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Sizes and Techniques 



Diffraction and Scattering 



Scattering of X-rays from a single electron 
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Thomson formula for the scattered intensity 
from a single electron  
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The Thomson formula plays a central role for all scattering calculations involving 
absolute intensities. Typically calculated intensities of a given sample will be expressed 
in terms of  the scattering of an isolated electron substituted for the sample.  

In small angle scattering the slight angle dependence (the so-called polarization factor) 
in the Thomson formula can be neglected.  



Interference of waves 

constructive destructive 

• waves have and amplitude and phase 

• interference leads to fringe pattern (e.g. 
water waves) 

• the fringe pattern contains the information 
on the position of the sources (i.e. structure) 

• in X-ray diffraction the intensities (not the 
amplitudes) of the fringes are measured 

“phase problem” 
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Scattering from two (and more) electrons 
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two electrons 

… generalized to N electrons 
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Note: 
F(q) is the Fourier 
Transform of the 
spatial distribution 
of the electrons 
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… averaged over all orientations 
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using the continuous (radial) distribution            of the electron cloud in an atom  )( r
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Debye formula 
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The scattering amplitude or form factor, F(q), of an isolated molecule with N atoms can 
be determined in an analogous manner: 

Scattering from Molecules 

The scattered intensity from the isolated molecule is then  

In solution:  
average over all orientations 

i.e. the Fourier Transform 
of the atomic distribution 

due to solution average only 
interatomic distances are 
measured, not atomic 
coordinates 
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Each atomic distance rij in the molecule adds a 
sinx/x like term to the scattering intensity 

Scattering from Molecules 

•  small distance 
 low frequency in sinx/x 
 dominate signal at high q 
  
•  large distance 
 high frequencies in sinx/x 
 dominate the signal at low q 



The measured scattering intensity is the spherically averaged Fourier 
transform of the auocorrelation of the electron density of the particle  

Scattering Intensity 
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Autocorrelation 



 

uV

u
dV)()()()()( rurrrr 

Autocorrelation 



 

uV

u
dV)()()()()( rurrrr 

Autocorrelation 



 

uV

u
dV)()()()()( rurrrr 

Autocorrelation 



 

uV

u
dV)()()()()( rurrrr 

Autocorrelation 



)()()(
0

222
rVrrrrp  

V
2

)0(  

)0(/)()(
0

 rr V rr  )(

V r0

For a homogeneous particle  Characteristic Function 
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Spherical average 
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Pair distance distribution function: 
“probability of finding a point 
within the particle at a distance r 
from a given point” 

Autocorrelation 



Pair distance distribution function p(r) 

The p(r) function represents the histogram of 
distances between pairs of points within the 
particle. Dmax is the maximum diameter in the 
particle. 

Measured scattering intensity Pair distance distribution 
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Scattering from model structures 

Adopted from Svergun & Koch, “SAS studies of biological macromolecules in solution”, Rep. Prog. Phys. 66 (2003) 1735-1782, Fig. 5 (c)I 



Particles in Solution 

• Monodisperse, i.e. identical particles 
 
 
 
• Uncorrelated, i.e. no inter-molecular interactions present 

For solution scattering we typically require the following characteristics: 
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Background Scattering and X-ray Contrast 

• The solvent scattering background must be properly subtracted 
to obtain the signal from the particles 
• the contrast, that makes the particles “visible” for X-rays, is the 
difference in electron density of the particle versus the solvent 
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Protein solution scattering data 

• weak level of scattering  at small angles 

• drops off quickly for higher angles 

• due to low contrast scattering level of 
background and sample is very similar 
except for the lowest angles 

• background and sample scattering need 
to be measured with high accuracy  

 “…. one in a million!” 

• a 1mg/ml solution of a globular protein 
of the size of lysozyme (14kD) scatters on 
the order of: 

   1 out of 106 incident photons 



Substance Average Contrast 
(x1010 cm-2) 

Protein 2.5 

Nucleic Acid 6.7 

Fatty Acid -1.1 

Carbohydrates 4.5 

X-ray Contrast and Contrast Variation 

• change contrast by adding salts (e.g. 
CsBr), sucrose or glycerol to the solvent 

• but that changes the chemical 
environment for the particles 

• other possibility to change contrast is 
anomalous scattering 

Note:  
Contrast variation is widely used in 
neutron scattering, due to the 
large scattering length difference 
of hydrogen and deuterium 



