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Abstract

Semiconductor quantum dots, so-called artificial atoms, have attracted considerable interest as mesoscopic model systems and

prospective building blocks of the “quantum computer”. Electrons are trapped locally in quantum dots, forming controllable

and coherent mesoscopic atom- and moleculelike systems. Electrostatic definition of quantum dots by use of top gates on

a GaAs/AlGaAs heterostructure allows wide variation of the potential in the underlying two-dimensional electron gas. By

distorting the trapping potential of a single quantum dot, a strongly tunnel-coupled double quantum dot can be defined.

Transport spectroscopy measurements on such a system charged with N=0,1,2,... electrons are presented. In particular, the

tunnel splitting of the double well potential for up to one trapped electron is unambiguously identified. It becomes visible

as a pronounced level anticrossing at finite source drain voltage. A magnetic field perpendicular to the two-dimensional

electron gas also modulates the orbital excitation energies in each individual dot. By tuning the asymmetry of the double

well potential at finite magnetic field the chemical potentials of an excited state of one of the quantum dots and the ground

state of the other quantum dot can be aligned, resulting in a second level anticrossing with a larger tunnel splitting. In

addition, data on the two-electron transport spectrum are presented.
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Introduction

Electrostatically defined semiconductor double

quantum dots [1] have over the recent years attracted

a large amount of interest originating from different

motivations. On one hand, quantum dots and cou-
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pled quantum dots provide a fully tunable mesoscopic

model system as “artificial atoms” [1] and “artificial

molecules” [2,3], respectively. Electrons are trapped

locally in externally controllable potential wells. In

addition, transport spectroscopy allows direct ob-

servation of many fundamental quantum-mechanical

phenomena, ranging e.g. from shell filling [4] and

molecular hybridization [5–7] to interaction with the

crystal lattice [8,9] and coherent motion of electrons

[10,11]. On the other hand several proposals for using

the charge or spin states of electrons trapped in quan-

tum dots as qubits, the elementary registers of the pro-

posed quantum computer, have emerged. Foremost,
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the use of a single electron spin provides a well-defined

two-level system [12]. In addition, several other dif-

fering schemes for using quantum dots in quantum

information processing have been proposed [11,13–15].

The material system in use is a AlGaAs/GaAs het-

erostructure, forming a two-dimensional electron gas

(2DEG) 120 nm below the crystal surface. The elec-

tron sheet density of the 2DEG at T ≃ 4.2 K is ns ≃

1.8 × 1015 m−2, the electron mobility µ ≃ 75 m2/Vs.

Using optical and e-beam lithography, gate electrodes

are deposited on the chip surface. When a negative

voltage is applied to these electrodes with respect to the

2DEG, the Schottky barrier between metal and semi-

conductor prevents current. For a sufficiently negative

gate voltage, the electrical field however raises the con-

duction band edge in the 2DEG locally near the elec-

trode above the Fermi energy, leading to a depletion of

the 2DEG. Using several gate electrodes (“split gates”)

and adapting the electrode geometry, conducting is-

lands within an otherwise non-conducting crystal are

formed – the electrostatically defined quantum dots.

1. Distortion of a quantum dot into a double

quantum dot

Figure 1(a) displays a SEM micrograph of the gate

geometry that has been used in the measurements. The

2DEG itself is contacted outside the depicted region,

where Ohmic contacts have been formed via germa-

nium n+ doping [16]. The confinement potential within

the plane of the 2DEG is generated by four gate elec-

trodes, marked with gL, gR, gC, and gX. Two tunnel

barriers, between gates gL and gX, or gR and gX, respec-

tively, connect the quantum dot to the 2DEG forming

the source (S) and drain (D) leads. The shape of the

gate electrodes, adapted from a geometry first pub-

lished in Ref. [17], is optimized such that the size of

the quantum dot and thereby the number of trapped

electrons can be decreased strongly while still main-

taining a measurable tunnel rate to the leads. It has

been shown that this and similar gate geometries allow

to measure a single electron tunneling (SET) current

even in the limit of only one trapped electron in the

quantum dot [17,18].

