Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
Academia.eduAcademia.edu
Available online at www.sciencedirect.com Linear Algebra and its Applications 430 (2009) 483–503 www.elsevier.com/locate/laa Spectra of generalized Bethe trees attached to a path聻 Oscar Rojo ∗ , Luis Medina Departamento de Matemáticas, Universidad Católica del Norte, Antofagasta, Chile Received 29 May 2008; accepted 12 August 2008 Available online 21 September 2008 Submitted by R.A. Brualdi Abstract A generalized Bethe tree is a rooted tree in which vertices at the same distance from the root have the same degree. Let Pm be a path of m vertices. Let {Bi : 1  i  m} be a set of generalized Bethe trees. Let Pm {Bi : 1  i  m} be the tree obtained from Pm and the trees B1 , B2 , . . . , Bm by identifying the root vertex of Bi with the ith vertex of Pm . We give a complete characterization of the eigenvalues of the Laplacian and adjacency matrices of Pm {Bi : 1  i  m}. In particular, we characterize their spectral radii and the algebraic conectivity. Moreover, we derive results concerning their multiplicities. Finally, we apply the results to the case B1 = B2 = · · · = Bm . © 2008 Elsevier Inc. All rights reserved. AMS classification: 5C50; 15A48 Keywords: Tree; Bethe tree; Generalized Bethe tree; Laplacian matrix; Adjacency matrix; Algebraic connectivity 1. Introduction Let G be a simple undirected graph on n vertices. The Laplacian matrix of G is the n × n matrix L(G) = D(G) − A(G) where A(G) is the adjacency and D(G) is the diagonal matrix of vertex degrees. It is easy to see that L(G) is singular and positive semidefinite. Fiedler [1] proved that G is a connected graph if and only if the second smallest eigenvalue of L(G) is positive. This eigenvalue is called the algebraic connectivity of G and it is denoted by a(G). 聻 ∗ Work supported by Project Fondecyt 1070537 and Project Mecesup UCN0202, Chile. Corresponding author. E-mail address: [email protected] (O. Rojo). 0024-3795/$ - see front matter ( 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2008.08.009 484 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V . A tree is a connected acyclic graph. Every tree is a bipartite graph. Let B(G) = D(G) + A(G). Lemma 1 [3]. If G is a bipartite graph then B(G) and L(G) are unitarily similar. A generalized Bethe tree is a rooted tree in which vertices at the same distance from the root have the same degree. Throughout this paper {Bi : 1  i  m} is a set of generalized Bethe trees. In [5], we give a complete characterization of the spectra of the Laplacian and adjacency matrices of a tree obtained from the union of the trees Bi joined at their respective root vertices. Let Pm be a path of m vertices. In this paper, we study the tree Pm {Bi : 1  i  m} obtained from Pm and B1 , B2 , . . . , Bm by identifying the root vertex of Bi with the ith vertex of Pm . For brevity, we write Pm {Bi } instead of Pm {Bi : 1  i  m}. We obtain a complete characterization of the eigenvalues of the Laplacian and adjacency matrices of Pm {Bi } together with results concerning their multiplicities. In particular, we characterize the spectral radii and the algebraic conectivity. From Lemma 1, it follows that L(Pm {Bi }) and B(Pm {Bi }) have the same eigenvalues. Then we consider B(Pm {Bi }) instead of L(Pm {Bi }). For j = 1, 2, 3, . . . , ki , let di,ki −j +1 and ni,ki −j +1 be the degree of the vertices and the number of them at the level j of Bi . Observe that ni,ki = 1 and ni,ki −1 = di,ki . We have ni,ki −j = (di,ki −j +1 − 1)ni,ki −j +1 , 2  j  ki − 1 (1) m ki −1 The total number of vertices in Pm {Bi } is n = i=1 j =1 ni,j + m. We introduce the following additional notation. |A| is the determinant of A. 0 and I are the all zeros matrix and the identity matrix of the appropiate order, respectively. Ir is the identity matrix of order r × r. er is the all ones column vector of dimension r. n For 1  i  m and 1  j  ki − 2, mi,j = ni,ji,j+1 and Ci,j is the block diagonal matrix defined by Ci,j = diag{emi,j , emi,j , . . . , emi,j } with ni,j +1 diagonal. The order of Ci,j is ni,j × ni,j +1 .  −2 For 1  i  m, let si = kji=1 ni,j and Ei be the matrix of order si × m defined by  1 if q = i and si + 1  p  si + ni,ki −1 , Ei (p, q) = 0 elsewhere. (2) (3) We label the vertices of Pm {Bi } as follows:  −1 1. Using the labels 1, 2, . . . , jk1=1 n1,j , we label the vertices of B1 from the bottom to level 2 and, at each level, from the left to the right.  −1  −1  −1 2. Using the labels jk1=1 n1,j + 1, . . . , jk1=1 n1,j + kj2=1 n2,j , we label the vertices of B2 from the bottom to level 2 and, at each level, from the left to the right. 3. We continue labelling the vertices of B3 , B4 , . . . , Bm , in this order, from the bottom to level 2 and, at each level, from the left to the right. O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 485 4. Finally, using the labels n − m + 1, n − m + 2, . . . , n, we label the vertices of Pm from the left to the right. Example 1. This example illustrates our vertex labelling and the notation introduced above. 35 9 5 10 6 1 36 7 2 3 37 17 18 19 11 12 13 14 15 28 26 8 4 38 33 34 27 29 16 20 21 22 23 24 30 31 32 25 This is a tree obtained from the path P4 and four generalized Bethe trees by identifying the roots of them with the vertices of P4 . We have k1 = 4, k2 = 3, k3 = 4, k4 = 3 and n1,1 = 4, d1,1 = 1, n1,2 = 4, d1,2 = 2, n1,3 = 2, d1,3 = 3 n2,1 = 6, d2,1 = 1, n2,2 = 3, d2,2 = 3 n3,1 = 6, d3,1 = 1, n3,2 = 2, d3,2 = 4, n3,3 = 1, d3,3 = 3 n4,1 = 4, d4,1 = 1, n4,2 = 2, d4,2 = 3. The degree of the vertices 35, 36, 37 and 38 is d1,4 + 1 = 3, d2,3 + 2 = 5, d3,4 + 2 = 3 and d4,3 + 1 = 3, respectively. The total number of vertices is n = 38. The matrices defined in (2) are C1,1 = diag{e1 , e1 , e1 , e1 } = I4 , C1,2 = diag{e2 , e2 } C2,1 = diag{e2 , e2 , e2 } C3,1 = diag{e3 , e3 }, C3,2 = e2 C4,1 = diag{e2 , e2 }. The nonzero entries of the matrices Ei defined in (3) are E1 (9, 1) = E1 (10, 1) = 1, E3 (9, 3) = 1, E2 (7, 2) = E2 (8, 2) = E2 (9, 2) = 1 E4 (5, 4) = E4 (6, 4) = 1. For the above mentioned labelling, the adjacency matrix A(Pm {Bi }) and the matrix B(Pm {Bi }) become ⎡ ⎤ A1 0 ··· 0 E1 ⎢ ⎥ .. ⎢ ⎥ . E2 ⎥ A2 ⎢0 ⎢ ⎥ . .. ⎥ .. .. A(Pm {Bi }) = ⎢ (4) ⎢ .. . . 0 . ⎥ ⎥ ⎢ ⎥ ⎢ 0 Am Em ⎦ ⎣0 E1T and E2T ··· T Em Am+1 486 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 ⎡ 0 B1 ⎢ ⎢ ⎢0 ⎢ . B(Pm (Bi )) = ⎢ ⎢ .. ⎢ ⎢ ⎣0 E1T B2 .. . .. . 0 E2T ··· ⎤ 0 E1 0 Bm E2 .. . Em T Em Bm+1 ··· .. . ⎥ ⎥ ⎥ ⎥ ⎥, ⎥ ⎥ ⎥ ⎦ (5) where, for i = 1, 2, . . . , m, the matrices Ai and Bi are the following block tridiagonal matrices: ⎡ 0 ⎢C T ⎢ i,1 ⎢ ⎢ Ai = ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ 0 T Ci,2 Ci,2 .. . .. . .. .. . . ⎥ ⎥ ⎥ ⎥ ⎥, ⎥ ⎥ ⎥ Ci,ki −2 ⎦ 0 T Ci,k i −2 Ini,1 ⎢C T ⎢ i,1 ⎢ ⎢ Bi = ⎢ ⎢ ⎢ ⎢ ⎣ ⎤ Ci,1 Ci,1 di,2 Ini,2 T Ci,2 Ci,2 .. . .. . .. .. . . T Ci,k i −2 Ci,ki −2 di,ki −1 Ii,nki −1 (6) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (7) and ⎡ Am+1 0 ⎢1 ⎢ ⎢ ⎢ =⎢ ⎢ ⎢ ⎢ ⎣ ⎡ Bm+1 1 0 1 1 .. . .. . .. .. . d1,k1 + 1 ⎢ 1 ⎢ ⎢ ⎢ =⎢ ⎢ ⎢ ⎢ ⎣ both of order m × m. ⎤ . 1 1 ⎥ ⎥ ⎥ ⎥ ⎥, ⎥ ⎥ ⎥ 1⎦ 0 d2,k2 + 2 1 (8) 1 .. . .. . ⎤ .. . dm−1,km−1 + 2 1 ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ 1 ⎦ dm,km + 1 (9) O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 487 2. Preliminaries Lemma 2. Let ⎡ X1 ⎢ ⎢ 0 ⎢ . X=⎢ ⎢ .. ⎢ ⎣ 0 −E1T 0 X2 .. . −E2T ··· .. . .. . 