Rg
2 is the average electron density 

weighted squared distance of the 
scatters from the centre of the 
object 

Rg
2 =(12+ 12+ 12+ 22+ 22+ 32 )/6=20/6 

Rg=√3.333 = 1.82 
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• Solid sphere radius R: 

Rg = √(3/5) R 

• Thin rod length L 

Rg = √(1/12) L 

• Thin disk radius R: 

Rg = √(1/2) R 

 

Introducing the Radius of Gyration 



The Guinier approximation  
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Plot ln I against q2 →Straight line, slope –Rg/3 
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The low-q region of the scattering curve is characteristic 
for the overall dimension of the particle. 

“The Guinier Plot” 

Radius of gyration: 
size of the particle 

I0 is proportional to Mw 

Deviation from the straight line in the 
Guinier plot indicate intermolecular 
interaction or aggregation 



The Guinier approximation  
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“The Guinier Plot” 
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i.e. the number of (excess) 
electrons in the sample 
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c: concentration 
M: molecular mass 
V: Volume 

: partial specific Vol. 
: prot. e-density 
0: solvent e-density 



 Alternatively to using the Guinier plot to determine 
the Rg of the protein of can also use the following 
experession involving the P(r) function: 
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This is often better than using the Guinier plot as it involves the whole scattering curve 

i.e. Rg equals the second moment 
of the electron density distribution 
as well as half the second moment 
of the distance distribution 
function 



Radius of gyration for proteins and viruses 

Molecular Weight 
 

Rg (A) 
 

Ribonuclease 12700 14.8 

Lysozyme 14800 14.5 

B-lactoglobulin 36700 21.7 

BSA 68000 29.5 

Myosin 493000 468 

Brome Mosaic Virus 4.6 106 134 

TMV 3.9 106 924 



Kratky analysis 

• Kratky plot: I*q2 vs. q 

• sensitive to morphology of particle 

• sensitive to the compactness of a protein 

• unfolded and folded states of proteins are 
easy to distinguish 

Example: folding of cytochrome C 

Akiyama et al., PNAS, 99, (2002) 

Putnam et al., Quat.Rev.Bioph 40,3 (2007), Fig24 

Hiller et al., Biomaterials, 24 (2003), Fig5 



ab-initio structure determination  

• using spherical harmonics to produce molecular 
envelopes that fit the experimental scattering data 

Envelop models 

• fitting the scattering data using bead  as 
scattering centers  
• so-called dummy residues (scattering centers 
representing the Ca atoms of the residues) 

Bead models 

Can be extremely powerful particularly if combined 
with (partial) crystal structures if available! 

but be careful:  
you will always get a structure from these 
programs, but it doesn’t mean they make 
sense  

Program packages: 
• ATSAS from EMBL Hamburg (Svergun group) 
• IMP from UCSF (Sali group) 
• SAXS3D from Stanford (Doniach group) 
• SASTBX from LBL (Zwart group) 
• … 



Experimental setup 

isotropic scattering signal:  
the 2D detector image is 
integrated to yield I(q) vs q    

defining slit 

guard slit 

sample 

detector  
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BioSAXS instrument at SSRL BL 4-2 

• widely re-configurable instrument for 
• static and time-resolved solution scattering 

• lipid/fiber diffraction 

• grazing incidence scattering 

• anomalous scattering 

• variety of advanced sample environments 
• solution scattering robot with attached analysis pipeline 

• in-line size-exclusion chromatography setup 

• stopped-flow mixer with low sample consumption 

• humidity chamber for lipid studies 

• high-throughput LCP screening setup 

  30  

incident beam 

flightpath: 0.2 – 3.5m 

sample 

detector 

Q= 0.003/Å ... 4.2/Å Q-range 



Structural information obtainable from SAXS 

• Radius of gyration (globular, cross-sectional etc.) 
• molecular weight (monomer, dimer, multimer ..) 
• pair-distance distribution function 
• low-resolution envelope of molecule and ab-initio 
structures (about 1nm resolution) 
• unfolded vs folded (Kratky plot) 
• interaction potentials  

• study protein at physiological conditions 
• time-resolved studies possible (reaction kinetics) 
• large protein complexes (no need for crystals) 
• unfolded or partially folded proteins 
• complex systems (protein-DNA, protein-lipid …) 

 Systems that can be studies by SAXS 

Why do SAXS?  



Thank you 


