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a b s t r a c t

In 1972, Mykkeltveit confirmed Golomb’s conjecture on the de Bruijn graphs: he proved
that the pure cycling register rule yields the maximum number of vertex-disjoint cycles
in de Bruijn graphs. We show that this result encompasses the tensor product of the de
Bruijn graph for strings of length n with a simple cycle of size k, when n divides k or
vice versa. Furthermore, we give counting formulas for an array of cycling register rules,
which includes Golomb’s well-studied linear register rules.

© 2024 Elsevier B.V. All rights are reserved, including those for text and datamining, AI
training, and similar technologies.

1. Introduction and statement of results

In [7, Chapter VII Conjecture A] Golomb asked what is the maximal number of vertex-disjoint cycles in the de Bruijn
raph of strings of length n. He conjectured that this is exactly the number of cycles attained using the pure cycling register

rule to partition the de Bruijn graph. This conjecture was proved by Mykkeltveit [15], using Lempel’s [14] reformulation
of the problem, which amounts to determining the minimum number of vertices which, if removed from the graph, will
leave it with no cycles.

In this note we consider Golomb’s conjecture for a variant of the de Bruijn graph known as the astute graph. These
graphs are the tensor product of the de Bruijn graph for strings of length n and a simple cycle. The Hamiltonian cycles in
the (n, k)-astute graph correspond to the so-called (n, k)-perfect necklaces introduced in [1]. Recently, perfect necklaces
received attention in the theory of uniform distribution modulo 1 [2,8,9]. Nested perfect necklaces were used to construct
infinite sequences of symbols in a given alphabet (the expansion of a real number in a given integer base) with the smallest
known discrete discrepancy. The discrete discrepancy measures how far the sequence is from having the symbols and the
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blocks of symbols equidistributed. It is an open question, that dates back to Korobov in 1955, if there are sequences with
a smaller discrete discrepancy.

Along the sequel, we assume a finite alphabet Γ . The elements of Γ n are referred to as strings of length n. The symbols
n a string of length n are numbered from 0 to n−1. The notation s[i..j) for a string s = a0a1 . . . an−1 denotes the substring
aiai+1 . . . aj−1.

Definition 1 (Astute graph). Given n and k positive integers, the astute graph is defined by Gn,k = (Vn,k, En,k), where
Vn,k = Γ n

× {0, . . . , k − 1} and En,k is the set of all pairs

((s, i), (t, j))

such that s[1..n) = t[0..n − 1) and j = i + 1 (mod k).

Remark 1. Notice that Gn,1 is the nth de Bruijn graph. In this case, we identify the vertices Vn,1 with Γ n. For a presentation
of the de Bruijn sequences and the de Bruijn graph, including a historical account, see [4].

Definition 2 (2-Factor). A 2-factor of Gn,k is a set of vertex-disjoint cycles (directed circuits) which, together, include all
the vertices of Gn,k. The size of a 2-factor is defined as the number of cycles it has. A 2-factor which contains the maximum
possible number of cycles is referred to as an extremal factor.

To construct 2-factors of de Bruijn and astute graphs, we consider succession rules. These are what Golomb in [7] calls
Shift Registers.

Definition 3 (Succession rule). A succession rule is a bijection σ : Γ n
→ Γ n such that for each string s = a0a1 · · · an−1,

σ (s) = a1a2 · · · an−1an for some an ∈ Γ .

Remark 2. The definition of succession rule implies that in the de Bruijn graph there exists an arc from s to σ (s), and in
he astute graph there exists an arc from vertex (s, i) to (σ (s), i+1). This means that the succession rule σ can be thought
o act on the vertices of the de Bruijn and astute graphs.

efinition 4 (Action of a succession rule on astute graphs). Given a succession rule σ and a positive integer k, we define
n action Ak(σ ) : Vn,k → Vn,k such that Ak(σ )(s, i) = (σ (s), i + 1).

Given a succession rule σ and a positive integer k, the subgroup of permutations ⟨Ak(σ )⟩ acts on Vn,k. For any vertex
v ∈ Vn,k, the arc (v, Ak(σ )(v)) is in the graph Gn,k. This implies that the orbits of this action are simple cycles on the astute
graph.

Definition 5 (2-Factor generated by succession rule). We denote Fk(σ ) as the 2-factor composed of all orbits produced by
Ak(σ ).

We interpret the alphabet Γ as the quotient ring of integers modulo b, where b = |Γ |, therefore we can do linear
arithmetic on its symbols.

Definition 6 (Affine relation). A relation R ⊆ Γ n+1 is said to be affine if there exist c ∈ Γ and coefficients λi, 0 ≤ i ≤ n,
λi ∈ Γ , such that

a0a1 · · · an ∈ R ⇐⇒ c =

∑
0≤i≤n

λiai.