In addition, gates gR and gQPC as marked in Fig. 1(a)

can be used to define a quantum point contact (QPC),
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Fig. 1. (a) SEM micrograph of the gate electrode geometry
used to define a double quantum dot (DQD) and a quantum
point contact (QPC). The approximate positions of DQD
and QPC and the current paths are indicated in white.
(b) Current through the DQD as function of the side gate
voltages UgL and UgR (USD,dc = 50 µV, logarithmic color
scale). The black dashed lines trace the gate voltages where
the total charge in the DQD changes by 1e, as detected by
the quantum point contact [7].

i.e. a one-dimensional constriction of the 2DEG. Con-

ductance quantization leads here for specific gate volt-

age ranges to a strong dependence of the tunnel current

through the QPC on the local electrostatic potential

[19,20]. The QPC can thus be used as a charge sensor,

detecting a change of the number of electrons in the

nearby quantum dot [18,21,22].

Measurements of the transport spectrum of the

quantum dot as well as the QPC charge detection

prove that the charge of the observed quantum dot

can be controlled all the way down to a total electron

number N = 1. In the few electron limit the elec-

tronic shell structure within the confinement potential

becomes clearly visible [4,23]. In addition, the confine-

ment potential can be shaped via adjustments of the

top gate voltages. Thus, by application of increasingly

negative gate voltages on the center gates UgC and

UgX, accompanied by appropriate balancing of the

voltages on the side gates UgL and UgR, the electronic

trapping potential can be distorted into a double well

potential [7,23,24]. This way, a double quantum dot is

shaped. During the deformation process, the Coulomb

blockade oscillations can be traced. Between the gate

voltages marking SET current the number of trapped

electrons remains constant, thereby disclosing the

charge of the resulting double quantum dot.

A charge stability diagram of the strongly coupled
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double quantum dot is displayed in Fig. 1(b). Here, the

linear response dc current (USD = 50 µV) is plotted

as a function of the side gate voltages UgL and UgR.

Dashed lines mark gate voltages where the QPC de-

tects a change of the total charge in the double quan-

tum dot. In the lower left region of the plot no further

changes in charge occupation are observed, confirming

that here the double quantum dot is completely emp-

tied of conduction band electrons [7].

The regular pattern of the stability diagram shows

areas of stable charge configurations caused by

Coulomb blockade, where the electron numbers in

both quantum dots are fixed. In a double quantum dot

having weak interdot coupling these areas correspond

to pronounced hexagons [25,26]. The strong tunnel

coupling within the double quantum dot present in

this particular measurement, however, causes a round-

ing of the hexagon edges by means of the sizable

hybridization energy [2]. Such an “artificial molecule”

forms delocalized symmetric (bonding) and antisym-

metric (antibonding) states.

In a weakly tunnel-coupled double quantum dot, the

electron number in Coulomb blockade is a fixed inte-

ger in each dot. Then, SET current through a serial

double quantum dot is only possible when the elec-

tron number can fluctuate in both quantum dots, as

at the triple points of the stability diagram [26]. Here,

three charge configurations are energetically degener-

ate. In the case of strong tunnel coupling between the

two dots, however, the delocalized molecular states

carry SET current. Hence, current is detected along the

hexagon edges of the stability diagram, along which

two charge configurations are degenerate, as can be ob-

served in Fig. 1(b).

2. One-electron transport spectrum

The transport spectrum in linear response, measured

with a very small source drain voltage, provides ac-

cess only to the quantum mechanical ground state of

each charge configuration. For obtaining information

on excited states, the source-drain voltage USD has to

be sufficient to provide electrons with an excess ki-

netic energy larger then the excitation energy. At finite

USD each triple point of the charge stability diagram

expands in a characteristic way into a larger region
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Fig. 2. (a) Differential conductance of the double quantum
dot, as function of the side gate voltages UgL and UgR,
around the first triple point of the stability diagram near
charge configurations NL/NR = 0/0, 1/0, 0/1. A large
source-drain voltage USD = −0.75mV is applied. (b) The
same data, plotted in the intrinsic coordinate system of the
double quantum dot (average energy Σ of the double well
potential and potential asymmetry ∆, see text). The model
expectations for a two-state system are overlayed.

where SET current can be observed. For weak tunnel

coupling, these regions form a triangular shape in the

stability diagram [26–28]. A differential conductance

measurement observes the edges of the triangles.

Fig. 2(a) displays the differential conductance of our

double quantum dot at strong tunnel coupling, for an

applied source-drain voltage USD = −0.75 mV. In con-

trast to the expectation for weak interdot tunnel cou-

pling the lines of finite differential conductance ob-

served here do not trace a single triangle. Instead,

the first triple point of the stability diagram, where

the charge configurations with electron numbers in the

left and right quantum dot NL/NR = 0/0, 0/1, and

1/0 contribute to transport, expands into three lines

marked I, II, and III. The distance between lines I

and III is increasing with source-drain voltage. As is

also confirmed by dc current measurements (data not

shown), along line I the transport window of finite SET

current opens. Thus, here the chemical potential cor-

responding to the molecular ground state is aligned

with the Fermi edge of the 2DEG in the source contact.

