 0.2 µg (Yunus et al., 2001) 

5 3 µg 0.3 µg 0.3 µg 0.24 µg 0.15 µg Dr. R. Ling, unpublished 
data. 

Table  4.2 DNA concentrations used to rescue PVM from cDNA.  
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The presence of virus was confirmed by RT-PCR specific for the viral genome. 

The presence of XbaI and SalI restriction enzyme sites which are specific for the 

recombinant virus (obtained from using the method 2 mentioned in Table 4.2) was 

confirmed by amplifying the relevant part of the viral genome. For this, the 751 bp “M-

SH” fragment was amplified from nucleotide 3571 to 4322 of the PVM genome using 

M2 and SH2 primers and the cDNA of the virus as the template (Appendix I). The DNA 

fragment was purified and then digested with SalI restriction enzyme which would 

generate two fragments of 273 bp and 477 bp (Figure 4.6). This confirmed that 

recombinant PVM had been generated from the plasmid. 

In addition, to show successful infection of the cell by the PVM monoclonal 

antibody 26/C3/B5 was used to detect the PVM P protein in cell culture. Figure 4.7 

shows cells infected with recombinant PVM surrounded by non-infected cells and 

expressing the P protein. The full sequence of plasmids pFL2G-GJ3666 and pFL2G-

G15ΔORF1 which were generated using site directed mutagenesis were determined 

using the G9, J1, J4E, J5, M1, M2, N1, N3, N5, NS1B, NS2A, NS2B, P2A, P3, P4, 

SH2, 22K7, F7, F9, F11, F14, F17, G7, J7, L1F, L1H, L1J, L2C, L2F, L10, PL23, 

PL29, L2G, L2H, L3C, L3D, L3E, L3F, L3G, PL48, and L50 primers (Appendix I), to 

confirm that no mutations had arisen during the cloning procedure. A sequence conflict 

between their sequence and sequences of p15FL-2G, and pF3BBA was observed 

resulting in a LS423K  LN423K change in the F protein synthesised from the pFL2G-

GJ3666 and pFL2G-G15ΔORF1 plasmids.  

 

Figure  4.5 The rescue process to obtain infectious virus from cells. Each step of rescue of the 

recombinant viruses is indicated as a passage (pass.) number. Transfected BSR-T7/5 cells 
(pass. 0) were lysed and cell lysate obtained from BSR-T7/5 cultures was used to infect BS-C-1 
cells (pass. 1). 
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Figure  4.6 A. Digestion of the M-SH PCR fragment from the wildtype and recombinant viruses 
containing a SalI restriction site. The PCR fragments (751 bp) were amplified from the cDNA of 
the wildtype recombinant viruses (B). Following purification, the PCR fragments were digested 
with SalI restriction enzyme generating 477 bp and 273 bp fragments in the DNA fragment 
amplified from the recombinant viruses. The DNA amplified from the wildtype virus remained 
undigested. Lane 1, M-SH DNA fragment from wildtype virus, after being digested with SalI 
restriction enzyme; lane 2, the digested M-SH fragment; lane 3, DNA Hyperladder I size 
markers. The size of DNA markers are shown on the right of the gel. 

 

 

            A                                         B 

 

Figure  4.7 Detection of cells infected with the recombinant viruses using the 26/C3/B5 

monoclonal antibodies detecting PVM P protein. The infected cells are shown in green 
surrounded by the uninfected cells. The nuclei of cells were visualised using DAPI dye. A. Cells 
infected with rPVM-G(15) and B. Cells infected with rPVM-G(J3666). 
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4.7.1 Growth of recombinant viruses in cell culture 

The presence of the inserted mutations in the viral genome [including SalI, 

XmaI, NotI, BshTI, BglII and NotI restriction sites and deletion of the first ORF of the G 

genes in strains J3666 and 15 (Warwick)] raised the possibility that the mutations may 

reduce the growth rate of the viruses in vitro. An experiment was designed to test the 

growth of the recombinant viruses in cell culture. To do this BS-C-1 cells were cultured 

in 24 well plates in GMEM medium supplemented with 2% FCS. The cells were 

infected with either rPVM-G(15), rPVM-G(15ΔORF1), rPVM-G(J3666), rPVM-

G(J3666ΔORF1), rPVM passage 7, rPVM passage 8, or  PVM strain J3666 viruses 

(Section 4.7) with an moi of 0.05. The cultures were incubated at 31 and 37˚C. 

Samples were harvested by scraping the cells into the medium at 0, 24, 48, 72, 

96, and 120 hr post infection. Three individual samples were harvested from three 

different infected wells for each time point. All of the samples were kept at -70°C until 

titration using the micro-plaque assay technique (Section  2.2.7) to detect virus yield. 

Each titration was conducted in triplicate. An average was calculated for each time 

point. Results obtained from the titrations are depicted in Figure 4.8. 
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Figure  4.8 Growth of stock or recombinant PVM isolates in BS-C-1 cell culture system at two 

temperatures, 31˚C and 37˚C. The growth of the wildtype PVM strain 15, strain J3666, rPVM 
passages 7, rPVM passage 8, rPVM-G(15), rPVM-G(15ΔORF1), rPVM-G(J3666) and rPVM-
G(J3666ΔORF1) are shown in graphs A to H. The curve shown in blue indicates the growth of 
viruses at 37˚C and the curve shown in red indicates the growth of the viruses at 31˚C. 
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The yield of wildtype PVM strain 15 at both 31˚C and 37˚C was higher on day 0 

then for the other viruses tested. The reasons for this are unclear, but the final yield of 

viruses did not differ greatly from the others. As expected, wildtype PVM strain J3666 

showed a significant reduction in yield when grown at 37˚C. This virus has previously 

been shown to be temperature sensitive (Prof. A. Easton, personal communication). In 

general the yield of all of the viruses was less when grown at 37˚C. 

The growth rates of two consecutive passages of recombinant virus (rPVM) 

generated from plasmid p15FL-2G were very similar. For both virus stocks there was a 

small reduction in yield at 24 hr post infection followed by a rise thereafter when grown 

at 37˚C. The initial drop in yield was not seen when the viruses were grown at 31˚C. By 

day 4 post infection the viruses had reached maximum yields at both growth 

temperatures. These viruses contained a G gene encoding a protein equivalent to that for 

PVM strain J3666. This is similar to rPVM-G(J3666ΔORF1). 

Comparison of the titres of rPVM passage 7 and rPVM passage 8 virus with 

rPVM-G(J3666ΔORF1) at 31˚C showed that the latter achieved a final yield 

approximately 10-fold lower than the other two viruses. The only differences in genome 

sequence between these viruses is that rPVM-G(J3666ΔORF1) contains unique 

restriction enzyme sites for BglII and BshTI introduced to aid cloning. The differences 

in yield may indicate that the sequence alteration adversely affects the growth of rPVM-

G(J3666ΔORF1). 

The recombinant viruses carrying the PVM strain 15 G gene showed a similar 

growth curve to that of rPVM. rPVM-G(15) showed lower yields of virus when grown 

at 37˚C than at 31˚C but was propagated at 37˚C without difficulty. No substantial 

differences were seen in the growth characteristics in vitro of rPVM-G(J3666) and 

rPVM-G(J3666ΔORF1). 

Overall, the recombinant viruses all grew to similar levels in vitro with slightly 

higher yields achieved when grown at 31˚C. The recombinant viruses with a G gene 

originating from PVM strain J3666 reached slightly lower yields than those with G 

genes derived from PVM strain 15 (Warwick). 
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4.8 Testing the pathogenesis of recombinant viruses 

The infectivity of the recombinant viruses derived from p15FL-2G clones and 

rescued from BS-C-1 cells were tested in 4-8 weeks old BALB/c mice. Each virus will 

be considered in turn. 

4.9 rPVM-G(15) 

The virus was titrated in BS-C-1 cells and appropriate dilutions to make 250, 

500 and 5000 pfu in 50 µl of inocula were prepared. The inoculum was administrated 

intranasally to the animals (Section  2.5). In the control groups mice were inoculated 

with 50 µl of sterile PBS. Mice were checked and monitored daily. Figure 4.9 and 

Figure 4.9 show the change in the body weight and clinical signs, respectively for the 

mice. No weight loss was detected during the time course, and the clinical score of the 

animals was recorded (Figure 4.10) indicating that the virus was entirely non-

pathogenic. 

 

Figure  4.9 Change in body weight in groups of mice infected with rPVM-G(15). Each mouse 

was infected with 50 µl of the three levels of virus (5000 pfu, 500 pfu and 250 pfu). Body weight 
was monitored daily and the percentage of change in body weight normalised to the first day is 
shown. The data shown is representative of two independent experiments. The inocula were 

5000 pfu , 500 pfu , 250 pfu , PBS . 
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Figure  4.10 Clinical score for mice infected with the rPVM-G(15). Each mouse was infected with 

50 µl of the three concentrations (5000 pfu, 500 pfu and 250 pfu). Clinical score was monitored 
on a daily basis and expressed as an average for each experimental group. The data shown is 

representative of two independent experiments. The inocula were 5000 pfu , 500 pfu , 
250 pfu , PBS . 