0 ··· 0 0 Xm T −Em −E1 ⎤ ⎥ −E2 ⎥ ⎥ .. ⎥ , . ⎥ ⎥ −Em ⎦ Xm+1 where, for i = 1, 2, . . . , m, Xi is the block tridiagonal matrix ⎡ ⎤ −Ci,1 αi,1 Ini,1 T ⎢ −Ci,1 ⎥ αi,2 Ini ,2 −Ci,2 ⎢ ⎥ ⎢ ⎥ .. .. T ⎥ . . −C Xi = ⎢ i,2 ⎢ ⎥ ⎢ ⎥ . . .. .. ⎣ −Ci,ki −2 ⎦ T −Ci,k αi,ki −1 Ii,nki −1 i −2 and ⎡ Xm+1 α1 ⎢−1 ⎢ ⎢ =⎢ ⎢ ⎢ ⎣ −1 α2 −1 −1 .. . .. .. .. . ⎤ . . −1 For i = 1, 2, . . . , m, let ⎥ ⎥ ⎥ ⎥. ⎥ ⎥ −1⎦ αm βi,1 = αi,1 , ni,j −1 1 , ni,j βi,j −1 1 . βi = αi − ni,ki −1 βi,ki −1 j = 2, 3, . . . , ki − 1, βi,j = αi,j − If βi,j = / 0 for all i = 1, 2, . . . , m and all j = 1, 2, . . . , ki − 1 then ⎞ ⎛ |X| = ⎝ where Ym+1 m ki −1 i=1 j =1 ⎡ β1 ⎢−1 ⎢ ⎢ =⎢ ⎢ ⎢ ⎣ n βi,ji,j ⎠ |Ym+1 |, −1 β2 −1 −1 .. . .. .. .. . (10) ⎤ . . −1 ⎥ ⎥ ⎥ ⎥. ⎥ ⎥ −1⎦ βm (11) 488 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 Proof. Suppose β1,j = / 0 for all j = 1, 2, . . . , k1 − 1. After some steps of the Gaussian elimination procedure, without row interchanges, we reduce X to the intermediate matrix given below: ⎤ ⎡ 0 ··· 0 −E1 R1 ⎥ ⎢ .. ⎢0 . −E2 ⎥ X2 ⎥ ⎢ .. ⎥ , ⎢ .. .. .. ⎢ . . . . ⎥ 0 ⎥ ⎢ ⎣0 0 Xm −Em ⎦ (1) 0 −E2T · · · −E2T Xm+1 where R1 is the upper triangular matrix ⎡ β1,1 In1,1 C1,1 ⎢ .. ⎢ . β1,2 In1,2 ⎢ R1 = ⎢ . .. ⎣ ⎤ C1,k1 −2 β1,k1 −1 In1,k1 −1 (1) and Xm+1 is the tridiagonal matrix ⎡ β1 −1 ⎢−1 α2 −1 ⎢ ⎢ .. .. (1) . . −1 Xm+1 = ⎢ ⎢ ⎢ . . .. .. ⎣ −1 ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎥ ⎥ ⎥ ⎥. ⎥ ⎥ −1⎦ αm Suppose, in addition, βi,j = / 0 for all i = 2, 3, . . . , m and all j = 1, 2, . . . , ki − 1. We continue the Gaussian elimination procedure to finally obtain the upper triangular matrix ⎡ ⎤ R1 0 ··· 0 −E1 ⎢ ⎥ .. ⎢0 . −E2 ⎥ R2 ⎢ ⎥ ⎢ . .. ⎥ .. .. ⎢ .. ⎥, . . 0 . ⎢ ⎥ ⎣0 0 Rm −Em ⎦ 0 0 ··· 0 Ym+1 where, for i = 2, 3, . . . , m, ⎡ βi,1 Ini,1 −Ci,1 ⎢ ⎢ βi,2 Ini,2 Ri = ⎢ ⎢ ⎣ .. . .. . ⎤ −Ci,ki −2 βi,ki −1 Ini,ki −1 and Ym+1 is as in (11). Thus, (10) is proved.  ⎥ ⎥ ⎥ ⎥ ⎦  the submatrix obtained from A by deleting its last row and its From now on, we denote by A last column and, for i = 1, 2, . . . , m − 1, by Fi the matrix of order ki × ki+1 whose are 0 except for the entry Fi (ki , ki+1 ) = 1. O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 Lemma 3. Let ⎡ T1 ⎢−F T ⎢ 2 ⎢ Mm = ⎢ ⎢ ⎣ −F1 T2 −F2T −F2 .. . ··· ⎤ . Tm−1 T −Fm−1 where Ti is a matrix of order ki × ki . Let  |T1 | |T1 |  |T2 | |T2 | |T2 |   .. .. . . Dm =  |T3 |  ..  . |Tm−1 |   |T m| Then .. 489 ⎥ ⎥ ⎥ ⎥, ⎥ −Fm−1 ⎦ Tm       .    |T | m−1  |Tm |  |M2 | = |D2 | (12) and, for all m, |Mm | = |Dm |. (13) Proof. By induction on m. Clearly |M1 | = |D1 |. We may write ⎡ ⎤ p 0 0 T1   ⎢qT T1 (k1 , k1 ) 0 T1 −F1 −1 ⎥ ⎥, M2 = =⎢ T ⎣ ⎦  −F1 T2 0 0 T2 r T 0 −1 s T2 (k2 , k2 ) where p, q, r, s are clear from the context and 0 is the all zeros vector of the appropiate order. We know that the determinant function is linear transformation on each column (row). We apply this property on the last column of M2 to obtain      T1   T1 p 0 0 p 0 0   T   T q  q T1 (k1 , k1 ) 0 0 T1 (k1 , k1 ) 0 −1 + |M2 | =     0 T2 r 0 T2 0  0  0 T T 0   −1 s T2 (k2 , k2 ) 0 −1 s 0   T1   p 0   0 2  T 2k1 +k2  k 2     = |T1 ||T2 | − (−1) 0 T2  = |T1 ||T2 | − (−1) |T1 |  0 −1 sT   0 −1 sT  = |T1 ||T2 | + (−1)k2 (−1)k2 +1 |T1 ||T2 | = |T1 ||T2 | − |T1 ||T2 |. Thus (12) is proved. Observe that (12) is (13) for m = 2. Let m  2. Suppose that (13) is true for all integer less or equal to m. We have   −Km Mm Mm+1 = , T −Km Tm+1 490 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 where Km is the matrix of order (k1 + · · · + km ) × km+1 whose entries are zeros except for the entry Km (k1 + · · · + km , km+1 ) = 1. We apply (12) to Mm+1 obtaining    |Mm |  |M m|   = |Mm ||Tm+1 | − |T |Mm+1 | =   m+1 ||M m| |Tm+1 | |Tm+1 |  = |Dm ||Tm+1 | − |T m+1 ||M m |. Since   Mm−1 0  M m = 0 T m  we have |Mm | = |Mm−1 ||T m |. Hence  |Mm+1 | = |Dm ||Tm+1 | − |T m+1 ||Mm−1 ||T m |. On the other hand  |T1 |   |T | |Dm+1 | =  2    |T1 | .. . .. . .. . |Tm | |T m+1 | (14)         |T | m  |Tm+1 |    Dm−1 0   = |Tm+1 ||Dm | − |T m+1 |   ∗ |Tm |  = |Tm+1 ||Dm | − |T m+1 ||Dm−1 ||T m |. From the hypothesis of induction, we have |Dm−1 | = |Mm−1 |. Therefore  |Dm+1 | = |Tm+1 ||Dm | − |T m+1 ||Mm−1 ||T m |. From (14) and (15), we obtain (13) for all m  2. (15)  3. The spectrum of the Laplacian matrix Definition 1. For i = 1, 2, . . . , m, let Pi,0 (λ) = 1, Pi,1 (λ) = λ − di,1 and for j = 2, 3, . . . , ki − 1, let Pi,j (λ) = (λ − di,j )Pi,j −1 (λ) − ni,j −1 Pi,j −2 (λ). ni,j Moreover, let P1 (λ) = (λ − d1,k1 − 1)P1,k1 −1 (λ) − n1,k1 −1 P1,k1 −2 (λ), Pi (λ) = (λ − di,ki − 2)Pi,ki −1 (λ) − ni,ki −1 Pi,ki −2 (λ) for i = 2, 3, . . . , m − 1, and Pm (λ) = (λ − dm,km − 1)Pm,km −1 (λ) − nm,km −1 P1,km −2 (λ). (16) O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 491 For i = 1, 2, . . . , m, let i = {j : 1  j  ni,ki −1 : ni,j > ni,j +1 }. Theorem 1. We have (a) m |λI − L(Pm {Bi })| = P (λ) n Pi,ji,j −ni,j +1 (17) (λ) i=1 j ∈i where   P1 (λ)   P (λ) P (λ) =  2,k2 −1    P1,k1 −1 (λ) .. . .. . .. . .. . Pm,km −1 (λ) (b) The set of eigenvalues of L(Pm {Bi }) is        Pm−1,km−1 −1 (λ)  Pm (λ) σ (L(Pm {Bi })) = (∪m i=1 ∪j ∈i {λ : Pi,j (λ) = 0}) ∪ {λ : P (λ) = 0}. Proof. (a) We consider B(Pm {Bi }) instead of L(Pm {Bi }). We know that B(Pm {Bi }) is given by (5), (7) and (9). We apply Lemma 2 to the matrix X = λI − B(Pm {Bi }). For this matrix αi,j = λ − di,j (1  i  m, 1  j  ki − 1) α1 = λ − d1,k1 αi = λ − di,ki − 2 (2  i  m − 1) αm = λ − dm,km − 1. Let βi,j , βi be as in Lemma 2. We first suppose that λ ∈ R is such that Pi,j (λ) = / 0 for all i = 1, 2, . . . , m and for all j = 1, 2, . . . , ki − 1. For brevity, we write Pi,j (λ) = Pi,j and P (λ) = P . We have Pi,1 βi,1 = λ − di,1 = = / 0, Pi,0 ni,1 Pi,0 ni,1 1 = (λ − di,2 ) − , βi,2 = (λ − di,2 ) − ni,2 βi,1 ni,2 Pi,1 = (λ − di,2 )Pi,1 − ni,1 ni,2 Pi,0 Pi,1 = Pi,2 = / 0, Pi,1 .. . βi,ki −1 = (λ − di,ki −1 ) − = ni,ki −2 Pi,ki −3 nki −2 1 = (λ − di,ki −1 ) − nki −1 βi,ki −2 ni,ki −1 Pi,ki −2 (λ − di,ki −1 )Pi,ki −2 − Pi,ki −2 nki −2 ni,ki −1 Pi,ki −3 = Pi,ki −1 = / 0. Pi,ki −2 492 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 Moreover β1 = (λ − d1,k1 − 1) − n1,k1 −1 1 β1,k1 −1 = (λ − d1,k1 − 1) − n1,k1 −1 P1,k1 −2 P1,k1 −1 = P1 (λ − d1,k1 − 1)P1,k1 −1 − n1,k1 −1 P1,k1 −2 = , P1,k1 −1 P1,k1 −1 βm = (λ − dm,km − 1) − nm,km −1 = βm,k1 −1 = (λ − dm,km − 1) − nm,km −1 Pm,km −2 Pm,km −1 (λ − dm,km − 1)Pm,km −1 − nm,km −1 Pm,km −2 Pm = Pm,km −1 Pm,km −1 and for i = 2, . . . , m − 1 βi = (λ − di,ki − 2) − ni,ki −1 = 1 Pi,ki −2 1 = (λ − di,ki − 2) − ni,ki −1 βi,ki −1 Pi,ki −1 (λ − di,ki − 2)Pi,ki −1 − ni,ki −1 Pi,ki −2 Pi = . Pi,ki −1 Pi,ki −1 From (10) ⎛ det(λI − B(Pm {Bi })) = ⎝ = =  m ki −1 i=1 j =1 n m ⎞ n βi,ji,j ⎠ |Cm+1 | n n n n Pi,1i,1 Pi,2i,2 Pi,3i,3 n i=1 m Pi,0i,1 Pi,1i,2 Pi,2i,3 ··· n −n n −n Pi,1i,1 i,2 Pi,2i,2 i,3 i=1 ni,k −2 ni,k −1 ni,k −2 ni,k −1 i i Pi,ki −2 Pi,ki −1 i i Pi,ki −3 Pi,ki −2  |Cm+1 | ni,ki −2 −ni,ki −1 ni,ki −1 · · · Pi,ki −2 Pi,ki −1 where  P  1  P1,k1 −1   −1   |Cm+1 | =       −1 P2 P2,k2 −1 −1 1 i=1 Pi,ki −1 = m −1 .. . .. .   P1   P2,k −1 2      .. . .. . −1 P1,k1 −1 P2 .. .            −1  Pm  P m,km −1 .. .. . . Pm,km −1      .  Pm−1,km−1 −1   Pm  |Cm+1 | 493 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 Hence m ni,ki −1 |λI − L(Pm {Bi })| = P (λ) = P (λ) n Pi,ji,j i=1 j =1 m n Pi,ji,j −ni,j +1 −ni,j +1 (λ). i=1 j ∈i / 0, for all i = 1, 2, . . . , m and for all j = Thus (17) is proved for all λ ∈ R such that Pi,j (λ) = 1, 2, . . . , ki − 1. Now, we consider λ0 ∈ R such that Pl,s (λ0 ) = 0 for some 1  l  m and for 1  s  kl − 1. Since the zeros of any nonzero polynomial are isolated, there exists a neighborhood N(λ0 ) of λ0 such that Pi,j (λ) = / 0 for all λ ∈ N (λ0 ) − {λ0 } and for all i = 1, 2, . . . , m and for all j = 1, 2, . . . , ki − 1. Hence m |λI − B(Pm {Bi })| = P (λ) n Pi,ji,j −ni,j +1 (λ) i=1 j ∈i for all λ ∈ N (λ0 ) − {λ0 }. By continuity, taking the limit as λ tends to λ0 we obtain m |λ0 I − B(Pm {Bi })| = P (λ0 ) n Pi,ji,j −ni,j +1 (λ0 ). i=1 j ∈i Therefore (17) holds for all λ ∈ R. (b) It is an immediate consequence of part (a).  