Definition 7 (Affine succession rule). An affine succession rule is a succession rule σ : Γ n
→ Γ n constructed from an affine

elation R as follows. For each string a0a1 . . . an−1, σ (a0a1 . . . an−1) is the unique string a1 . . . an such that a0a1 . . . an is in
.

emark 3. For an affine relation R to give rise to an affine succession rule

• Each string must have at most one successor, which only happens if λn is invertible; and
• The rule has to be a bijection, which only happens if λ0 is invertible.

xample 1 (Pure Cycling Register). An example of an affine succession rule is the one given by string rotation. For any
tring s = a0a1 · · · an−1 we define

rn(s) = a1 · · · an−1a0,

o, an = a0. For k = 1, the de Bruijn case, F1(rn) is the set of necklaces of length n. This is because necklaces of length n
re by definition the set of equivalence classes of strings in Γ n under rotations, and any two strings that are a rotation
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of each other can be transformed into each other by successive application of σ , and therefore each cycle in the 2-factor
1(rn) is a set of strings under the same rotation equivalence class.
This succession rule is affine, because it is given by the affine relation

a0a1 · · · an ∈ R ⇐⇒ an − a0 = 0

xample 2 (Incremented Cycling Register). Another example of an affine succession rule is incremented rotation. For any
string s = a0a1 · · · an−1 we define

ιn(s) = a1 · · · an−1(a0 + 1),

so, an = a0 + 1. An advantage of this particular succession rule ι is that each cycle has an equal quantity of each symbol
n Γ . This has applications in the construction of de Bruijn sequences with small discrepancy, see [10] in contrast to [6].
gain, this is affine because it is given by the relation

a0a1 · · · an ∈ R ⇐⇒ an − a0 = 1

xample 3 (Xor Cycling Register). The third example we consider is restricted to the special case |Γ | = 2, where the ring
ddition operation is the xor. In this ring, we define the succession rule for s = a0a1 · · · an−1 as

xn(s) = a1 · · · an−1an

where an = a1 + a2 + a3 + · · · + an−1.

We now state the main result of this note:

Theorem 1. Let n and k be positive integers such that k divides n or n divides k. The 2-factor Fk(rn) produced by the pure
ycling register rule rn is extremal.

When k does not divide n Theorem 1 is not necessarily true. For the case k = 2, n = 3 and Γ = {0, 1}, the successor
ule r3 produces a 2-factor of size 4 as shown in Fig. 1(a), while the extremal factors have size 6. An example of such
xtremal factor is shown in Fig. 1(b). For such cases, where the hypothesis of Theorem 1 do not hold, it remains an open
roblem to characterize the values of k and n where the conclusion does hold.
The second result in this note is a closed formula for the size of the 2-factors generated by affine rules. We use (a : b)

for the greatest common divisor of the integers a and b. We write Γ [X] to denote the ring of polynomials in X with
coefficients in Γ . We denote the ideal generated by P and Q in Γ [X] by (P,Q ).

Theorem 2. Let n and k be positive integers, and R be an affine rule given by

a0a1 · · · an ∈ R ⇐⇒ c =

∑
0≤i≤n

λiai,

or some coefficients (λi)i and a constant term c. Then the size of the 2-factor associated succession rule σ is given by

|Fk(σ )| =
k (s : ω)

sω

∑
(s:ω)|d|ω

ϕ (ω/d)
⏐⏐⏐⏐ Γ [X]

(Λ, Xd − 1)

⏐⏐⏐⏐
here

• Λ =
∑n

i=0 λiXn−i is the characteristic polynomial of R,
• ω is any multiple of the multiplicative order of X in the group of units of the quotient ring of polynomials modulo Λ,
• ϕ is Euler’s totient function, and s is the length of the smallest cycle in the 2-factor. Equivalently, s can be defined as the

smallest multiple of k such that

c(1 + X + · · · + X s−1) ∈ (Λ, X s
− 1).

The next corollaries give the number of cycles in the 2-factors determined by two specific succession rules.

Corollary 1 (2-Factor of Gn,k from Pure Cycling Register).

|Fk(rn)| =
(n : k)

n
·

∑
(n:k) |d |n

ϕ(n/d)|Γ |
d.

Remark 4. When k = 1 and |Γ | = 2, |F1(rn)| is the number of binary irreducible polynomials whose degree divides n,
ee [13].
354
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Fig. 1. Pure Cycling Register induced 2-factors may not be extremal in astute graphs.

Corollary 2 (2-Factor of Gn,k from Incremented Cycling Register).

|Fk(ιn)| =
k (lcm(k, bdb(n)) : n)

lcm(k, bdb(n))n

∑
(lcm(k,bdb(n)):n)|d|n

ϕ(n/d)bd

here b = |Γ | and db(n) is the smallest divisor of n such that n/db(n) is coprime with b.

emark 5. When k = 1 and |Γ | = 2, |F1(ιn)| is the number of distinct output sequences from binary n-stage shift register
hich feeds back the complement of the last stage, see [12].

orollary 3 (2-Factor of Gn,k from Xor Cycling Register).

|Fk(xn)| =
k

2(n + 1)

∑
d|n+1

ϕ(2d)2(n+1)/d.

emark 6. When k = 1 and |Γ | = 2, |F1(xn)| is the number of output sequences from (n − 1)-stage shift register which
eeds back the mod 2 sum of the contents of the register, see [11].

. Proof of Theorem 1

When n divides k, the result follows from the fact that the pure cycle register produces a 2-factor where each cycle
as length exactly k, which is also the smallest possible length of a cycle in the graph Gn,k. Let us then consider the case
hat k divides n.

We use a basic tool from finite Fourier analysis [3].

efinition 8 (Discrete Fourier Transform). Let µ = e2π i/n be a primitive root of unity of order n. Let us define C : Γ n
→ C

as

C(a0 . . . an−1) =

n−1∑
i=0

aiµi.

Here, we identify ai ∈ Γ with the unique integer in the range [0, b) in its equivalence class.

Lemma 1. C(r (s)) = µ−1C(s).
n
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Proof. Let s = a0a1 · · · an−1. Then r(s) = a1a2 · · · ana0. Then, we have:

C(r(s)) = a0µn−1
+

n−1∑
i=1

aiµi−1.