4.10 rPVM-G(15∆ORF1) 

rPVM-G(15∆ORF1) was used to infect mice and differences in the weight of the 

infected mice and in the clinical score were monitored (Figure 4.11). Slight weight loss 

was observed only in the group of mice that received 5000 pfu of the virus (Figure 

4.11). Starting from day 6, weight loss reached a peak at day 9. The mice started 

recovering completely after the day 9. However, no changes in clinical signs of disease 

were seen Figure 4.12. Although no clinical signs of disease were observed during the 

infection, the weight loss suggests that deletion of the first ORF of the G gene of strain 

15 did alter the virulence of the virus. 
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Figure  4.11 Change in body weight in groups of mice infected with rPVM-G(15ΔORF1). Each 

mouse was infected with 50 µl of the three levels (5000 pfu, 500 pfu and 250 pfu) of rPVM-
G(15∆ORF1). Body weight was monitored daily and the percentage of change in body weight 
normalised to the first day is shown. The data shown is representative of two independent 

experiments. The inocula were 5000 pfu , 500 pfu , 250 pfu , PBS . 

 

Figure  4.12 Clinical score for mice infected with rPVM-G(15∆ORF1). Each mouse was infected 

with 50 µl of the three levels (5000 pfu, 500 pfu and 250 pfu). Clinical score was monitored on a 
daily basis and expressed as an average for each experimental group. The data shown is 

representative of two independent experiments. The inocula were 5000 pfu , 500 pfu , 
250 pfu , PBS . 

4.11 rPVM-G(J3666)  

Mice infected with 5000 pfu of rPVM-G(J3666) showed very mild signs  of 

disease and weight loss, but this was not seen with other doses. The level of weight loss 

was slightly greater at its peak (9.3 %) than seen with  rPVM-G(15∆ORF1) (Figure 

4.13). The weight loss in these animals started on day 6 and reached its peak at day 9. 
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The mice recovered completely after day 9. The mice recovered completely after day9.  

While the virus was not capable of producing lethal disease in the animals (Figure 

4.14), a low level of clinical signs were seen in the mice infected with 5000 pfu. As is 

normal, the appearance of clinical signs on day 8 followed the first sign of weight loss. 

Animals infected with 500 and 250 pfu showed no changes in weight or clinical signs of 

disease. These data indicated that rPVM-G(J3666) was more virulent than rPVM-

G(15∆ORF1). 

 

Figure  4.13 Change in body weight in groups of mice infected with rPVM-G(J3666) Each mouse 

was infected with 50 µl of the three concentrations (5000 pfu, 500 pfu and 250 pfu) of rPVM-
G(J3666). Body weight was monitored daily and the percentage of change in body weight 
normalised to the first day is shown. The data shown is representative of two independent 

experiments. The inocula were 5000 pfu , 500 pfu , 250 pfu , PBS . 

 

Figure  4.14 Clinical score for mice infected with rPVM-G(J3666). Each mouse was infected with 

50 µl of the three concentrations (5000 pfu, 500 pfu and 250 pfu) of rPVM-G(J3666). Clinical 
score was monitored on a daily basis and expressed as an average for each experimental 
group. The data shown is representative of two independent experiments. The inocula were 

5000 pfu , 500 pfu , 250 pfu , PBS .  
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4.12 rPVM-G(J3666∆ORF1) 

In the group of mice infected with rPVM-G(J3666∆ORF1) no clinical signs of 

disease or weight loss were observed (Figure 4.15 and Figure 4.16) with any dose of 

virus. 

 

Figure  4.15 Change in body weight in groups of mice infected with rPVM-G(J3666ΔORF1). 

Each mouse was infected with 50 µl of the three concentrations (5000 pfu, 500 pfu and 250 pfu) 
of rPVM-G(J3666∆ORF1). Body weight was monitored daily and the percentage of change in 
body weight normalised to the first day is shown. The data shown is representative of two 

independent experiments. The inocula were 5000 pfu , 500 pfu , 250 pfu , PBS
. 

 

Figure  4.16 Clinical score for mice infected with rPVM-G(J3666ΔORF1). Each mouse was 

infected with 50 µl of the three concentrations (5000µ pfu, 500 pfu and 250 pfu) of rPVM-
G(J3666ΔORF1). Clinical score was monitored on a daily basis and expressed as an average 
for each experimental group. The data shown is representative of two independent experiments. 

The inocula were 5000 pfu , 500 pfu , 250 pfu , PBS . 
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4.13 Discussion 

In the study presented in this chapter, the nucleotide sequence of the plasmid 

p15FL-2G was confirmed. The plasmid contained a full length cDNA copy of the PVM 

strain 15 (Warwick) genome. However, a single nucleotide alteration resulted in the 

presence of a G gene which expressed a protein similar to that described for PVM strain 

J3666 but which lacked a short upstream ORF found in the strain J3666 G gene. This 

plasmid was used to generate infectious virus. Using this genome as a base, four more 

plasmids were synthesized: pFL2G-G15 carrying the G gene of PVM strain 15 

(Warwick), pFL2G-G15∆ORF1 carrying the G gene of PVM strain 15 (Warwick) with 

its first ORF deleted, pFL2G-GJ3666 carrying the G gene of PVM strain J3666 and 

pFL2G-GJ3666∆ORF1 carrying the G gene of PVM strain J3666 with its first ORF 

deleted. The five cDNA named above were used in cell culture to recover infectious 

viruses, and respectively recombinant viruses rPVM-G(15), rPVM-G(15∆ORF1), 

rPVM-G(J3666) and rPVM-G(J3666∆ORF1) were recovered. 

Recombinant and wildtype viruses demonstrated a better growth rate at 31˚C  

than at 37˚C in tissue culture, but all could be propagated at 37˚C. The recombinant 

viruses rPVM-G(J3666) and rPVM-G(J3666∆ORF1) generated 10 fold less yield than 

the other recombinant viruses. The virulence of the recombinant viruses in mice was 

examined and showed that rPVM-G(15), which has the same G gene organisation as the 

non-pathogenic PVM strain 15 (Warwick) was not pathogenic when mice were infected 

with 250, 500 or 5000 pfu. However, when mice were infected with 5000 pfu of rPVM-

G(15∆ORF1) a small (4%) but significant weight loss was seen compared to the weight 

of the animals at the time of challenge. Control, uninfected, mice and animals infected 

with 250 pfu or 500 pfu of rPVM(15∆ORF1) showed a gain in weight, and no clinical 

signs of disease. Removal of the first ORF in PVM strain 15 (Warwick), which overlaps 

with the ORF encoding the G glycoprotein, results in a small but measurable increase in 

pathogenicity. 

The G gene of the pathogenic strain J3666 contains a short ORF upstream, but 

not overlapping, the ORF which encodes the G glycoprotein. The PVM strain J3666 G 

glycoprotein contains additional amino acids at the amino terminus compared to the G 

protein of strain 15 (Warwick). When mice were infected with rPVM-G(J3666), those 

receiving 5000 pfu showed weight loss which reached a maximum of 9% of the starting 
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weight on day 9 post infection and mild clinical signs of disease which followed the 

weight loss, beginning on day 8. 

Animals infected with 250 pfu or 500 pfu of rPVM-G(J3666) showed little 

change in weight and no clinical signs of disease. All animals challenged with any of 

the 3 selected doses of rPVM-G(J3666ΔORF1) remained clinically normal and showed 

no significant difference in weight. 

During this research, it was assumed that the low number of passages may 

reduce the possibility of generating DI particles. Taken together, the data suggest that 

the presence of the first ORF in the G gene of PVM may play an important role in virus 

virulence. A possible explanation may be that the upstream ORF affects the level of 

expression of the G protein from the downstream ORF. It is well known that the 

presence of an upstream ORF in cellular mRNAs frequently leads to a reduction in the 

level of protein produced by the downstream ORF (Child et al., 1999b; Kozak, 1984). 

Thus, pathogenicity of PVM may be affected by the nature and amount of G protein 

produced. The effect of the first ORF in the G gene of PVM was examined in more 

detail in Chapter 5. 

During construction of the plasmid p15FL-2G the area between nucleotides 900 

and 1300 of the F gene was reported to containing unclear sequences (Dibben, 2006). 

This conclusion was made after sequencing the plasmid with two individual primers (F9 

and F20) on several occasions (Dibben, 2006). In the work presented here, the 

sequences were obtained using the same primer (primer F9, Appendix I) which was 

used by Dibben (2006). Interestingly, the same ambiguous sequencing results with trace 

containing more than one peak at each nucleotide were achieved. The reason for the 

diversity in the nucleotide sequence of the F gene in this region remains unclear. Due to 

time constraints, the mutation in the F gene of plasmids pFL2G-G15∆ORF1 and 

pFL2G-GJ3666 was left unchanged. 
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EFFECT OF THE FIRST ORF ON 

PVM G PROTEIN EXPRESSION 
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5.1 Introduction 

As discussed in Section  1.2.1.1.1, the G gene of PVM strain 15 (Warwick) 

contains two overlapping open reading frames. In the G gene of PVM strain J3666, 

however, a shorter ORF precedes the main ORF of the gene, and the main ORF is 

longer than that of strain 15 (Warwick) (Section 1.2.1.1.1). In other systems it has been 

shown that the presence or absence of an upstream ORF can affect the translational 

level of the second ORF (Meijer et al., 2000; Peabody & Berg, 1986; Poyry et al., 2004; 

Wang & Sachs, 1997). The consistent presence of an upstream ORF in the G gene in 

PVM strains raises the question of the contribution of the first ORF in controlling the 

expression level of G glycoprotein from the larger second ORF. 

To analyse the contribution of the first ORF of the G gene in translation of the G 

glycoprotein, it was necessary to compare different levels of G protein in the absence 

and presence of the first ORF. For this purpose, a reverse genetics system using a 

synthetic minigenome was employed. A dicistronic minigenome system expressing two 

reporter genes was constructed for PVM. The first gene transcribed from the synthetic 

genome expressed the luciferase (Luc) protein. The second gene expressed the G 

glycoprotein from either PVM strain 15 (Warwick) or strain J3666. To measure the 

quantity of G protein expressed, the G gene was tagged at its 3’ end with green 

fluorescent protein (GFP) and the amount of GFP was measured using an ELISA, based 

on the assumption that the quantity of GFP would reflect the quantity of G protein 

expressed. The activity of luciferase protein coded from the sequence in the first cistron 

of the minigenome was used to normalise the data. Using these basic constructions it 

was possible to assess the effect of the presence and absence of the upstream ORF in the 

G gene. The normalised results were compared to each other to study the effect of first 

ORF in the translational control of the G gene in both strains of PVM. 