Definition 2. For i = 1, 2, 3, . . . , m, let  ⎡ di,2 − 1 d i,1  ⎢ di,2 − 1 di,2 ⎢ ⎢ .. Ti = ⎢ . ⎢  ⎣ di,k −1 − 1 i  ⎤ di,ki −1 − 1 di,ki −1 di,ki  di,ki di,ki + c ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ of order ki × ki , where c = 2 for i = 2, 3, . . . , m − 1 and c = 1 for i = 1 and i = m. Moreover, for i = 1, 2, . . . , m and for j = 1, 2, 3, . . . , ki − 1, let Ti,j be the j × j leading principal submatrix of Ti . Lemma 4. For i = 1, 2, . . . , m and for j = 1, 2, . . . , ki − 1, we have |λI − Ti,j | = Pi,j (λ). (18) Moreover, |λI − Ti | = Pi (λ) (19) for i = 2, 3, . . . , m − 1, and |λI − T1 | = P1 (λ), |λI − Tm | = Pm (λ). (20) 494 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 Proof. It is well known [7, page 229] that the characteristic polynomials, Qj , of the j × j leading principal submatrix of the k × k symmetric tridiagonal matrix ⎡ c1 ⎢b1 ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ b1 c2 .. . b2 .. . .. .. . ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ bk−1 ⎦ ck . ck−1 bk−1 satisfy the three-term recursion formula Qj (λ) = (λ − cj )Qj −1 (λ) − bj2−1 Qj −2 (λ) (21) with Q0 (λ) = 1 and Q1 (λ) = λ − c1 . We recall that, for i = 1, 2, . . . , m and for j = 1, 2, . . . , ki , the polynomials Pi,j are defined  n  i,j by the recursion formula (16). Let 1  i  m be fixed. From (1), ni,j +1 = di,j +1 − 1 for For the matrix Ti,ki −1 , we have cj = di,j for j = 1, 2, . . . , ki − 1 and j = 1, 2, . . . , ki − 2.   n bj = di,j +1 − 1 = ni,ji,j+1 for j = 1, 2, . . . , ki − 2. Replacing in the recursion formula (21), we get the polynomials Pi,j , j = 1, 2, . . . , ki − 1. Thus (18) is proved. The proof for (19) and (20) are similar.  Lemma 5. Let r = ⎡ T1 ⎢ T ⎢F 1 G=⎢ ⎢ ⎣ m i=1 ki . Let G be the symmetric matrix of order r × r defined by F1 T2 .. . .. . .. . T Fm−1 ⎤ ⎥ ⎥ ⎥. ⎥ Fm−1 ⎦ Tm Then |λI − G| = P (λ). Proof. We apply Lemma 3 to λI − G to obtain that  |λI − T1 |  |λI − T2 |   |λI − G| =      |λI − T1 | |λI − T2 | .. . |λI − T2 | .. .  |λI − Tm−1 | .. . |λI − Tm−1 | |λI  − Tm |       .   |λI − Tm−1 | |λI − Tm |  We observe that λI − Ti = λI − Ti,ki −1 . We now use Lemma 4 to obtain O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503   P1 (λ)  P2,k2 −1 (λ)   |λI − G| =      P1,k1 −1 (λ) P2 (λ) P3,k3 −1 (λ) P2,k2 −1 (λ) .. . .. . = P (λ). The proof is complete. .. .. . . Pm,km −1 (λ)  495         Pm−1,km−1 −1 (λ)  Pm (λ) Theorem 2. (a) σ (L(Pm {Bi })) = (∪m i=1 ∪j ∈i σ (Ti,j )) ∪ σ (G). (b) The multiplicity of each eigenvalue of the matrix Ti,j , as an eigenvalue of L(Pm {Bi }), is at least (ni,j − ni,j +1 ) for j ∈ i . (c) The matrix G is singular. Proof. It is known that the eigenvalues of a symmetric tridiagonal matrix with nonzero codiagonal entries are simple [2]. This fact and Theorem 1, Lemma 4 and Lemma 5 imply (a) and (b). One can easily check that |Ti,j | = 1 for 1  i  m and 1  j  ki − 1. This fact and part (a) imply that 0 is an eigenvalue of G.  Example 2. Let P4 {Bi : i = 1, 2, 3, 4} be the tree in Example 1. For this tree ⎡ ⎤ √ ⎤ ⎡ 1 1 √ 2 √ ⎢1 ⎥ √1 2 2 √ √ ⎥ , T2 = ⎣ 2 T1 = ⎢ 3⎦ ⎣ √3 2 √3 2⎦ 3 5 2 3 √ ⎤ ⎡ √ ⎡ ⎤ 3 √ √1 2 √ 1 ⎥ ⎢ 3 √ 2 ⎥ , T4 = ⎣ 2 √4 T3 = ⎢ 2⎦ . ⎣ √3 2 3 1⎦ 2 3 1 3 We have 1 = {2, 3}, 2 = {1, 2}, 3 = {1, 2}, 4 = {1, 2}. From Theorem 2, the eigenvalues of L(Pm {Bi }) are those of T1,2 , T1,3 , T2,1 , T2,2 , T3,1 , T3,2 , T4,1 , T4,2 and G, where ⎤ ⎡ T1 F1 ⎥ ⎢F T T2 F2 1 ⎥. G=⎢ T ⎣ F2 T 3 F3 ⎦ F3T T4 Let ρ(A) be the spectral radius of a matrix A. Lemma 6 [8]. If A is a irreducible nonnegative matrix and B is any principal submatrix of A then ρ(B) < ρ(A). 