Since µn−1
= µ−1, we obtain

C(r(s)) =

n−1∑
i=0

aiµi−1
= µ−1

n−1∑
i=0

aiµi
= µ−1C(s). □

Lemma 2. Let (s0,m0), . . . (st−1,mt−1) be the vertices of any cycle in the astute graph Gn,k. Then
∑

C(si) = 0.

Proof. We have that
t−1∑
i=0

C(si) =

t−1∑
i=0

n−1∑
j=0

(si)jµj.

Since the strings si form a cycle in the de Bruijn graph, we have that (si)j = (si+1)j−1, where the indices of s are taken
modulo t . Then, (si)j depends only of the sum i + j modulo t . Let wi+j = (si)j with the indices of w taken modulo t . We
can rewrite the expression as

t−1∑
i=0

C(si) =

t−1∑
i=0

n−1∑
j=0

wi+jµ
j.

Swapping the inner and outer summations, we get
t−1∑
i=0

C(si) =

n−1∑
j=0

t−1∑
i=0

wi+jµ
j
=

n−1∑
j=0

µj
t−1∑
i=0

wi+j.

Notice that the sum
∑t−1

i=0 wi+j is constant on j, since i + j always takes every value modulo t exactly once. Therefore∑t−1
i=0 C(si) is a multiple of

∑n−1
j=0 µj, which is 0 because it is the sum of the powers of a primitive root of unity. □

Lemma 3. Let s and t be two strings that are connected by an arc in the de Bruijn graph Gn,1. Then the complex numbers
C(s) and C(r−1

n (t)) have the same imaginary part. Furthermore, they are equal exactly when s = r−1
n (t).

Proof. Since (s, t) is an arc in the de Bruijn graph, we can write

s = a0a1 · · · an−1

t = a1a2 · · · an.

Then,

r−1
n (t) = ana1 · · · an−1.

Expanding the definition of C(r−1(t)) we get

C(r−1
n (t)) = anµ0

+ a1µ1
+ a2µ2

+ · · · + an−1µ
n−1.

And for C(s) we get

C(s) = a0µ0
+ a1µ1

+ a2µ2
+ · · · + an−1µ

n−1.

So, we have C(s) − C(r−1
n (t)) = a0 − an, which is a real number that is zero only when a0 = an, which is precisely when

s = r−1
n (t). □

Lemma 4. There exists a mapping from cycles in the 2-factor associated with the pure cycling register rule to vertices in the
underlying graph such that every simple cycle in the graph contains at least one vertex that is associated with a pure cycling
register cycle.

Proof. Let (u0, w0), (u1, w1), . . . , (ut−1, wt−1) be any cycle in Fk(rn). There are two possibilities.
One possibility is that the transform C(ui) is real for all ui. In this case we take any arbitrary vertex in the 2-factor as

the distinguished vertex.
The other possibility is that there exists some string ui such that C(ui) is not real. Let z = C(u0). Due to Lemma 1,

−i −i
we have that C(ui) = zµ . Since the length of any PCR cycle is a divisor of lcm(n, k) = n and the function i ↦→ zµ is
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Fig. 2. Transforms of the strings on the PCR cycle generated by s0 = 123351. The large red point is the distinguished vertex for this PCR cycle.

periodic with a period equal to the order of µ (which is n), the size of the 2-factor must be t = n, and the transforms of
ts strings form a regular n-sided polygon on the complex plane.

The distinguished vertex of the 2-factor will be the unique vertex (ui,mi) such that

Im(C(ui)) < 0 but Im(C(ui−1)) ≥ 0,

s exemplified in Fig. 2.
Now we have to prove that every cycle in the astute graph Gn,k contains at least one distinguished vertex. Let

(s0,m0), (s1,m1), . . . , (st−1,mt−1)

e any such cycle. We consider three cases:

irst case: There exists some string si such that C(si) is not real. The sum of C(si) over all i must be zero due to Lemma 2.
o, if the transforms are not always real, there must be a string where the imaginary part of the transform is positive and
nother where the imaginary part is negative. In particular, let si be any string such that Im(C(si)) < 0 but Im(C(si−1)) ≥ 0.
ince si−1 and si are connected by an arc, Lemma 3 implies that C(si−1) and C(r−1

n (si)) differ by a real number. And since
m(C(si−1)) ≥ 0, then Im(C(r−1

n (si))) ≥ 0 as well. This means that in the PCR cycle

(si,mi), (rn(si),mi + 1), (r2n (si),mi + 2), . . . , (rn−1
n (si),mi + n − 1) = (r−1

n (si),mi − 1)

he distinguished vertex will be (si,mi), which is a vertex in the original cycle

(s0,m0), (s1,m1), . . . , (st−1,mt−1).

econd case: The transform C(si) is 0 for all i. Due to Lemma 3, si = r−1
n (si+1) if and only if C(si) = C(r−1

n (si+1)). By Lemma 1,
(r−1

n (si+1)) = µC(si+1) = µ · 0 = 0, so si = r−1
n (si+1) for all i. Hence, the cycle is actually a PCR cycle, so it must have at

east one distinguished vertex.