5.2 Construction of the PVM minigenome carrying G gene of PVM 

The plasmid was made based on the available dicistronic minigenome plasmid 

(pWt/NdeI) by using the presence of the naturally occurring restriction sites, and 

introducing a novel restriction site upstream of the CAT gene in the minigenome. The 

process used in the approach is summarised in Figure  5.1. 
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Figure  5.1 The synthesis of pG-GFP minigenome. The construction of pG-GFP was performed 

in 8 steps indicated in the diagram as steps A to H. In step A, the G gene was amplified using 
cDNA or plasmid DNA templates; in step B, GFP was amplified using pWt/NdeI as the template. 
For step C, the G and GFP genes were joined together using an overlap PCR technique. Step 
D, an NcoI restriction site was inserted in pWt/NdeI using quick change mutagenesis technique. 
Subsequently, in step E, the mutated pWt/NdeI was digested using NcoI and PstI restriction 
enzymes. Subsequently, in step F, the luciferase gene was amplified from pGL3 template DNA, 
and ligated (step F) into the digested pWT/NdeI DNA. Finally in step H, the products of steps G 
and C were ligated together to make the pG-GFP (see text for further detail). 

The plasmid pWt/NdeI (Figure  5.2) was constructed and optimised by O. 

Dibben and L. Thorpe to analyse the effect of gene leaders and gene trailers on the 

protein synthesis of PVM (Dibben & Easton, 2007; Dibben et al., 2008). It consists of 
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two genes expressing chloramphenicol acetyl transferase (CAT) and green fluorescent 

protein (GFP) each of them flanked by PVM gene start (GS) and gene end (GE) signals 

making them two individual genes controlled by PVM transcription regulation 

sequences. The genomic leader and trailer regions of the PVM genome RNA flank both 

genes, and the whole area was bounded by T7 transcription start and stop sequences. T7 

directed transcription produces an RNA molecule representing a synthetic (mini-) 

genome of PVM which can be replicated and transcribed by the relevant virus protein 

complexes. 

 

Figure  5.2 Schematic structure of pWt/NdeI. Naturally occurring restriction sites are shown in 

black and the recombinant restriction site introduced upstream of the CAT gene is shown in red. 
Gene start sequences are shown with vertical lines and in green, likewise gene end sequences 
are shown in red. The sizes (bp) of DNA between the restriction sites are shown.   

5.3 Quick change mutagenesis to make pWt/NcoI 

Due to lack of a suitable quantitative detection assay for CAT as the product of 

the first gene in the minigenome this was removed from the first cistron in the 

pWt/NdeI minigenome and replaced with the firefly luciferase gene which is readily 

detectable (Section  2.4.2). For this, two point mutations were inserted upstream of the 

translation initiation of the CAT gene in pWt/NdeI, to make an NcoI restriction site, 

using the quick change mutagenesis technique (Section  2.3.12). NCOIFOR and 

NCOIREV primers (Appendix I) were designed for this purpose to mutate TA to CC at 

position 55 and 56 of the pWt/NdeI (Figure  5.3). The mutated plasmid was designated 

pNcoI/PstI. Digestion of pNcoI/PstI with NcoI and PstI restriction enzymes was used to 

identify the successfully mutated plasmid. As indicated in Figure 5.2 digestion of 

pNcoI/PstI with NcoI and PstI restriction enzymes resulted in production of 516, 164, 

977 and 3263 bp fragments (Figure 5.4)(. 
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Figure  5.3 Quick Change mutagenesis reaction to introduce an NcoI restriction site before the 

start codon of CAT gene. A. The approximate position of the mutagenesis primers to mutate the 
nucleotides 55 and 56 of the plasmid pWt/NdeI. B. The mutagenesis site on the plasmid 
pWt/NdeI. C. Both nucleotides at residues 55 and 66 of the plasmid pWt/NdeI were mutated to 
cytosine. The primer pair used in the reaction is shown as two black arrows named NcoIRev 
and NcoIFor. 

5.4 The Luciferase gene region 

Amplification of the luciferase gene was conducted using plasmid pGL3 

(Promega) as the template and primers PstLucR and NcoLucF (Appendix I). The primer 

NcoLucF was designed in such a way as to amplify NcoI restriction site from the pGL3 

plasmid and the primer PstLucR was designed to add the PstI restriction site to the 3’ 

end of the 1653 base pair fragment. Gel purification of the PCR product was followed 

by digestion of the amplified luciferase gene with NcoI and PstI. The digested luciferase 

gene was then ligated into pNco/PstI which had also been digested with NcoI and PstI. 

Six colonies were randomly selected and the colonies containing pNcoI/PstI-Luc were 

identified after DNA purification and digestion of the purified DNA using PstI and NcoI 

restriction enzymes. Figure 5.4 shows a typical digestion result of three of the colonies; 

the 1653 bp fragment of the luciferase gene was released upon digestion with PstI and 

NcoI restriction enzymes. 
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Figure  5.4 Restriction enzyme digestion of pWt/NcoI and pNcoI/PstI with PstI and NcoI 

restriction enzymes. Lanes 1 to 7 contain DNA size markers, pWt/NcoI-Luc colony number 1, 
pWt/NcoI-Luc colony number 2, pNcoI/PstI colony number 1, pNcoI/PstI colony number 2, 
pNcoI/PstI colony number 3, and pWt/NcoI-Luc colony number 3, respectively. 

5.5 The G-GFP region 

To measure the quantity of expressed G protein, a GFP tag was inserted at the C 

terminus. To join the two genes together an overlap PCR technique was used. 

5.5.1 Amplifying the G gene from PVM strains; general features 

In the G gene of the PVM strains 15 (Warwick) and J3666, there are 14 

nucleotide differences including 13 point mutations and one single nucleotide deletion 

(Randhawa et al., 1995). For this analysis it was essential to include all of the gene 

differences in the minigenome. Therefore, it was decided to make two minigenomes 

each containing the G gene from one PVM strain. To achieve this, the gene was 

amplified from each strain individually. The plasmid pF3-BBA (Section  4.2) carrying a 

cDNA copy of the  relevant region of strain 15 (Warwick), was used as the template to 

amplify the G gene. A preparation of cDNA was generated from RNA of PVM strain 

J3666 (Section  2.3.10) and used as the template for amplification of the G gene for 

PVM strain J3666. 

The presence of a PVM gene start and gene end sequence was required to direct 

transcription of the G genes in the minigenome construct.  These were present on the 

minigenome pWt/NdeI. Digestion of pWt/NdeI with PstI and NcoI retained the gene 

start and stop sequence flanking the Luc gene. The authentic gene start of the G gene, 
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occurring naturally in the genome of the PVM, was retained in the amplified sequence 

of the G gene. A reverse primer (PstIRev: Appendix I) was designed based on the 3’ 

end of G gene, which is conserved between both strains. Three features were considered 

for the primer; first, it was necessary to remove the stop codon from the G gene to fuse 

together the reading frame of the G and GFP genes; second, for the overlap PCR 

reaction it was necessary to add the initial nucleotides of the GFP gene to the 3’ end of 

G gene. To achieve this, the reverse primer amplifying the G gene was designed to carry 

19 nucleotides of the complementary sequence from the beginning of GFP gene as a 

tag, and similarly 20 nucleotides from 3’ end of G gene was added to the forward 

primer to amplify GFP gene.  

5.5.1.1 Amplifying G gene from PVM strain 15 template 

Amplification of the G gene from pF3-BBA template (Section 4.2) with primers 

PstIFor and PstIRev (Appendix I) generated the expected product with a length of 1393 

nucleotides and a non-specific product with about 800 base pairs (Figure  5.5). The 1393 

base pair PCR product was excised and purified from the gel. 

 

Figure  5.5 PCR amplification of the PVM strain 15 (Warwick) G gene using primers PstIFor and 

PstIRev. Lane 1 shows the Hyperladder I size marker. The sizes of the markers are shown on 
the left. Lane 2 shows the 1393 nt product of amplification of the PVM strain 15 (Warwick) G 
gene. 

5.5.1.2 Amplifying the G gene from strain J3666 template 

To make a minigenome of the G gene with the organisation found in PVM strain 

J3666, the G gene was amplified from cDNA from PVM strain J3666 RNA. For this 

purpose, RNA extracted directly from 250 µl of cell culture harvested virus, and cDNA 
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was made from both sense and antisense RNA of the virus using random primers. The 

G gene was amplified using the PstIRev and the PstIGJ3666 primer pair (Appendix I) 

and used in an overlap PCR as described earlier. 

5.5.2 Amplification of the GFP gene 

The GFP gene was amplified from pWt/NdeI using GFP-For and GFP-Rev 

primer pair (Appendix I). The primer pair was designed to leave a tag complementary to 

the 3’ end of the genomic sense of the G gene at the 5’ end of the PCR product, as 

before. This would give the opportunity to use it in overlap PCR to join the G and GFP 

genes together. A PstI restriction site was placed at the 3’ end of the GFP gene for 

cloning purposes. The PCR products were separated by agarose gel electrophoresis 

(Figure 5.6) and the 779 nucleotide fragment was excised from the gel. 