496 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 Theorem 3. The spectral radius of L(Pm (Bi )) is the largest eigenvalue of the matrix G. Proof. From Theorem 2, the eigenvalues of L(Pm (Bi )) are the eigenvalues of the matrices Ti,j for i ∈ i and 1  j  ki − 1 together with the eigenvalues of G. These matrices are irreducible nonnegative matrices and each Ti,j is a principal submatrix of G. Thus the result follows from Lemma 6.  Lemma 7 [3, Corollary 4.2]. Let v be a pendant vertex of the graph G. Let  G be the graph obtained from G by removing v and its edge. Then the eigenvalues of L( G) interlace the eigenvalues of L(G).  be a subtree of the tree T. Then Corollary 1. Let T  a(T)  a(T). Proof. From Lemma 7, it follows that the algebraic connectivity of a graph do not increase if a  is a subtree T, we can construct T pendant vertex and its edge are added to the graph. Since T  by successively adding in pendants vertices and edges. Hence, from the above mentioned from T fact, we obtain the result.  Theorem 4. The algebraic connectivity of Pm (Bi ) is the smallest positive eigenvalue of G. Proof. From Theorem 2   σ (L(Pm {Bi })) = ∪m i=1 ∪j ∈i σ (Ti,j ) ∪ σ (G). If i = φ for all i then σ (L(Pm {Bi })) = σ (G) and there nothing to prove. Suppose i = / φ. Let  ⎤ ⎡ di,2 − 1  di,1 ⎥ ⎢ di,2 − 1 di,2 ⎥ ⎢ ⎥ ⎢  . .. Li = ⎢ ⎥ di,ki −1 − 1  ⎥ ⎢  ⎣ di,ki −1 − 1 di,ki −1 di,ki ⎦ di,ki di,ki of order ki × ki . In [6] we prove σ (L(Bi )) = ∪j ∈i σ (Ti,j ) ∪ σ (Li ). (22) Let j ∈ i and λ ∈ σ (Ti,j ). From (22), λ is a Laplacian eigenvalue of Bi . Then λ  a(Bi ). We now use Corollary 1, to obtain a(Bi )  a(Pm {Bi }). Hence, λ  a(Pm {Bi }). This inequality has been obtained for any i = / φ, any j ∈ i and any λ ∈ σ (Ti,j ). Therefore λ  a(Pm {Bi }) and thus the proof is complete.  4. The spectrum of the adjacency matrix From (4) we have ⎤ ··· 0 E1 ⎥ ⎢ .. ⎢0 . A2 E2 ⎥ ⎥ ⎢ . .. ⎥ , .. .. A(Pm {Bi }) = ⎢ ⎥ ⎢ .. . . 0 . ⎥ ⎢ ⎣0 0 Am Em ⎦ T E1T E2T · · · Em Am+1 where the diagonal blocks Ai (1  i  m) are given by (6) and Am+1 is given by (8). ⎡ A1 0 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 497 We may apply Lemma 2 to X = λI − A(Pm {Bi }). For this matrix αi,j = λ for 1  i  m and 1  j  ki − 1, and αi = λ for 1  i  m. Definition 3. For i = 1, 2, . . . , m, let Qi,0 (λ) = 1, Qi,1 (λ) = λ and for j = 2, 3, . . . , ki − 1, let ni,j −1 Qi,j (λ) = λQi,j −1 (λ) − Qi,j −2 (λ). ni,j Moreover, let Qi (λ) = λQi,ki −1 (λ) − ni,ki −1 Qi,ki −2 (λ) for i = 1, 2, . . . , m. Theorem 5. We have (a) m |λI − A(Pm {Bi })| = Q(λ) (b) n Qi,ji,j −ni,j +1 (λ). i=1 j ∈i   σ (A(Pm {Bi })) = ∪m i=1 ∪j ∈i {λ : Qi,j (λ) = 0} ∪ {λ : Q(λ) = 0}, where   Q1 (λ)  Q2,k2 −1 (λ)   Q(λ) =      Q1,k1 −1 (λ) Q2 (λ) Q3,k3 −1 (λ) Q2,k2 −1 (λ) .. . .. . .. .. . .       .   Qm−1,km−1 −1 (λ)  Qm (λ) Qm,km −1 (λ) Proof. Similar to the proof of Theorem 1.  Definition 4. For i = 1, 2, 3, . . . , m, let  ⎡ di,2 − 1 0 ⎢ .. ⎢ di,2 − 1 . 0 ⎢ . . Si = ⎢ .. .. ⎢ ⎢  ⎣ di,k −1 − 1 i  ⎤ di,ki −1 − 1 0 di,ki  di,ki 0 ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ of order ki × ki . Moreover, for i = 1, 2, . . . m and for j = 1, 2, 3, . . . , ki − 1, let Si,j be the j × j leading principal submatrix of Si . Lemma 8. For i = 1, 2, . . . , m and for j = 1, 2, . . . , ki − 1, we have |λI − Si,j | = Qi,j (λ). 498 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 Moreover, |λI − Si | = Qi (λ) for i = 1, 2, . . . , m. Proof. Similar to the proof of Lemma 4.   