hird case: The transform C(si) is always real, but not always 0. Let C(si) ∈ R − {0}. Due to Lemma 3, C(r−1
n (si)) = µC(si)

iffers from C(si−1) by a real number. If n > 2, µ is a non-real complex number, and therefore µC(si) also has a non-zero
maginary component, which is equal to that of C(si−1). This is a contradiction, because we assumed C(sj) was real for all
. So we only have to analyze the cases n = 1 and n = 2. In both cases Theorem 1 is implied by the fact that the PCR
ycle of a vertex is the smallest possible cycle it belongs to in the astute graph. □

roof (Proof of Theorem 1). Due to Lemma 4, there exists a mapping from cycles in the 2-factor generated by the PCR to
ertices in the underlying graph such that every simple cycle (not necessarily in the 2-factor) contains a distinguished
ertex. To prove that the 2-factor produced by the Pure Cycling Register is extremal, we choose for each cycle in the
-factor Fk(rn) a distinguished vertex, and then we prove that any cycle in any 2-factor has at least one distinguished
ertex, therefore the size of any 2-factor is at most the number of distinguished vertices.
We showed that every cycle in graph Gn,k contains at least one distinguished vertex of a cycle in the 2-factor determined

y the Pure Cycling Register rule, so Theorem 1 is proved.
357
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3. Proof of Theorem 2

3.1. Burnside’s lemma

Our main tool for counting the number of cycles in a succession rule is the classical Burnside’s Lemma [5]. It states
hat for any finite group G acting on a set S, the following identity holds:

|S/G| =
1
|G|

∑
g∈G

|Sg |,

here S/G is the set of orbits of S under the action of G, and Sg is the subset of S fixed by the action of g .
When considering succession rules, the set S is the set of vertices of an astute graph S = Vn,k and G = ⟨Ak(σ )⟩ is the

group generated by the action associated with a succession rule σ . In that case, the set of orbits S/G coincides with the
2-factor Fk(σ ). We thus have the following identity:

|Fk(σ )| =
1
ω

ω−1∑
i=0

| fix(Ak(σ )i)|, (1)

where ω is the order of Ak(σ ) and fix(f ) is the set of fixed points of the function f .
Notice that the function i ↦→ | fix(Ak(σ )i)| is defined over all the integers, and it is periodic because Ak(σ )i = Ak(σ )i+ω

for all i ∈ Z. Therefore, Eq. (1) asserts that the size of Fk(σ ) is the average of the function i ↦→ | fix(Ak(σ )i)| over one
ycle. This average does not depend on which cycle is picked, because they all coincide with the average of the function
↦→ | fix(Ak(σ )i)| in the range [0, t] when t tends to infinity. This gives rise to the following lemma.

Lemma 5. Let k be a positive integer and σ : Γ n
→ Γ n a succession rule. Let ω be any positive integer such that

| fix(Ak(σ )i)| = | fix(Ak(σ )i+ω)|, ∀i ∈ Z.

Then,

|Fk(σ )| =
1
ω

ω−1∑
i=0

| fix(Ak(σ )i)|.

For the de Bruijn case, since we identify Vn,1 with Γ n, we have that A1(σ ) = σ , and therefore | fix(A1(σ )i)| = | fix(σ i)|.
Let us analyze | fix(Ak(σ )i)| in the astute case.

Let (s, j) ∈ Vn,k be any vertex fixed by Ak(σ )i. We have that

(s, j) = Ak(σ )i(s, j) = (σ i(s), j + i).

So (s, j) is a fixed point of Ak(σ )i if and only if s is a fixed point of σ i and k|i, which gives us the following identity:

| fix(Ak(σ )i)| = k1k|i| fix(σ i)|,

where 1p is 1 when p is true, and 0 otherwise. Rewriting Lemma 5 with this identity we obtain the following.

Lemma 6. Let k be a positive integer and σ : Γ n
→ Γ n a succession rule. Let ω be any positive integer such that

k1k|i| fix(σ i)| = k1k|i+ω| fix(σ i+ω)|, ∀i ∈ Z.

Then,

|Fk(σ )| =
k
ω

ω−1∑
i=0

1k|i| fix(σ i)|.

.2. GCDs of certain families of polynomials

Here we deal with the families of polynomials Xn
− 1 and Un =

Xn
−1

X−1 . Although in an arbitrary ring not every pair of
polynomials has a GCD, we show that any pair of polynomials in these classes has a GCD, and we compute it explicitly.

Lemma 7. (Un : Um) = U(n:m).

Proof. Assuming that n < m, we have the following identity:

Um − Xm−nUn = Um−n.

Then, (Un : Um) = (Un : Um−n). It is also true that (n : m) = (n,m − n). This means that applying the euclidean algorithm
over the polynomials Un and Um mirrors the steps taken during the application of the algorithm to the pair of integers n
and m, which implies that the algorithm always terminates, and converges to U □
(n:m)
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Lemma 8. (Xn
− 1 : Xm

− 1) = X (n:m)
− 1.

Proof. It follows directly from Lemma 7 by multiplying both sides by X − 1. □

emma 9. If Γ is a field, then

(Un : Xm
− 1) =

{
X (n:m)

− 1 if n/(n : m) ≡ 0 mod |Γ |

U(n:m) if n/(n : m) ̸≡ 0 mod |Γ |.

Proof. Since Γ [X] is a principal ideal and (Xn
− 1, Xm

− 1) ⊆ (Un, Xm
− 1) ⊆ (Un,Um) we only need to decide whether

(Un, Xm
− 1) is generated by X (n:m)

− 1 or by U(n:m). The former is true if and only if X (n:m)
− 1 | Un.