 

Figure  5.6 Amplification of the GFP gene from pWT/NdeI DNA. Lane 1 shows the, Hyperladder I 

size markers. The sizes of the markers are shown on the left. Lanes 2 and 3 shows the PCR 
product with the expected 779 base pair size. 

5.5.3 The overlap PCR to join G and GFP together 

To conduct a successful overlap PCR it was necessary to design overlapping 

primers for both G and GFP genes. For this, the primer GFPFor was designed carrying 

23 nucleotides from the 3’ end of the G gene. As a result, the amplified fragment was 

expected to carry the 23 nucleotide of the G gene at the 5’ end of the fragment 

(Section  5.5.2). The second primer, PstIRev, was designed to carry the first 19 

nucleotides from the sense strand of the GFP fragment. This would result in 

amplification of a fragment from the G gene containing 19 nucleotides from the GFP 
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gene. It was assumed that in a PCR reaction the overlapped region of the fragments 

would anneal to each other and act as primers and synthesise the other fragment leading 

to the completion of the G-GFP fragment synthesis. Using the PstIFor primer, for the 

strain 15 (Warwick), or PstIGJ3666 primer, for the strain J3666, as the forward primers 

individually and GFPRev as the reverse primer would give the opportunity to further 

amplify the G-GFP fragment. The principle of the overlap PCR which was used here is 

explained in Figure  5.7. The overlap sequence in the sense strand of the G fragment 

annealing to the overlap sequence of the sense strand of the GFP fragment is shown in 

Figure 5.8. 

 

 

Figure  5.7 The overlap PCR method used to join the G and GFP fragments to synthesis the G-

GFP fragments for the strains 15 and J3666. A. Amplification of the G fragment using PstFor, 
for the strains 15 (Warwick), or PstIGJ3666, for the strain J3666, as the forward primers and 
PstRev as the reverse primer. The pF3-BBA was used as the template to synthesis G(15) for 
PVM fragment. The RT-PCR was used to amplify the G gene from genomic RNA isolated from 
strain J3666. B. Amplification of the GFP fragment using the GFPFor and GFPRev primer pair. 
C. The overlap PCR reaction. D. the fragment G-GFP. The PstRev and GFPFor primers are 
shown in blue carrying the overlapping region (shown in red). The G fragment is shown in blue 
with the overlap sequence at its 3’ end (red). The GFP fragment is shown in green with the 
overlap sequence at its 5’ end (red). 
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Figure  5.8 The overlap PCR reaction. The fragment G (blue) and the fragment GFP (green) are 

shown in the overlap PCR reaction. The overlapped regions between the sense G fragment and 
antisense GFP fragments are annealed together. The stop codon in G fragment was replaced 
with “CCC” and shown inside a blue box.  

To optimise the overlap PCR reaction for the G gene of PVM strain 15, an 

overlap PCR was conducted in buffers with either 2, 3 or 4 mM of Mg2+. The annealing 

temperature was set at 58°C and kept constant during optimisation of Mg2+ 

optimisation, based on the assumption that higher annealing temperature would 

eliminate the possibility of production of nonspecific inter- and intra-molecular 

secondary structures. The process was used to achieve correct annealing between 5’ and 

3’ ends of the GFP and G genes. The highest yield was achieved with concentrations of 

3 and 4 mM Mg2+ (Figure 5.9). The PCR product was gel purified and kept at -20°C 

until the time to be used. Equal concentrations of the G (Section  5.5.1) and the GFP 

fragments (Section  5.5.2) were used as the template. The GFPFor and PstIRev primers 

(Appendix I) were designed to overlap at their 5’ end. Therefore, it was expected that 

the fragments G and GFP contain overlapping ends at their 3’ (for the G fragment) and 

5’ (for the GFP fragment) ends. The primers PstIFor and GFPRev were used in the 

overlap PCR . 

 

Figure  5.9 The overlap PCR to join G and GFP fragments together. Gel purified G and GFP 

genes from previous PCR amplifications were used with different Mg2+ concentrations. Lanes 1, 
2 and 3 show the products of reaction in the presence of 2, 3 and 4 mM Mg2+ , respectively. 
Lane 4 shows the Hyperladder I size markers with the sizes shown on the right. 
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5.6 Ligation of G-GFP fragments into pNcoI/PstI-Luc 

G-GFP fragments obtained from the process explained above were digested with 

PstI restriction enzyme and ligated into PstI digested pNcoI/PstI-Luc vector (Figure 

5.10). Following transformation of  E. coli, plasmid DNA prepared from bacterial 

colonies was digested with PstI and the plasmids carrying the G-GFP fragment were 

selected and sequenced using primer G4878(R) (Appendix I) to confirm the orientation 

of the G-GFP fragment in the vector. 

 

Figure  5.10 Ligation of the G-GFP fragment into pNcoI/PstI-Luc. The PstI digested G-GFP was 

ligated into the PstI digested pNcoI/PstI-Luc vector. The PVM gene start and stop sequences 
are shown in green and red, respectively.   

5.7 Deletion of the first ORF in both constructs 

Both constructed G-GFP minigenome plasmids (pG-GFP-15 and pG-GFP-

J3666) were used in a single step quick change mutagenesis PCR reaction to mutate the 

start codon of the first ORF to GCG using primers 1stORFOut-J6-F and 1stORFOut-J6-

R (Appendix I)  for pG-GFPJ3666 and primers 1stORFOut-15-R and 1stORFOut-15-F 

for pG-GFP-15. This ensured that the first ORF in both constructs could no longer be 

translated and the transcribed mRNA contained only one single ORF (Section  1.2.1.1). 

The mutated plasmids were referred to as pG-GFP-15∆ORF-1 and pG-

GFPJ3666∆ORF-1 (Figure 5.11). 
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Figure  5.11 Deletion of the first ORF of the G gene in pG-GFP15 and pG-GFPJ3666. The 

primer pair 1stORFOut-15-F and 1stORFOut-15-R, for the strain 15, and the primer pair 
1stORFOut-J6-F and 1stORFOut-J6-R as indicated with black arrows, for the strain J3666, were 
used to mutate the start codon of the first ORF of the G gene to GCG. The Luc gene is 
indicated. The PVM gene start and stop sequences are shown with green and red vertical lines. 
The first ORF in each construct is indicated.  

5.8 Correction of the first ORF stop codon in pG-GFPJ3666 

As discussed in Chapter 4, the sequence of the G gene in strain J3666 did not 

contain the stop codon for the first ORF of the G gene. As a result, and because the aim 

the experiment was to analyse the effect of the first ORF in expression of the main ORF 

of the G gene, a Quick Change mutagenesis PCR primer pair [MG_STOP(F) and 

MG_STOP(R)] was designed to restore the stop codon for the first ORF. Following the 

mutagenesis PCR, the DpnI digested PCR products were used to transform competent 

E. coli. The sequence of the clones obtained and one of the clones contained the 

corrected stop codon was randomly selected. 

5.9 Cloning the G-GFP fragments under T7 promoter 

Before transfection of the pG-GFP plasmids into the BSR-T7/5 cells, it was 

decided to test the expression of the G-GFP ORF independent from the PVM 

transcription system. For this purpose, the G-GFP fragments were cloned into 

pBlueScript II plasmids (Figure 5.12). The presence of the T7 polymerase promoter 

upstream of the G-GFP ORF would provide the opportunity to control the ORF 

transcription in the presence of the T7 polymerase. BS-C-1 cells infected with a 

recombinant vaccinia virus expressing bacteriophage T7 RNA polymerase was chosen 

for this purpose. 
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Figure  5.12 Strategy used for constructing pBS-G-GFP plasmids. The multiple cloning site and 
the T7 promoter of pBlueScript II are depicted. The PstI restriction sites are indicated in 
pBlueScript II vector and G-GFP fragment. The digested G-GFP fragments were inserted into 
the digested pBlueScript II vector. The PVM gene end and start sequences are shown in red 
and green, respectively. The gene end and start sequences were inserted into the pBS-G-GFP 
plasmids during cloning procedure but was not in use during the experiment. 

The G-GFP fragment was digested from pG-GFP15, pG-GFP15∆ORF1, pG-

GFPJ3666 and pG-GFPJ3666∆ORF1 plasmids individually by digestion with PstI, and 

the fragments were purified. These fragments were inserted into pBluescripII, digested 

with PstI. The ligation mixture was transformed into competent E. coli (Sections  2.3.5 

and  2.3.6), and the transformed bacteria were cultured on LB agar supplemented with 

IPTG and X-Gal (Section  2.1.13 and Section  2.3.9). On the following day, 3 white 

colonies for each construct (pBS-G-GFP15, pBS-G-GFP15∆ORF1, pBS-G-GFPJ3666 

and pBSG-GFPJ3666∆ORF1) were selected and grown in liquid cultures to provide 

DNA. The presence of the G-GFP fragment in pBS-G-GFP15, pBS-G-GFP15∆ORF1, 

pBS-G-GFPJ3666 and pBSG-GFPJ3666∆ORF1 constructs was confirmed by digestion 

with PstI restriction enzyme. The orientation of the start codon of the G-GFP fragments 

in 3 plasmid stocks prepared from each of the pBS-G-GFP15, pBS-G-GFP15∆ORF1, 

pBS-G-GFPJ3666 and pBSG-GFPJ3666∆ORF1 plasmids was confirmed by sequencing 

the constructs using universal T7 and G4878(R) primers (Appendix I). 
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Figure  5.13 PstI digestion of the pBS-GGFP constructs. Lanes 4 and 8 contain DNA size 
markers. Lanes 1 – 3 contain pstI digested pBS-G-GFP15, lanes 5 – 7 contain pBS-G-
GFP15∆ORF1, and lanes 9 -14 contain pBS-G-GFPJ3666 and pBSG-GFPJ3666∆ORF1. The 
DNA size markers are indicated on the left. 