Lemma 9. Let r = m i=1 ki . Let H be the symmetric matrix of order r × r defined by ⎡ ⎤ S1 F1 ⎢ T ⎥ .. ⎢F ⎥ . S2 ⎢ 1 ⎥ ⎢ . . . H =⎢ .. ⎥ .. .. ⎥. ⎢ ⎥ ⎣ Sm−1 Fm−1 ⎦ T · · · Fm−1 Sm Then |λI − H | = Q(λ). Proof. Similar to the proof of Lemma 5.  Theorem 6. (a)   σ (A(Pm {Bi })) = ∪m i=1 ∪j ∈i σ (Si,j ) ∪ σ (H ). (b) The multiplicity of each eigenvalue of the matrix Ai,j , as an eigenvalue of A(Pm {Bi }), is at least (ni ,j −ni,j +1 ) for j ∈ i . (c) The largest eigenvalue of H is the largest eigenvalue of A(Pm {Bi }). Proof. The proof for (a) and (b) is similar to the proof of Theorem 2. Finally, (c) follows from part (a) and Lemma 6.  Example 3. Let P4 {Bi : i = 1, 2, 3, 4} be the tree in Example 1. For this tree ⎡ ⎤ √ ⎤ ⎡ 0 1 √ 0 2 √ ⎢1 ⎥ √ 2 √ ⎥ √0 S1 = ⎢ , S2 = ⎣ 2 √0 3⎦ , ⎣ 2 √0 2⎦ 3 0 2 0 √ ⎤ ⎡ √ ⎡ ⎤ 3 √ √0 2 √0 ⎥ ⎢ 3 √0 0 2 ⎥ , S4 = ⎣ 2 √ S3 = ⎢ 2⎦ . ⎣ √0 2 0 1⎦ 0 2 0 1 0 We have 1 = {2, 3}, 2 = {1, 2}, 3 = {1, 2}, 4 = {1, 2}. From Theorem 6, the eigenvalues of A(Pm {Bi }) are those of S1,2 , S1,3 , S2,1 , S2,2 , S3,1 , S3,2 , S4,1 , S4,2 and S 499 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 where ⎡ S1 ⎢F T 1 S=⎢ ⎣ F1 S2 F2T F2 S3 F3T ⎤ ⎥ ⎥. F3 ⎦ S4 5. Copies of a generalized Bethe tree attached to a path In this section, we assume B1 = B2 = · · · = Bm = B, where B is a generalized Bethe of k levels in which the numbers dk−j +1 and nk−j +1 are the degree of the vertices and the number of them at level j . Then k1 = k2 = · · · = km = k,   1 = · · · = m =  = j : 1  j  k − 1, nj +1 > nj , F1 = F2 = · · · = Fm = F, where F is a k × k matrix whose entries are 0 except F (k, k) = 1, T2 = T3 = · · · = Tm−1 = T + F, where ⎡ √ d1 ⎢ d2 − 1 ⎢ ⎢ T = T1 = Tm = ⎢ ⎢ ⎣ ⎤ √ d2 − 1 d2 √ and for i = 1, 2, . . . , m, j = 1, 2, . . . , k − 1, √ ⎡ d2 − 1 √ d1 ⎢ d2 − 1 d2 ⎢ ⎢ .. Ti,j = ⎢ . ⎢ √ ⎣ dk−1 − 1 .. . dk−1 − 1 √ √ dk−1 − 1 dj −1 dj − 1 dk−1 − 1 d√k−1 dk ⎥ ⎥ ⎥ ⎥ √ ⎥ dk ⎦ dk + 1 ⎤ ⎥ ⎥ ⎥ ⎥. ⎥  dj − 1 ⎦ dj Definition 5. For s = 1, . . . , m, let √ ⎡ ⎤ d2 − 1 √ √ 1 ⎢ d2 − 1 ⎥ d2 d3 − 1 ⎢ ⎥ ⎢ ⎥ √ . . ⎢ ⎥ . d3 − 1 d3 ⎥ L(s) = ⎢ ⎢ ⎥ √ .. .. ⎢ ⎥ . . d − 1 k−1 ⎢ ⎥ √ √ ⎣ ⎦ dk−1 − 1 d√k−1 dk dk dk + 2 + 2 cos πs m of order k × k and, j = 1, 2, . . . , k − 1, let Lj the j × j leading principal submatrix of L(s). 500 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 We recall that the Kronecker product [9] of two matrices A = (ai,j ) and B = (bi,j ) of sizes m × m and n × n, respectively, is defined to be the (mn) × (mn) matrix A ⊗ B = (ai,j B). For matrices A, B, C and D of appropiate sizes (A ⊗ B)(C ⊗ D) = (AC ⊗ BD). We write Pm {B} instead of Pm {Bi }. Theorem 7. The set of eigenvalues of L(Pm {B}) is     σ (L(Pm {B})) = ∪j ∈ σ (Lj ) ∪ ∪m s=1 σ (L(s)) . Proof. From Theorem 2, we have   σ (L(Pm {B})) = ∪m i=1 ∪j ∈i σ (Ti,j ) ∪ σ (G) We observe that Lj = Ti,j . Then σ (L(Pm {B})) = ∪j ∈ σ (Lj ) ∪ σ (G). It remains to prove that σ (G) = ∪m s=1 σ (L(s)). We have √ ⎡ d2 − 1 √ √ 1 ⎢ d2 − 1 d2 d3 − 1 ⎢ ⎢ √ .. ⎢ . d3 − 1 d3 ⎢ L(m) = ⎢ . . .. .. ⎢ ⎢ √ ⎣ dk−1 − 1 ⎤ √ dk−1 − 1 d√k−1 dk ⎥ ⎥ ⎥ ⎥ ⎥. ⎥ ⎥ √ ⎥ dk ⎦ dk For brevity, let L = L(m). Then L(s) = L + 2 + 2 cos πs m F and T = L + F . Hence ⎡ ⎤ ⎡ T F L+F F ⎢F T + F F ⎥ ⎢ F L + 2F F ⎢ ⎥ ⎢ ⎢ ⎥ ⎢ . . .. .. .. .. ⎥=⎢ . . F F G=⎢ ⎢ ⎥ ⎢ ⎢ ⎥ ⎢ . . . . ⎣ . T + F F⎦ ⎣ . L + 2F F T F We may write ⎤ ⎥ ⎥ ⎥ ⎥. ⎥ ⎥ F⎦ L G = Im ⊗ L + Cm ⊗ F, where ⎡ 1 ⎢ ⎢1 ⎢ ⎢ Cm = ⎢ ⎢ ⎢ ⎣ ⎤ 1 2 .. . .. . .. . .. . .. . 