Since

Un =
X (n:m)

− 1
X − 1

Un/(n:m)(X (n:m))

e get X (n:m)
− 1 | Un if and only if 1 is a root of Un/(n:m)(X (n:m)). The latter is equivalent to n/(n : m) = Un/(n:m)(1) = 0

in Γ . □

3.3. Affine succession rules

In this section we compute the size of the set fix(σ k) ⊆ Γ n for an affine succession rule σ : Γ n
→ Γ n given by an

ffine relation R. For any s ∈ fix(σ k) we define its associated string w ∈ Γ k by

wi = (σ i(s))0

t is clear that w uniquely determines s. Indeed, due to the definition of succession rule,

si = (σ i(s))0 = w(i mod k),

his identity holds only because s ∈ fix(σ k). Hence, the strings σ i(s) repeat modulo k. Equivalently, if we write w∗
=

wwww · · · as the infinite concatenation of w with itself, the above claim states that s = w∗
[0..n). A similar argument

hows that σ i(s) = w∗
[i..n + i). Since σ is an affine succession rule we have that every n + 1 consecutive symbols in w∗

atisfy the affine relation R. This condition can be encoded in the following polynomial series equation:

∃p : deg(p) ≤ n and
w

1 − Xk Λ = p +
c

1 − X
, (2)

where Λ is the characteristic polynomial of R, c is its constant term, and we identify the string w with its generating
polynomial. Under this identification, w

1−Xk is the generating function of the infinite string w∗.
The coefficient of degree i in w

1−Xk Λ is the linear combination

n∑
j=0

λjw
∗

i−n+j.

Thus, when i ≤ n we cannot guarantee that the result of this linear combination is c , and we need to introduce an
‘error’’ polynomial p of degree at most n.

If we multiply both sides of Eq. (2) by 1 − Xk we get the equivalent expression:

∃p : deg(p) ≤ n and wΛ = p(1 − Xk) + cUk

hich is, by definition, the same as

wΛ ≡ cUk mod 1 − Xk. (3)

e claim that any string w ∈ Γ k that satisfies Eq. (3) is the associated string of some other string s ∈ fix(σ k). Indeed,
ake any w that satisfies (3). Since (3) is equivalent to (2), every substring of length n + 1 of w∗ will satisfy the relation
. Then, if we take s = w∗

[0..n) then σ i(s) = w∗
[i..n + i), which will be cyclic modulo k, because w∗ is cyclic modulo k.

The established bijection implies that | fix(σ k)| is the number of solutions to Eq. (3). Since w is always of length k, we
an assume w is a polynomial in the quotient ring Γ [X]/(1 − Xk) and the number of solutions of the equation will not
hange.
For an arbitrary polynomial P ∈ Γ [X]/(Xk

− 1), the system of equations

Λw ≡ P mod Xk
− 1

as a solution if and only if

u · Λ − P = v · (Xk
− 1)
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for some polynomials u, v. This is equivalent to the condition

P ∈ (Λ, Xk
− 1).

Furthermore, if the system does have a solution, it has the same number of solutions as the associated linear system

Λw ≡ 0 mod Xk
− 1.

Since there are |Γ [X]/(Xk
− 1)| possibilities for w, and each possibility for P gets an equal number of solutions, each P

ets exactly

|Γ [X]/(Xk
− 1)|

|(Λ, Xk − 1)/(Xk − 1)|
= |Γ [X]/(Λ, Xk

− 1)|

solutions to the linear system, if there is at least one. This implies that

| fix(σ k)| =

⏐⏐⏐⏐ Γ [X]

(Λ, Xk − 1)

⏐⏐⏐⏐ 1cUk∈(Λ,Xk−1).

Let us further analyze the condition cUk ∈ (Λ, Xk
− 1). Let

S = {k ∈ N : cUk ∈ (Λ, Xk
− 1)}.

e prove that S the set of all multiples of its least element ℓσ . Let d be any multiple of ℓσ . Since ℓσ ∈ S we have that:

cUℓσ ∈ (Λ, Xℓσ − 1) = (Λ, (X − 1)Uℓσ )

he condition ℓσ |d implies Uℓσ |Ud and therefore it also holds that

cUd ∈
Ud

Uℓσ

(Λ, (X − 1)Uℓσ ) ⊆

(
Λ,

Ud

Uℓσ

(X − 1)Uℓσ

)
= (Λ, (X − 1)Ud) = (Λ, Xd

− 1).

ence, d ∈ S.
Now take any d ∈ S, and let g = gcd(d, ℓσ ). Then Ug ∈ (Uℓσ ,Ud) due to Lemma 7. We also have that

cUℓσ ∈ (Λ, Xℓσ − 1) and cUd ∈ (Λ, Xd
− 1).

herefore,

cUg ∈ (Λ, Xℓσ − 1, Xd
− 1) = (Λ, Xg

− 1).

hus, g ∈ S. Since g|ℓσ and ℓσ is the least element in S, then g = ℓσ and, as a result, d is a multiple of ℓσ .
Notice that ℓσ is the smallest-length cycle in the associated succession rule σ , since it is the first integer for which

ix(σ ℓσ ) is nonempty. Observe that when c = 0, the zero string always has cycle length one, so ℓσ = 1.
We rewrite Eq. as

fix(σ k) = 1ℓσ |k ·

⏐⏐⏐⏐ Γ [X]

(Λ, Xk − 1)

⏐⏐⏐⏐ .
Now let us analyze

⏐⏐⏐ Γ [X]

(Λ,Xk−1)

⏐⏐⏐. Since the first coefficient of Λ is invertible, the polynomial X is invertible modulo Λ, so
there exists some ω such that Xω

≡ 1 mod Λ. Equivalently, Λ|Xω
− 1.

Let k be any positive integer and g = (ω : k). We know that since (k : ω)|k, X (k:ω) − 1|Xk
− 1. Therefore,

(Λ, Xk
− 1) ⊆ (Λ, X (k:ω)

− 1).