5.10 Expression of the G-GFP fusion proteins in Vaccinia Virus T7 

infected cells 

The pT7-G-GFP constructs were transfected into  BS-C-1 cells infected with 

recombinant vaccinia virus expressing bacteriophage T7 RNA polymerase (moi= 1). 

The lysate was used in a GFP ELISA to standardise loading on a polyacrylamide gel 

(Section  2.4.1).   

The expression of the G-GFP fusion protein was confirmed by western blotting 

(Section  2.4.1). Protein samples were incubated at 37˚C for 30 min prior to 

electrophoresis on an 8% polyacrylamide gel (Puffer et al., 2000). The results of the 

western blot analysis are shown in Figure  5.14. 
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Figure  5.14 Detection of G-GFP fusion protein using SDS-PAGE and western blot. GFP was 

detected as described in Section 2.3.18. Numbers on the left indicate the position of the protein 
weight markers (SpectraTM, Fermentas). Numbers on the top indicate the lane number. Lanes 1 
to 5 contain recombinant GFP, BS-C-1 cell lysates infected with T7 expressing vaccinia virus 
and transfected with pBS-G-GFPJ3666∆ORF1, pBS-G-GFPJ3666, pBS-G-GFP15∆ORF1, and 
pBS-G-GFP15, respectively. All samples incubated for 30 min at 37°C as explained in the text. 

The relative molecular mass (Mr) of GFP is 26900. GFP readily forms a dimer 

which can be seen in lane 1 in Figure 5.14. The non-covalently formed dimer is stable 

when incubated at 37̊C prior to electrophoresis. This was necessary as no GFP was 

detected on western blots when the protein samples were heated to 100˚C (data not 

shown). The molecular weight of non-glycosylated PVM strain J3666 G protein is 

predicted to be 43600 and the nonglycosylated PVM strain 15 G protein is predicted to 

be 39800 (Randhawa et al., 1995). Following glycosylation the G protein increases in 

size by approximately 40000. In Figure 5.14 the G-GFP fusion protein from both strains 

15 and J3666 G gene produced two bands one of approximately 58000 and a larger 

band of approximately 73000 with several bands between these two sizes. It is unlikely 

that the G-GFP fusion protein will be glycosylated and the 73000 protein is likely to be 

the full length fusion of the G and the GFP proteins. The smaller proteins are most 

likely to be cleavage products which have been degraded at the amino terminus. 

Degradation of fusion proteins is commonly observed. However, it is also possible that 

the PVM G protein contain a furin - like cleavage site which is responsible for the 

production of the smaller products discussed below (Section  5.11). The data clearly 

show that the G gene constructs are capable of directing the synthesis of the expected 

fusion proteins. 
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5.11 Measuring the G-GFP fusion proteins expression in BSRT-7 cells 

transfected with pG-GFP plasmids 

In Section 5.9, the expression of G-GFP fragments cloned in pBlueScript II 

vectors were shown. To achieve the expression of the G-GFP in the minigenome 

constructs, BSRT/7-5 cells, which constitutively express bacteriophage T7 RNA 

polymerase, were prepared in 6 well plates. Each of the pG-GFP15, pG-GFP15∆ORF1, 

pG-GFPJ3666 and pG-GFPJ3666∆ORF1 plasmids was transfected into BSR-T7/5 cells 

along with the plasmids coding for the RNP complex, P, N, L and M2-1 proteins which 

are necessary for controlling RNA transcription of PVM (Section  1.2.3). Table 5.1 

shows the optimised amounts of the plasmid DNA used in the transfection (Dibben & 

Easton, 2007; Dibben et al., 2008). In each experiment, three wells of the BSR-T7/5 

cells were not transfected with the plasmids and were designated as the negative 

controls. The negative controls were treated with the same amount of the transfection 

reagent. For each of the pG-GFP plasmids the transfection was performed in triplicate. 

The experiment was repeated on two different occasions.  

 

 pN pM2-1 pL pP Minigenome 

Concentration (µg) 0.4 0.1 0.2 0.2 0.4 

Table  5.1 The concentrations of the minigenomes and helper plasmids, coding for the RNP 
complex of PVM, used to transfect BSR-T7/5 cells (Dibben & Easton, 2007; Dibben et al., 2008). 
pP, pL, pM2-1 and pN indicate the name of plasmids coding for P, L, M2-1, and N proteins of 
PVM. 

The transfected BSR-T7/5 cells were incubated for 48 hr at 37˚C. Thereafter, the 

transfected BSR-T7/5 cells and the negative control cells were lysed in CCLR 1X lysing 

buffer (Section  2.4.1). The samples were used directly in the GFP ELISA to measure 

the level of the G-GFP fusion protein (Section 2.4.1). The GFP ELISA was performed 

in triplicate. The luciferase activity in the samples expressed from the Luc gene in the 

first cistron of the G-GFP minigenomes was determined as described in Section 2.4.2. 

Table 5.2 shows the mean of the luciferase activities in the sample, and Table 5.3 shows 

the means of the GFP concentrations in 100 µl of each of the samples. 
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A 
Minigenome Luc activity Luc activity Luc activity 

pG-GFP15 127.6 145.4 95.46 

pG-GFP15∆ORF1 97.17 99.54 93.58 

pG-GFPJ3666  28.41 27.79 36.21 

pG-GFPJ3666∆ORF1 51.08 34.6 40.4 

B 
Minigenome Luc activity Luc activity Luc activity 

pG-GFP15 193.7 76.66 190.9 

pG-GFP15∆ORF1 110.8 129.9 126.6 

pG-GFPJ3666  77.94 56.43 73.77 

pG-GFPJ3666∆ORF1 39.87 30.91 38.79 

Table  5.2 The luciferase activities achieved from two independent transfections (A and B) of 
BSR-T7/5 cells with the PVM support plasmids coding for the RNP complex and the 
minigenomes pG-GFP15, pG-GFP15ΔORF1, pG-GFPJ3666 and pG-GFPJ3666ΔORF1. The 
luciferase assay results were obtained from 3 separate wells derived from each of the two 
independent experiences. 

A 
Minigenome GFP Concentration (pg) GFP Concentration (pg) GFP Concentration (pg) 

pG-GFP15 4431.5 5971 2415 

pG-GFP15∆ORF1 5479.9 5000 4701.2 

pG-GFPJ3666 1099.8 916.47 1262.8 

pG-GFPJ3666∆ORF1 2142.9 1254.3 1360.5 

B 
Minigenome GFP Concentration (pg) GFP Concentration (pg) GFP Concentration (pg) 

pG-GFP15 4686.6 1369 4970 

pG-GFP15∆ORF1 6674.1 7500 9062.5 

pG-GFPJ3666  3389 1887.8 4329.4 

pG-GFPJ3666∆ORF1 1819.7 1238 507 

Table  5.3 The mean concentrations of GFP proteins achieved from two independent 

transfections (A and B) of BSR-T7/5 cells with the PVM support plasmids coding for the RNP 
complex and the minigenomes pG-GFP15, pG-GFP15∆ORF1, pG-GFPJ3666 and pG-
GFPJ3666∆ORF1. Each transfection experiment generated 3 separate cell sample. Each 
sample was tested three times to determine the level of GFP present to generate the mean 
values shown.  
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The ratio between the GFP concentration in each minigenome and its 

corresponding luciferase activity was calculated to normalise for transfection 

efficiencies. The ratios among the BSR-T7/5 cells are compared in Figure 5.15. 

The data in Figure 5.15 show that in the context of a PVM minigenome removal 

of the first, upstream, ORF from the G gene of PVM strain 15 results in a significant 

increase in expression of the G-GFP fusion protein (p= 0.03 with a paired t-test). In 

contrast, removal of the upstream ORF from the PVM strain J3666 G gene did not 

significantly affect the level of protein expression (p = 0.54). 

 

Figure  5.15 The ratio between the GFP expression and luciferase activity. The ratios calculated 

from BSR-T7/5 cells transfected with the minigenomes containing the sequence of PVM strain 
15 are shown as “Strain 15”. Likewise, “Strain J3666” refers to those transfected with the 
minigenomes of the PVM J3666. The cells transfected with the non-modified minigenomes (pG-

GFP15 and pG-GFPJ3666) are shown as  , and the cells transfected with the minigenomes 

with their first ORF deleted (pG-GFP15∆ORF1 and pG-GFPJ3666∆ORF1) are shown as . 
Error bars show the standard deviation from the mean and were calculated after the mean of 
GFP concentrations (Table 5.3) normalised against the luciferase activity (Table 5.2). The test 
was repeated at least three times. Data were found to be reproducible.  
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5.12 Discussion 

In eukaryotic systems, the 43 S ribosome subunit binds to the cap structure of 

the mRNA and scans until the first available AUG codon is found by the 43 S ribosomal 

subunit, and thereafter, following the association with specific initiation factors and the 

60 S ribosomal subunit the translation starts. This model, known as the scanning model 

explains the effect of the upstream ORF in suppression of a main and downstream ORF 

(Kozak, 1978). The efficiency of initiation of translation at the first AUG is affected by 

the nucleotide sequence in which it sits. The presence of a so-called strong translation 

initiation codon upstream of an ORF with a known and functional product may change 

the translation efficiency of a downstream main ORF (Kozak, 1989). When the 

upstream start codon is in a better context than the main ORF, translation of the main 

ORF is often suppressed. This effect has been shown for many eukaryotic and viral 

genes (Child et al., 1999b; Kozak, 1984; Meijer et al., 2000; Peabody & Berg, 1986; 

Wang & Sachs, 1997).  