2 1 ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ 1⎦ 1 of order m × m. The eigenvalues of Cm are known [4]. They are γs = 2 + 2 cos πs m , 1  s  m. 501 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 Let  V = v1 v2 vm−1 ··· vm  be a orthogonal matrix whose columns v1 , v2 , . . . , vm are eigenvectors corresponding to the eigenvalues γ1 , γ2 , .., γs . Therefore (V ⊗ Ik )G(V T ⊗ Ik ) = (V ⊗ Ik )(Im ⊗ L + Cm ⊗ F )(V T ⊗ Ik ) = Im ⊗ L + (V Cm V T ) ⊗ F. We have ⎡ ⎢ ⎢ (V Cm V ) ⊗ F = ⎢ ⎢ ⎣ T ⎡ Therefore ⎢ ⎢ ⎢ =⎢ ⎢ ⎣ ⎤ γ1 γ2 γm−1 γm γ1 F ⎥ ⎥ ⎥⊗F ⎥ ⎦ ⎤ γ2 F .. . γm−1 F γm F ⎡ ⎢ ⎢ ⎢ (V ⊗ Ik )G(V T ⊗ Ik ) = ⎢ ⎢ ⎣ L + γ1 F ⎡ ⎢ ⎢ ⎢ =⎢ ⎢ ⎣ L + γ2 F .. ⎥ ⎥ ⎥ ⎥. ⎥ ⎦ ⎤ . L + γm−1 F ⎤ L(1) L (2) .. . L (m − 1) L + γm F ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎥ ⎥ ⎥ ⎥. ⎥ ⎦ L (m) Since G and (V ⊗ Ik )G(V T ⊗ Ik ) are similar matrices, we conclude that σ (G) = ∪m s=1 σ (L(s)). This completes the proof.  Corollary 2. The largest eigenvalue of L(1) is the spectral radius of L(Pr (B)). Proof. From Theorem 3, the spectral radius of L(Pr (B)) is the largest eigenvalue in ∪m s=1 σ (L(s)). That is ρ(L(Pr (B))) = max{ρ(L(s) : s = 1, 2, . . . , m)}. We have 502 O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 π πs > cos for s = 2, 3, . . . , m. (23) m m Since the spectral radius of a irreducible nonnegative matrix strictly increases when any entry of the matrix strictly increases [8, Theorem 2.1.], it follows from the inequality (23) that ρ(L(1)) is the spectral radius of L(Pr (B)).  cos Corollary 3. The smallest eigenvalue of L(m − 1) is the algebraic connectivity of Pr (B). Proof. We begin observing that L(m) is a singular. From Theorem 4, the algebraic connectivity of Pr (B) is the smallest eigenvalue in ∪m s=1 σ (L(s)). Then a(Pr (B)) = min{λ1 (L(s)) : s = 1, 2, . . . , m − 1}, where λ1 (L(s)) denotes the smallest eigenvalue of L(s). We may write L(s) = L(s + 1) + E where ⎡ 0 ⎢ .. ⎢. E=⎢ ⎢ .. ⎣. 0 ··· .. . ··· ⎤ ··· 0 .. . 0 0 0 −2 cos π(s+1) + 2 cos πs m m ⎥ ⎥ ⎥. ⎥ ⎦ From the inequality πs π(2s + 1) π π(s + 1) + cos = 2 sin sin >0 − cos m m 2m 2m for s = 1, 2, . . . , m − 1, it follows that E is a positive semidefinite matrix. Since that the eigenvalues of a Hermitian matrix do not decrease if a positive semidefinite matrix is added to it, we have λ1 (L(s + 1))  λ1 (L(s)) for s = 1, 2, . . . , m − 2. It follows that min{λ1 (L(s)) : s = 1, 2, . . . , m − 1} = λ1 (L(m − 1)).  We now consider the adjacency matrix of Pr (B). Definition 6. For s = 1, . . . , m, let √ ⎡ d2 − 1 0 ⎢√ ⎢ d2 − 1 0 ⎢ . A(s) = ⎢ .. ⎢ ⎢ ⎣ √ .. . .. . dk−1 − 1 ⎤ √ dk−1 − 1 √0 dk √ dk 2 + 2 cos πs m ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ of order k × k and, j = 1, 2, . . . , k − 1, let Aj the j × j leading principal submatrix of A(s). The following results can be proved in a way that is similar to the proofs of Theorem 7 and Corollary 3. Theorem 8. The set of eigenvalues of A(Pm {B}) is σ (A(Pm {B})) = ∪j ∈ σ (Aj ) ∪ ∪m s=1 σ (A(s)). O. Rojo, L. Medina / Linear Algebra and its Applications 430 (2009) 483–503 503 Corollary 4. The largest eigenvalue of A(1) is the spectral radius of A(Pr (B)). Acknowledgement The authors wish to thank the referee for the comments which led to an improved version of the paper. References [1] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298–305. [2] G.H. Golub, C.F. Van Loan, Matrix Computations, second ed., Johns Hopkins University Press, Baltimore, 1989. [3] R. Grone, R. Merris, V.S. Sunder, The Laplacian spectrum of a graph, SIAM Matrix Anal. Appl. 11 (12) (1990) 218–238. [4] S. Kouachi, Eigenvalues and eigenvectors of tridiagonal matrices, Electron. J. Linear Algebra 15 (2006) 115–133. [5] O. Rojo, Spectra of weighted generalized Bethe trees joined at the root, Linear Algebra Appl. 428 (2008) 2961–2979. [6] O. Rojo, R. Soto, The spectra of the adjacency matrix and Laplacian matrix for some balanced trees, Linear Algebra Appl. 403 (2005) 97–117. [7] L.N. Trefethen, D. Bau III, Numerical linear algebra, Society for Industrial and Applied Mathematics (1997). [8] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall Inc., 1965. [9] F. Zhang, Matrix Theory, Springer, 1999.