And also,

(X (k:ω)
− 1) = (Xk

− 1, Xω
− 1) ⊆ (Λ, Xk

− 1).

Consequently, the ideals (Λ, Xk
− 1) and (Λ, X (k:ω) − 1) coincide. When we replace this into the formula for fix(σ k), we

get the following.

Lemma 10.

fix(σ k) = 1ℓσ |k ·

⏐⏐⏐⏐ Γ [X]

(Λ, X (k:ω) − 1)

⏐⏐⏐⏐ .
3.4. Burnside’s lemma for affine necklaces

Proof (Proof of Theorem 2). Let k be a positive integer and let σ be an affine succession rule with its characteristic
polynomial Λ. Due to Lemma 6, we have that

|Fk(σ )| =
k
M

M−1∑
1k|i| fix(σ i)|, (4)
i=0
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for any M that is a cycle of the function i ↦→ 1k|i| fix(σ i)|. Due to Lemma 10, we know that if ω is the order of X modulo
, then

fix(σ k) = 1ℓσ |k ·

⏐⏐⏐⏐ Γ [X]

(Λ, X (k:ω) − 1)

⏐⏐⏐⏐ .
Therefore, M needs to be a cycle of

i ↦→ 1k|i · 1ℓσ |i ·

⏐⏐⏐⏐ Γ [X]

(Λ, X (i:ω) − 1)

⏐⏐⏐⏐ .
o be a cycle of a product of functions, it suffices to be a multiple of the cycle length of each 2-factor. So, we have that
ne possible value of M is lcm(k, ℓσ , ω). Now rewriting Eq. (4) we get

|Fk(σ )| =
k
M

M−1∑
i=0

1k|i · 1ℓσ |k ·

⏐⏐⏐⏐ Γ [X]

(Λ, X (i:ω) − 1)

⏐⏐⏐⏐
=

k
M

M−1∑
i=0

1lcm(i,ℓσ )|i ·

⏐⏐⏐⏐ Γ [X]

(Λ, X (i:ω) − 1)

⏐⏐⏐⏐ .
Recall that each summand in the Burnside equation corresponds to fix(Ak(σ )i), and the size of the ideal vector space⏐⏐⏐ Γ [X]

(Λ,X(i:ω)−1)

⏐⏐⏐ is always positive. Hence, fix(Ak(σ )i) is zero if and only if 1lcm(i,ℓσ )|i is zero. We conclude that lcm(i, ℓσ ) is the
length of the smallest cycle in the 2-factor Fk(σ ). Let S be that cycle length. Rewriting the equation above we obtain the
following:

|Fk(σ )| =
k
M

M−1∑
i=0

1S|i ·

⏐⏐⏐⏐ Γ [X]

(Λ, X (i:ω) − 1)

⏐⏐⏐⏐
=

k
M

M/S−1∑
i=0

⏐⏐⏐⏐ Γ [X]

(Λ, X (iS:ω) − 1)

⏐⏐⏐⏐
=

k
M

M/S−1∑
i=0

⏐⏐⏐⏐ Γ [X]

(Λ, X (i:ω/(S:ω))·(S:ω) − 1)

⏐⏐⏐⏐
=

k
Sω/ (S : ω)

ω/(S:ω)−1∑
i=0

⏐⏐⏐⏐ Γ [X]

(Λ, X (i:ω/(S:ω))·(S:ω) − 1)

⏐⏐⏐⏐ .
The second equality uses that S|M , and the last equality uses that since M = lcm(S, ω), we have ω/ (S : ω) = M/S. Since
gcd(i, ω/ (S : ω)) iterates over all divisors of d, we can express that sum as follows:

|Fk(σ )| =
k (S : ω)

Sω

∑
d| ω

(S:ω)

ϕ

(
ω

d (S : ω)

) ⏐⏐⏐⏐ Γ [X]

(Λ, Xd·(S:ω) − 1)

⏐⏐⏐⏐ .
This can be rewritten as

|Fk(σ )| =
k (S : ω)

Sω

∑
(S:ω)|d|ω

ϕ (ω/d)
⏐⏐⏐⏐ Γ [X]

(Λ, Xd − 1)

⏐⏐⏐⏐ .
his completes the proof of Theorem 2.

. Proof of the corollaries

.1. Proof of Corollary 1

roof of Corollary 1. The PCR rule for necklaces of order n is affine, and its associated affine relation is given by

(ai)i ∈ R ⇐⇒ 0 = a0 − an.

hen, its characteristic polynomial is Λ = Xn
− 1. Using Theorem 2,

|Fk(rn)| =
k (s : sω)

ω

∑
(s:ω)|d|ω

ϕ(ω/d)
⏐⏐⏐⏐ Γ [X]

(Λ, Xd − 1)

⏐⏐⏐⏐
where
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• ω is the order of X modulo Λ,
• ϕ is Euler’s totient function, and
• s is the length of the smallest cycle in the 2-factor. Equivalently, s can be defined as the least multiple of k such that

c(1 + X + · · · + X s−1) ∈ (Λ, X s
− 1).

In this case the associated constant c is 0. That is, the rule is linear. Therefore s = k because the condition
c(1 + X + · · · + X s−1) ∈ (Λ, X s

− 1) always holds.

The order of X modulo Xn
− 1 is n; therefore, g = (n : k). Replacing these identities into the formula for |Fk(rn)| we get

|Fk(rn)| =
k (k : n)

kn

∑
(k:n)|d|n

ϕ(n/d)
⏐⏐⏐⏐ Γ [X]

(Λ, Xd − 1)

⏐⏐⏐⏐ .
bserve that (Λ, Xd

− 1) = (X (n:d) − 1) = (Xd
− 1). Hence,⏐⏐⏐⏐ Γ [X]

(Λ, Xd − 1)

⏐⏐⏐⏐ =

⏐⏐⏐⏐ Γ [X]

(Xd − 1)

⏐⏐⏐⏐ = bd.