In the work presented in this chapter, the effect of the first ORF in controlling 

the expression of the G protein of PVM in both strains 15 (Warwick) and J3666 was 

analysed. In Section  1.2.1.1 it was explained that the G gene of the strain 15 (Warwick) 

contains two overlapping ORFs (Thorpe & Easton, 2005). In contrast, in the strain 

J3666 G gene a small ORF consisting of 12 codons was shown to be present upstream 

of the major ORF (Randhawa et al., 1995).  Based on the model explained above, it was 

expected that the presence of these two ORFs in both of the strains might affect the 

translational efficiency of the main ORF. Considering the important role of the G gene 

in the inflammation resulting from the virus infection, it was hypothesised that the 

presence or absence of the first ORF in either of the strains may change the level of the 

expression of the G protein from the main ORF resulting in a change in the 

inflammatory response. 

To investigate the level of the G protein expression in vitro and the contribution 

of the first ORF to the expression level of the second ORF of the G gene, a minigenome 

system was developed. To control for the possibility that transfection efficiency may 

affect the results, a dicistronic system was developed in which the first cistron 

expressed the luciferase gene and the second cistron expressed the G gene. The G gene 

contained the second ORF coding the G glycoprotein fused with GFP at the C terminal 
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of the G protein (referred to as G-GFP). For each of the strains two variants were 

synthesised differing in the presence or absence of the first ORF of the G gene. 

Subsequently, the minigenomes pG-GFP15, pG-GFP15∆ORF1, pG-GFPJ3666 and pG-

GFPJ3666∆ORF1 were co-transfected with plasmids responsible for the synthesis of the 

RNP complex of PVM into BSR-T7/5 cells. Following the transfection, the 

concentration of the GFP and the activity of the luciferase protein were determined and 

the ratio between them was calculated.  The data suggested a significant difference in 

the ratio of G-GFP and luciferase gene expression between the pG-GFP15 and pG-

GFP15∆ORF1 constructs, while no significant difference between the ratios of the pG-

GFPJ3666 and pG-GFPJ3666∆ORF1 constructs was observed.  

The relative level of G-GFP expression in cells transfected with pG-

GFP15∆ORF1 was twice that of the cells transfected with pG-GFP15. The difference 

between the G-GFP level was shown to be statistically significant. In cells transfected 

with the constructs of the strain J3666 (pG-GFPJ3666 and pG-GFPJ3666∆ORF1), the 

level of the G-GFP expression was not significantly altered. 

The sequence context of the strain J3666 first ORF initiation codon is very poor 

(CAAAUGA), which suggests that ribosomes will not initiate strongly. This may 

suggest that ribosomes prefer to begin translation on the initiation codon of the second 

major ORF which is in a better context for translation (AGUAUGG). Removal of the 

first ORF may therefore have little effect. For the PVM strain 15 (Warwick) the 

initiation codon of the first Orf is also in a poor context (CAAAUGA) as is the initiation 

codon of the second ORF (AUAAUGU). The dramatic effect of removal of the first 

ORF may therefore be due simply to the major ORF becoming the first available site for 

translation initiation in the mRNA. Other possible reasons which must be considered 

could include the position of the first ORF, the length of the first ORF and the context 

of the main ORF versus the context of the first ORF. Alternatively, though less likely, it 

is possible that the effect of the first ORF in the expression of the G ORF is influenced 

by the cell type (Child et al., 1999a). To investigate this possibility, it would be 

necessary to analyse the consistency of the data in other cell lines that may support the 

minigenome expression. 

Expression of the G-GFP fusion protein was confirmed by western blot analysis. 

Protein from cells transfected with plasmids encoding the four G-gene constructs under 

the control of a bacteriophage T7 promoter was analysed by Western blot. The data 
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showed that all constructs generated a protein with a molecular mass expected for the 

G-GFP fusion proteins. The blots also indicated that there was a level of degradation of 

the fusion protein. 

Analysis of the amino acid sequence of the PVM G protein identified the 

presence of a potential furin-like cleavage site (RKKR) in the G protein of PVM 

between amino acids 362 and 365 in the strain J3666, and amino acids 329 and 332 in 

the strain 15 (Warwick). This raises the possibility of the cleavage of the G-GFP protein 

is due to this cleavage site. 

 Recently, it was shown that the G protein of HRSV grown in Vero cells is 

truncated, possibly due to cleavage at a C-terminal arginine residue (Kwilas et al., 

2009). It is possible that the putative furin cleavage site in the G glycoprotein of PVM is 

utilised to cleave the G glycoprotein in a similar way. The effect of this furin-like 

cleavage site in the maturation of the G glycoprotein remains to be determined. 
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HRSV, a member of pneumoviruses, is one of the most common causes of lower 

respiratory tract disease of infants, elderly and immunocompromised patients. After 

more than five decades since its discovery, many aspects of the molecular biology of the 

virus remain unclear. Most importantly, there is no safe vaccine available to prevent the 

disease. The only unsuccessful attempt in immunizing children with formalin 

inactivated viruses caused lungs sensitisation in vaccinated patients and led to a 

catastrophic situation of enhancement of disease when the patients encountered with the 

wildtype virus later in their life. Currently, passive immunization with human 

immunoglobulins or a recombinant humanized monoclonal antibody (palivizumab) is 

the only way of protecting high risk patients against the virus. 

A major barrier in HRSV research is the lack of a suitable model to study the 

interplay between the host and virus. Chimpanzees (Pan troglodytes) are the only highly 

permissive animal models in which to study HRSV in vivo (Belshe et al., 1977). There 

are several limitations in using chimpanzee as a research model including high cost of 

maintenance, their endangered status in the wild and ethical issues due to their genetic 

similarity to humans (Knight, 2008).  

Inbred mice have been extensively used to study the pathogenesis of HRSV. 

However, the semipermisive nature of mice to HRSV infection does not fully reflect all 

features of HRSV infection in humans. In particular, mice are not very permissive to 

primary isolates of HRSV, and HRSV infection in mice results in little or no 

inflammatory response. Another limitation of the HRSV – mouse model is the 

requirement of large inocula to infect mice to produce detectable signs of clinical 

disease (Rosenberg et al., 2005). 

Studying BRSV or PVM in their natural hosts have been considered as 

alternatives in studying the pathogenesis of HRSV.  The genome of BRSV strain 

A51908 is 15149 nucleotides in length and shares 73% of identity with HRSV and the 

genomic organisation of both HRSV and BRSV is similar (Collins et al., 1996b). 

Extensive cross reactivity between HRSV and BRSV proteins was reported. The genetic 

similarity between HRSV and BRSV makes BRSV an attractive candidate for the study 

of the molecular biology and pathogenesis of pneumoviruses. However, genetic 

diversity among cattle, the cost of maintenance and heterogenicity of the response of 

outbred cattle to BRSV infection are considered major limitations in using BRSV in 

cattle as a general model for pneumovirus infection in vivo models (Collins et al., 

1996b). 
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Using PVM in its natural murine host is considered as an alternative for studying 

the pathogenesis of pneumoviruses. PVM shares 52% nucleotide sequence similarity 

with HRSV, and they  share a similar genetic organisation except for the overlap of the 

M2 and L genes in HRSV which is absent in PVM. The pattern of disease of PVM in 

mice resembles the disease of HRSV in humans. Efficient replication of PVM in the 

mouse respiratory system is accompanied by an inflammatory response, mucous 

production and airway obstruction (Easton et al., 2004). The replication of PVM in lung 

epithelium leads to inflammatory cytokine production and granulocyte influx which is 

similar to the situation with HRSV. This similarity between the pathogenesis of HRSV 

and PVM in their hosts suggests that PVM is a potential powerful tool to study the 

pathogenesis of pneumoviruses in a natural host.  

In the research presented in this thesis, the pathogenesis of PVM was studied, 

and as the first step, the effect of consecutive tissue culture passages on the 

pathogenicity and genotype of PVM was analysed (CHAPTER 3). 

 Using the pathogenic strain J3666 it was shown that passage in tissue culture 

led to a loss of pathogenicity in mice .The results indicated that passages 6 and 7 were 

attenuated, but passage 5 was able to cause disease in mice. To investigate the 

molecular basis of the difference, the sequence of the virus genomes was determined. 

The NS1 and NS2 genes and most of the L gene were excluded from the study. The L, 

NS1 and NS2 genes are highly conserved among the strains of PVM and no genetic 

diversity between them has been shown. In particular, the NS1 and NS2 genes of the 

pathogenic strain J3666 and the non-pathogenic strain 15 were identical (Thorpe & 

Easton, 2005). Therefore, it was thought that the genetic diversity between the passages 

that are closely related to each other would be minimal.  

Surprisingly, no differences in the genome sequences were found between 

passages 5, 6 and 7. However, the sequence of passages 5, 6 and 7 were different from 

the published sequence of PVM strain J3666 (Accession number: NC_006579). The 

sequence differences between the published data and that obtained here were mainly 

located in the SH and G genes (Table 3.1). Briefly, in passages 5, 6 and 7, a C  U 

point mutation at nucleotide residue 269 caused a His  Tyr substitution and C  U 

mutation at SH gene position 283 introduced a stop codon resulting in shortening of the 

open reading frame. A comparison between the amino acid sequence of the SH protein 

encoded by the viruses from passages 5, 6 and 7 with the amino acid sequence of the 

SH protein of PVM strains J3666 and 15 (Warwick) revealed that the sequence of the 
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passages 5, 6 and 7 was similar to the sequence of the strain J3666 while its length was 

same as that of PVM strains 15 (Warwick) and 15 (ATCC). In the G gene, a U to A 

mutation at position 65 changed the stop codon of the first ORF of the G gene 

(Section  1.2.1.1.1) to a lysine residue resulting in an extension of the ORF and as a 

result production of a G glycoprotein with a larger N-terminal. The other changes 

observed in the G gene were: C(68)U in the noncoding sequence between the two 

ORFs, A(104)G changing a serine residue to a glycine residue, G(165)U changing a 

glycine residue to a valine residue, G(236)A changing a glycine residue to an arginine 

residue, and U(1121)A  changing a serine residue to a threonine residue. Two changes 

were observed in the nucleic acid sequence of the F gene U(721)G changing an 

isoleucine residue to a glutamine residue and U(992)C changing a valine residue to an 

alanine residue. 

 To investigate further the sequences present in the virus stocks, 14 independent 

clones from two separate RT-PCRs were prepared. These clones contained sequences 

from the SH and G genes of the PVM strain J3666 virus stock prepared after 5 passages 

in tissue culture. The sequence analysis showed that only 2 of the 14 clones contained a 

sequence of the G gene identical to that described by Randhawa et al. (1995). The 

remaining 12 clones contained a G gene in which the mutation in the stop codon of the 

first ORF made a single ORF extending from the first ORF to the second ORF. These 

data strongly suggest that the virus stocks used contain a mixed population of virus 

sequences. It is therefore not possible to determine which sequence(s) are responsible 

for the pathogenic phenotype. However, a major difference in the sequences lay in the 

organisation of the G gene encoding the G glycoprotein. The differences in organisation 

may play a role in G gene expression and this was investigated further. 

Collins et al. (1995) described a reverse genetics system for HRSV to study the 

replication requirements of HRSV in vitro. Soon after its first description, the reverse 

genetics approach was used to study the effect of gene deletion or gene modification in 

the pathogenesis of HRSV. It was identified that a point mutation in the gene start of the 

M2 gene is responsible for attenuation and temperature sensitive phenotype in vaccine 

candidate cpts248/404 (Whitehead et al., 1998a; Whitehead et al., 1998b). Using the 

reverse genetics approach, it was shown that the SH deleted recombinant viruses were 

attenuated in mice (Bukreyev et al., 1997), showing a moderate reduction in growth in 

the upper and lower respiratory tract of chimpanzees. In chimpanzees the ΔSH 

produced less disease than the wildtype virus (Whitehead et al., 1999). NS1 and NS2 
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deleted HRSV and also HRSV ΔNS2 are highly attenuated in the lower respiratory tract 

of chimpanzees (Whitehead et al., 1999).  The presence of other mutations including a 

missense mutation changing the TyrosineAlanine at amino acid 1321 of L gene 

caused attenuation in the virus (Whitehead et al., 1999; Whitehead et al., 1998b). Teng 

and Collins (1999) showed that the NS2 gene is not essential but is important for the 

efficient replication of HRSV, and the recombinant viruses with tandem stop codons in 

their NS2 gene produce revertant mutants to restore the NS2 gene function (Teng & 

Collins, 1999).  

Following the advances achieved in the study of HRSV, a reverse genetics 

system was employed to study the virulence of BRSV (Buchholz et al., 1999; Schlender 

et al., 2000). Using a recombinant vaccinia virus, Schlender et al. (2000) demonstrated 

that both NS1 and NS2 act together to suppress host interferon response. The function 

of NS1 and NS2 genes of PVM in antagonising the interferon α and β and interferon λ 

(IL-28) have also shown (Heinze et al., 2011). This suggests that both NS1 and NS2 

genes in pneumoviruses may act as interferon antagonists to modulate the innate 

immune response (Heinze et al., 2011; Schlender et al., 2000; Whitehead et al., 1999).  

More recently, a reverse genetics system was used to investigate the effect of the 

G gene of PVM in pathogenesis. It was shown that deletion of the G gene, or deletion of 

the cytoplasmic tail of the G protein resulted in virus attenuation in mice (Krempl et al., 

2007). 

The common feature in all of these studies was that the genetic backbone of the 

recombinant viruses was derived from a pathogenic virus. The studies therefore, 

employed a principle of establishing which mutations resulted in a loss of pathogenicity. 

While useful, this approach suffers from the problem that the role(s) of specific genes in 

reducing pathogenicity is not directly addressed. In the work described here the genetic 

backbone for the reverse genetics studies was that of PVM strain 15 (Warwick) which is 

not pathogenic in mice even when large doses are administered (Cook et al., 1998). 

Thus any mutation introduced into the virus genome are assessed by the appearance of 

pathogenicity and resulted in the gain of function. Having established a robust reverse 

genetics system based on work by Dibben (2006) and Thorpe and Easton (2005), it was 

used to specifically investigate the role of the G protein of PVM and its expression in 

pathogenesis. The structures of the G gene and the G glycoprotein of HRSV and PVM 

were reviewed briefly in Section  1.2.1.1.1. While the absence of the G protein in vitro 

does not have any significant effect on HRSV replication, its role in the virus 
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immunogenicity and pathogenicity in vivo has been a major topic in the pneumoviruses 

molecular biology (Teng et al., 2001). It has been reported that a recombinant HRSV in 

which the G gene was deleted was highly attenuated in the respiratory tract of mice 

(Teng et al., 2001). In the same study, it was shown that HRSV containing only the 

secreted form of the G glycoprotein is less attenuated (Teng et al., 2001). These data 

suggest an important role for the G glycoprotein in the virus replication in vivo.  

The G gene in both HRSV and PVM contain two ORFs (Wertz et al., 1985). In 

PVM strain J3666 the two ORFs are placed close to each other and in PVM strain 15 

(Warwick) the ORFs are overlapping each other (Randhawa et al., 1995; Thorpe & 

Easton, 2005). The presence of an upstream ORF has been shown to modulate the gene 

expression of a downstream ORF for many eukaryotic genes (Child et al., 1999b; 

Kozak, 1984; Meijer et al., 2000). The possible effect of the presence or absence of the 

first ORF of the G gene in PVM strains 15 (Warwick) and J3666 in the expression of 

the downstream ORF of the G gene was analysed. It was shown that in recombinant 

viruses with a common genetic backbone derived from the non-pathogenic strain 15 

(Warwick), the gene organisation of the G gene in PVM strain J3666 can affect the 

pathogenicity of the virus. The recombinant viruses in which the G gene was based on 

that from PVM strain 15 (Warwick) observed no signs of pathogenesis even when 5000 

pfu was inoculated into mice. Surprisingly, removal of the first, overlapping ORF of the 

PVM strain 15 (Warwick) G gene resulted in transient weight loss in mice inoculated 

with 5000 pfu. The transient weight loss is indicative of mild pathogenesis. The 

recombinant virus containing the PVM strain J3666 G gene showed clear signs of 

infection and weight loss in mice infected with the highest dose of virus. When the first 

ORF in this construct was removed the virus became non-pathogenic. These results 

indicate that the presence of the first ORF upstream of the main ORF encoding the 

PVM G glycoprotein has an effect on pathogenesis. 

To examine whether amending the organisation of the G gene affects the 

expression levels of the G protein, a series of minigenome replicons was designed. The 

dicistronic minigenome replicons, known as pG-GFP minigenomes, were designed to 

express the luciferase gene from their first gene and the G-GFP fusion protein from 

their second cistron. Both cistrons were designed to be controlled by the viral 

transcriptional system, and to minimize the possible effects of the SH-G intergenic 

region and the G gene start sequence in the expression of the G gene to contain the same 

intergenic region and G gene start of the G gene in PVM. The analysis of the expression 
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levels of the G-GFP fusion protein indicated that deletion of the first ORF in the 

constructs resembling the organisation of the G gene in the strain 15 (Warwick) is 

associated with a significant increase in the expression of the G protein. This is 

consistent with the pattern frequently seen in eukaryotic genes. In contrast, deletion of 

the first ORF in the strain J3666 G gene was associated with little or no effect. The level 

of expression of the G protein may be affected by the sequences surrounding the AUG 

intiation codon as discussed in Chapter 5.  

The central role of the G protein in HRSV virulence and in modulating the 

immune system was reviewed in Section 1.3.1.2. The immunomodulatory function of 

the G glycoprotein has been associated with the presence of a domain which mimics the 

fractalkine CX3C ( 1.3.1.2) (Tripp et al., 2001). Fractalkine (also known as CX3CL1) 

was reported as a new class of chemoattractants found in various non-lymphoid tissues, 

such as the small intestine, colon, heart, brain, lung, kidney and pancreas, of healthy 

individuals (Bazan et al., 1997). It consists of a 373 amino acid chain in which the 

chemokine domain is located at the end of a mucin-like stalk and a transmembrane 

domain through which it is anchored to the plasma membrane (Bazan et al., 1997). The 

receptor for fractalkine, CX3CR1, is found in high levels on NK cells and to a lesser 

extent on monocytes and T cells (Imai et al., 1997; Umehara et al., 2001). The 

triggering of the receptor results in release of perforin and granzymes from NK cells in 

a cytolytic response (Umehara et al., 2001; Yoneda et al., 2000). It has been shown that 

exposure of NK cells to the soluble form of fractalkine (s-fractalkine) increases the 

cytotoxicity of the NK cell activities (Yoneda et al., 2000) and granular exocytosis of 

NK cells responds in a dose dependent manner (Yoneda et al., 2000). The chemokine 

mimicry function of the G glycoprotein of HRSV might contribute in attracting NK 

cells, adhesion to the cellular membranes of infected epithelial cells expressing the G 

glycoprotein, and result in the damages of the lungs, and the levels of G protein 

expressed by the virus may affect the intensity of this response. 