Replacing this into the formula for |Fk(rn)| we get

|Fk(rn)| =
(k : n)

n

∑
(k:n)|d|n

ϕ(n/d)bd. □

4.2. Proof of Corollary 2

Proof of Corollary 2. For the incremented cycle register case, the associated characteristic polynomial is Λ = Xn
− 1 as

in the PCR case, but the constant c is 1 instead of 0. To specialize Theorem 2, we have to find the smallest integer s that
is a multiple of k and

1 + X + · · · + X s−1
∈ (Λ, X s

− 1).

Let d = (n : s). Notice that Λ = Xn
− 1 and so (Λ, X s

− 1) = (Xd
− 1). Since the ideal is principal, the condition

1+ X + · · ·+ X s−1
∈ (Xd

− 1) can be checked by reducing 1+ X + · · ·+ X s−1 modulo the polynomial Xd
− 1 and checking

if the result is 0.
When we reduce a polynomial modulo Xd

− 1, the ith coefficient of the reduced polynomial is the sum of all the
coefficients of the original polynomial that have degree congruent to i modulo d. The polynomial 1 + X + · · · + X s−1

has all coefficients equal to 1. So, when reduced modulo Xd
− 1, each resulting coefficient will be s/d, since for each

i ∈ {0, . . . d − 1} there are s/d indices in {0, . . . s} congruent to i modulo d.
In order for 1 + X + · · · + X s−1 mod Xd

− 1 to be 0, we need s/d ≡ 0 mod b. So s has to be a multiple of b, which
we can write as s = bm for some m. Furthermore, we need the following condition to hold

s/d = bm/ (bm : n) ≡ 0 mod b.

This is equivalent to (bm : n) |m, which in turn is equivalent to(
b

m
(m : n)

:
n

(m : n)

) ⏐⏐⏐ m
(m : n)

.

Notice that m
(m:n) is coprime with n

(m:n) , so(
b

m
(m : n)

:
n

(m : n)

)
=

(
b :

n
(m : n)

)
.

nd the only divisor of n
(m:n) that is also a divisor of m

(m:n) is 1, so the condition holds only when(
b :

n
(m : n)

)
= 1,

which is true precisely when db(n)|m. Since we also require that s be a multiple of k, the smallest possible value for s is:

s = lcm(k, bdb(n)).

We apply Theorem 2 as we did in the proof of Corollary 1, with ω = n and
⏐⏐⏐ Γ [X]

(Λ,Xd−1)

⏐⏐⏐ = bd. For any divisor d of the
order ω = n. Replacing this into the formula of Theorem 2 we get

|Fk(ιn)| =
k (lcm(k, bdb(n)) : n)

lcm(k, bdb(n))n

∑
ϕ(n/d)bd. □
(lcm(k,bdb(n)):n)|d|n
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4.3. Proof of Corollary 3

Proof of Corollary 3. The Xor rule for necklaces of order n is affine, and its associated affine relation is given by

(ai)i ∈ R ⇐⇒ an = a0 + a1 + · · · + an−1.

onsequently, its characteristic polynomial is Λ = 1 + X + · · · + Xn−1
− Xn, which is equal to Un+1 when |Γ | = 2. To

pecialize Theorem 2, we need to compute:

• The length of the smallest cycle, which is 1 since the rule is linear
• (A multiple of) the order ω of X modulo Λ

• The size of
⏐⏐⏐ Γ [X]

(Λ,Xd−1)

⏐⏐⏐ for all divisors d|ω.

We know that Λ = Un+1 which divides Xn+1
− 1. Therefore, ω = n + 1 is a multiple of the order of X modulo Λ. Due

to Lemma 9,

(Λ : Xd
− 1) = (Uω : Xd

− 1) =

{
Xd

− 1 if ω/d is even
Ud if ω/d is odd.

Hence,⏐⏐⏐⏐ Γ [X]

(Λ, Xd − 1)

⏐⏐⏐⏐ = |Γ |
d−1+12 | ω/d .

Replacing this in the statement of Theorem 2 we get

|Fk(σ )| =
k (s : ω)

sω

∑
(s:ω)|d|ω

ϕ (ω/d)
⏐⏐⏐⏐ Γ [X]

(Λ, Xd − 1)

⏐⏐⏐⏐
=

k
ω

∑
d|ω

ϕ (ω/d) |Γ |
d−1+12 | ω/d .

f we do a change of variables d ↦→ ω/d, and set |Γ | = 2 we get

=
k
ω

∑
d|ω

ϕ(d)212|d2ω/d−1.

ince ϕ(2d) = d when d is even and ϕ(2d) = 2d when d is odd, ϕ(d)212|d reduces to ϕ(2d)

=
k
2ω

∑
d|ω

ϕ(2d)2ω/d. □

ata availability

No data was used for the research described in the article.

cknowledgments

This project is supported by grant CONICET PIP 2022–2024 11220210100220CO and grant UBACyT 20020220100065BA
niversidad de Buenos Aires.

eferences

[1] N. Álvarez, V. Becher, P.A. Ferrari, S.A. Yuhjtman, Perfect necklaces, Adv. in Appl. Math. 80 (2016) 48–61, http://dx.doi.org/10.1016/j.aam.2016.
05.002.

[2] V. Becher, O. Carton, Normal numbers and nested perfect necklaces, J. Complexity 54 (2019) 101403, http://dx.doi.org/10.1016/j.jco.2019.03.003.
[3] M. Beck, S. Robins, Computing the continuous discretely, second ed., in: Undergraduate Texts in Mathematics, Springer, New York, 2015,

http://dx.doi.org/10.1007/978-1-4939-2969-6, integer-point enumeration in polyhedra, With illustrations by David Austin.
[4] J. Berstel, D. Perrin, The origins of combinatorics on words, European J. Combin. 28 (3) (2007) 996–1022, http://dx.doi.org/10.1016/j.ejc.2005.

07.019, URL https://www.sciencedirect.com/science/article/pii/S0195669805001629.
[5] W. Burnside, Theory of Groups of Finite Order, second ed., Dover Publications, Inc. New York, 1955.
[6] J. Cooper, C. Heitsch, The discrepancy of the lex-least de Bruijn sequence, Discrete Math. 310 (6–7) (2010) 1152–1159, http://dx.doi.org/10.

1016/j.disc.2009.11.010.
[7] S.W. Golomb, Shift Register Sequences, Holden-Day, Inc., San Francisco, Calif.-Cambridge-Amsterdam, 1967, with portions co-authored by Lloyd

R. Welch, Richard M. Goldstein, and Alfred W. Hales.
[8] R. Hofer, G. Larcher, Discrepancy bounds for normal numbers generated by necklaces in arbitrary base, J. Complexity 78 (2023a) 101767,

http://dx.doi.org/10.1016/j.jco.2023.101767, URL https://www.sciencedirect.com/science/article/pii/S0885064X23000365.
363

http://dx.doi.org/10.1016/j.aam.2016.05.002
http://dx.doi.org/10.1016/j.aam.2016.05.002
http://dx.doi.org/10.1016/j.aam.2016.05.002
http://dx.doi.org/10.1016/j.jco.2019.03.003
http://dx.doi.org/10.1007/978-1-4939-2969-6
http://dx.doi.org/10.1016/j.ejc.2005.07.019
http://dx.doi.org/10.1016/j.ejc.2005.07.019
http://dx.doi.org/10.1016/j.ejc.2005.07.019
https://www.sciencedirect.com/science/article/pii/S0195669805001629
http://refhub.elsevier.com/S0166-218X(24)00263-4/sb5
http://dx.doi.org/10.1016/j.disc.2009.11.010
http://dx.doi.org/10.1016/j.disc.2009.11.010
http://dx.doi.org/10.1016/j.disc.2009.11.010
http://refhub.elsevier.com/S0166-218X(24)00263-4/sb7
http://refhub.elsevier.com/S0166-218X(24)00263-4/sb7
http://refhub.elsevier.com/S0166-218X(24)00263-4/sb7
http://dx.doi.org/10.1016/j.jco.2023.101767
https://www.sciencedirect.com/science/article/pii/S0885064X23000365


N. Álvarez, V. Becher, M. Mereb et al. Discrete Applied Mathematics 357 (2024) 352–364
[9] R. Hofer, G. Larcher, The exact order of the discrepancy for Levin’s normal number in base 2, J. Théor. Nombres Bordeaux 35 (3) (2023b)
999–1023, http://dx.doi.org/10.5802/jtnb.1271.

[10] Y.J. Huang, A new algorithm for the generation of binary de Bruijn sequences, J. Algorithms 11 (1) (1990) 44–51, http://dx.doi.org/10.1016/0196-
6774(90)90028-D.

[11] O.F. Inc, Entry A000013, The on-line encyclopedia of integer sequences, 2023, https://oeis.org/A000013.
[12] O.F. Inc, Entry A000016, The on-line encyclopedia of integer sequences, 2023, https://oeis.org/A000016.
[13] O.F. Inc, Entry A000031, The on-line encyclopedia of integer sequences, 2023, https://oeis.org/A000031.
[14] A. Lempel, On extremal factors of the de Bruijn graph, J. Combin. Theory Ser. B 11 (1971) 17–27, http://dx.doi.org/10.1016/0095-8956(71)90009-

8.
[15] J. Mykkeltveit, A proof of Golomb’s conjecture for the de Bruijn graph, J. Combin. Theory Ser. B 13 (1972) 40–45, http://dx.doi.org/10.1016/0095-

8956(72)90006-8.
364

http://dx.doi.org/10.5802/jtnb.1271
http://dx.doi.org/10.1016/0196-6774(90)90028-D
http://dx.doi.org/10.1016/0196-6774(90)90028-D
http://dx.doi.org/10.1016/0196-6774(90)90028-D
https://oeis.org/A000013
https://oeis.org/A000016
https://oeis.org/A000031
http://dx.doi.org/10.1016/0095-8956(71)90009-8
http://dx.doi.org/10.1016/0095-8956(71)90009-8
http://dx.doi.org/10.1016/0095-8956(71)90009-8
http://dx.doi.org/10.1016/0095-8956(72)90006-8
http://dx.doi.org/10.1016/0095-8956(72)90006-8
http://dx.doi.org/10.1016/0095-8956(72)90006-8

	On extremal factors of de Bruijn-like graphs
	Introduction and statement of results
	Proof of Theorem 1 
	Proof of Theorem 2 
	Burnside's Lemma
	GCDs of certain families of polynomials
	Affine Succession Rules
	Burnside's Lemma for affine necklaces

	Proof of the Corollaries
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Corollary 3

	Data availability
	Acknowledgments
	References