The effect of HRSV G and/or SH proteins in reducing the number of pulmonary 

NK cells and the expression of IFN-γ was shown by Tripp et al.  (1999). The CX3C 

region of the G glycoprotein was reported to be associated with a reduction in the 

number of CX3CL1+, HRSV-specific and IFN-γ expressing lymphocytes, while in the 

same population the number of IL-4 expressing cells increased (Harcourt et al., 2006). 

These data emphasize the chemokine mimicry role of the G glycoprotein in controlling 

and affecting cytokine and chemokine production in the infection sites.  
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There are numerous examples of using animal models to study the pathogenesis 

of human viruses. Such models include those in which the virus replicates in its natural 

host. The models have been extensively used to explore different feature in molecular 

biology of pathogenesis and the mechanisms involved in host defence. Woodchuck 

hepatitis virus is one such system which has been employed to elucidate the molecular 

biology and pathogenesis of hepatitis B virus (HBV) (Shafritz & Lieberman, 1984; 

Snyder et al., 1982; Summers et al., 1978). Studying the interaction between PVM and 

the mouse and extrapolating and evaluating the data to a larger model (BRSV and 

bovine) may facilitate the discovery of the factors influencing the pathogenesis of 

pneumoviruses. Availability of a reverse genetics system for PVM could facilitate 

studying of virus pathogenesis. A clear description of the pathogenesis of PVM could 

be extrapolated to explain the pathogenesis of HRSV. 

The data presented here have shown that the PVM system is available for 

manipulation to explore the mechanisms of pathogenesis of pneumoviruses. Further 

studies are likely to identify additional factors which play a role in the disease process. 
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APPENDIX I: Primers sequence 

 
The sequences are listed 5’ to 3’. 
 
1stORFOut-15-F 
CCACAAGCTGACTTCACCTAGTGCGGGAAGAACTTAGAAGTGAGTGGCAG 
 
1stORFOut-15-R 
CTGCCACTCACTTCTAAGTTCCTTCCCGCACTAGGTGAAGTCAGCTTGTGG
  
1stORFOut-J6-F 
AGTACTATCCTATTGGAATCAAGCGAGACC TGTAGAGCAGCTCATAC  
 
1stORFOut-J6-R 
GTATGAGCTGCTCTACAGGTCTCGCTTGAT TCCAATAGGATAGTACT  
 
22K7 
CGATGGGTCTGGACCATCC 
 
F11 
ACTGTTTACTATCTTAGCAA 
 
F14 
ACAGTCTATAGAACTTCTTA 
 
F17 
TCCACTGCACTACTATAGAT 
 
F20 
GTCAACGCTGACACACTGGTTTAT 
 
F7 
TATTGAGTCATGCAAGAGCA 
 
F9 
CATTGTAGGCGGCATGGCTG 
 
G(4878)R 
GGAGGGGTGGATGTGCTGTTC 
 
G_Round(F) 
AGTTGACTTCACTTAGTATGGGAAGGAACTTTGAAGTGAGTGGCAGCATTA
CCAATTTG AACTTTGAGAGAACTCAGCATCC  
 
G_Round(R) 
AGTAGTTCTCTTGTATGAGCTGCTCTACAGGTCTCATTTGATTCCAATAGGA
TAGTACT TATCC 
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G4E 
GGCCAGGATAAGTACTATCCTATTGG 
 
G9 
CCCGAATTCATTAACTACTGATAAGGTT 
 
GFPFor 
TTCCAAGGAGGTCTAATTCTCCCATGGTGA GCAAGGGCGAGG 
 
GFPRev 
AATTTACTGCAGTTATGATCTAGAGTC 
 
J1 
ACGCGAAAAAATGCATAACAAAAC 
 
J4 
CTGCTGGTCATGTTGATCTCGA 
J5 
GATTTCACACAGCACAACAACC 
 
J7 
AAGTACACCTGGCCTCACAGTT 
 
L1D 
GGTCATCTGCTCAGTAAGTTGT 
 
L1F 
CTAGAGTTTGCCTTACACCAAC 
 
L1H 
CATCCTGCAATTCTTTCCGG 
 
L1J 
CTCTTTGAGGCTTATATCAGCTG 
 
L2C 
GAAGGACACCAGATTTCTTGAC 
 
L2F 
CAGCTCTGTTGCAAACATAGAC 
 
L2G 
ACTGAGAGGTTTGGAGACGA 
 
L2H 
CTGAGTAGTAAACAGTTCCACTC 
 
L3C 
CTCACTACAGGAAGTTCAGTG 
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L3D 
CGTTCTCGATGACGGACATGT 
 
L3E 
TCATAGGTGAAGGTGCTGGA 
 
L3F 
TAGTGGTGTTAAGCACTGGTTG 
 
L3G 
TACAGCGAGGTATTGCACTC 
 
L3H 
GCCCTGTTTACCATAACAAATGG 
 
L50 
CTTACAACTCTTCCTCTCTAGC 
 
M1 
CAGCCAACATATCACTAACTGTG 
 
M2 
CACTGTACCCAGCATTACTCCCA 
 
MG_Stop(F) 
CCTGTAGAGCAGCTCATACAAGAGAACTACTAGTTGACTTCACTTAGTATGG
GAAGG 
 
MG_Stop(R) 
CCTTCCCATACTAAGTGAAGTCAACTAGTAGTTCTCTTGTATGAGCTGCTCT
ACAGG 
 
N1 
GTAAAATGTGTGGACACACAG 
 
N3 
GGATTCTATCACATCAGAAAT 
 
N5 
TGAAAGCCGAGAAAGCCAGGT 
 
N4 
GCGAAGAAGTGGCAGAAATAG 
 
NcoIFor 
CCTGAAAAAAGTTAGGATAAATAACCATGG AGAAAAAAATCACTGG  
 
NcoIRev 
CCAGTGATTTTTTTCTCCATGGTTATTTAT CCTAACTTTTTTCAGG 
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NcoLucF 
AGCCACCATGGAAGACGCC 
 
NS1B 
CTTGCCCTGTAGAACTAAACACG 
 
NS2A 
CCGAGCCTACAAAACATCACTAG 
 
NS2B 
GAGCTGACTCAGATCACTCCAA 
 
P15FLSH3.2 
ACCAACGTCGACATGACAACCACACATACACACCCAC 
 
P15FLF2.2 
AATTATGCCCGGGTACAATTGTCATGATAAAACTGTGAGG 
 
P15FLL5 
TTTAATATTTGCGGCCGCTCAGTTATTAACCCAAAATTGTTAATTATGTAG 
 
P15FLL7 
GGAGGAGACCTGGTTTCATTATTCTTGTCAGC 
 
P15FLL7.2 
GTGTCTGCACCTGGTTTCATTATTCTTGTCAGC 
 
 
P15FLSH3 
GGAGGAGTCGACATGACAACCACACATACACAC 
 
P15FLSH3.2 
ACCAACGTCGACATGACAACCACACATACACACCCAC 
 
P15FLM2 
GGAGGGGTCGACGTTGGTGGCGGTGGTTGT 
 
 
P15FLM2.2 
GTGTGGTTGTCATGTCGACGTTGGTGGCGGTGGTTGTTGTG 
 
P15FLM23 
GGAGGGCCCGGGCATAATTGAGTTAGTTAA 
 
P15M23.2 
GACAATTGTACCCGGGCATAATTGAGTTAGTTAATTAAAAACTTAGG 
 
P15FLM25 
GGGAAAGGAGGCGGCCGCAAAAAAAGGAATACAG 
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P15FLN3.2 
CTCAGATCACTCCAACCAGGTGAGAGATCCACCACCTATAGC 
 
P2A 
CTTTGTGGAACCCGAGGAG 
 
P2F 
CGTCGAATTCACCATGTCACCAAATATAACATGCCCCC 
 
P2R 
CGTCTCTAGACTACAGATGAAGAACCCGGCTCTTGG 
 
P3 
GAGTCTGATGTTGACATTGAGAC 
 
P4 
CAAGTCTGACATCTTGACTGTC 
 
PL1 
CACATTAACTTCTTGTTCATCA 
 
PL23 
GGAAAATTATACAAAGAAGTGTTG 
 
PL29 
GTCAATATGGTGTCTGGAAC 
 
PL48 
CTAGACATGTGAGAAGGTCCCA 
 
PstIFor 
GGGGGGCTGCAGTCCTTCAATAAACCCCAG GC 
 
PstIGJ3666 
GGGGGCTGCAGCAGCCTTTGCAGTATGTCGTCTA 
 
PstIRev 
CCTCGCCCTTGCTCACCATGGGAGAATTAG ACCTCCTTGGAA 
 
PstLucR 
CCCCCCTGCAGTTACACGGCGATCTTTCCG C 
 
QCF3BSHT1F 
CCTTCAATAAACCCCAGGCCAGACCGGTTTACCCTGCTAGACG 
 
QCF3BSHT1R 
CGTCTAGCAGGGTAAACCGGTCTGGCCTGGGGTTTATTGAAGG 
 
QCF3BGL2F 
AGGAGGTCTAATTCTTAAGAGATCTATTCCTGAATTAACTTCAG 
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QCF3BGL2R 
CTGAAGTTAATTCAGGAATAGATCTCTTAAGAATTAGACCTCCT 
 
QCFL2GA4728F 
CCTGACACATTTAGGACTGTTGTAAAAAGTGAACCAAATGTGTAAGC 
 
QCFL2GA4728R 
GCTTACACATTTGGTTCACTTTTTACAACAGTCCTAAATGTGTCAGG 
 
SH2 
AACTGTGCATTGGCTGCTGAC 
 
SH4360 
GTTCATCCCAATCACCCTCCAC 
 
T7 
TAATACGACTCACTATAGG 
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