Along line III, the transport windows closes again, as

the ground state chemical potential is aligned with the

drain chemical potential. Note that by chosing the en-

ergy zero, we can assume this chemical potential

µ+(1) ≡ E+(1) − E(0) = E+(1) + const. (1)
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to be equal the molecular ground state energy E+(1),

since the energy of the empty quantum dot E(0) can

be assumed constant.

Line II of enhanced differential conductance in be-

tween lines I and III has to correspond to the open-

ing of an additional transport channel via an excited

state. Its meaning becomes immediately clear when

plotting the measured data in an intrinsic coordinate

system of the double quantum dot. This has been done

in Fig. 2(b), where the same measurement data as in

Fig. 2(a) is plotted after applying a linear coordinate

transformation. Using additional calibration measure-

ments as well as the data presented here, the influence

of each gate voltage UgL and UgR on the chemical po-

tentials for adding an electron in the left quantum dot

µL and for adding an electron in the right quantum dot

µR has been calculated. The two axes now designate

the average potential in the two dots Σ = (µL +µR)/2

and the potential asymmetry ∆ = (µR − µL)/2.

As can be seen in Fig. 2(b), lines I and II form a level

anticrossing as function of the potential asymmetry ∆.

They obviously correspond to the symmetric ground

state and the antisymmetric excited state of the single

electron double quantum dot. The anticrossing is well

described as a function of the potential asymmetry ∆

by

E±(1) = ∓
q

∆2 + t20 (2)

defining the white model lines in Fig. 2(b), where 2t0 =

0.2 meV is the tunnel splitting.

The identification of these lines of enhanced differ-

ential conductance enables us to obtain the depen-

dence of the tunnel splitting on external parameters in

a straightforward way. Since the distance between lines

I and III of enhanced conductance corresponds to the

energy scale of the externally supplied and controlled

source-drain voltage, it provides a means of energy cal-

ibration. By comparing it to the minimum distance

between lines I and II in the same direction in one of

the plots of Fig. 2 and linearly scaling the energy, the

tunnel splitting is obtained. This can be done for both

the raw data (Fig. 2(a)) and the data after coordinate

transformation (Fig. 2(b)), since the linear transfor-

mation preserves the length ratio. Other characteristic

energy values, as e.g. the charging energy for the sec-

ond electron E2, can be measured in a similar way.

In addition, information on the time-averaged elec-

tron number within the SET region can be extracted
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Fig. 3. (a) Scheme of the WKB model for the dependence
of the tunnel splitting on an increasing magnetic field per-
pendicular to the 2DEG B⊥, detailing the symbols used

in the text. (b) Measured dependence of 2t0 on B⊥. The
solid line corresponds to a model curve (see text). (c) Tun-
nel spectrum of the double quantum dot at B⊥ = 1.4T.
Differential conductance G as function of the intrinsic en-
ergies Σ and ∆, displaying a second level anticrossing at
high potential asymmetry.

by observing the quantum point contact charge detec-

tion. Since the effective tunnel rates into and out of the

double quantum dot depend on both the tunnel bar-

rier properties and the probability density of the elec-

tronic wavefunction, by varying ∆ and thereby shifting

the wavefunction information on the transmittance of

the tunnel barriers coupling the double quantum dot

to the leads is obtained [7].

3. One-electron transport spectrum at high

magnetic field

Applying a magnetic field B⊥ perpendicular to the

2DEG modifies the transport spectrum. The decreas-

ing magnetic length LB =
p

~/|e|B⊥ causes a com-

pression of the electronic wave functions. Thus, the ef-

fective tunnel rate through all tunnel barriers in the

nanoscale structure decreases. This leads to a uniform

decrease of SET current, which is partly due to the

shrinking of the molecular tunnel splitting. Fig.3(a)

displays a double well potential, where the center bar-

rier of effective amplitude φ defines the interdot tunnel

splitting. We now introduce a simple model to describe

4



the effect of a perpendicular magnetic field B⊥ on the

interdot tunnel splitting. The center of charge distance

d∞ of the two quantum dots is assumed to be inde-

pendent of B⊥. The size of the quantum dots shrinks

in a perpendicular magnetic field, and approaches LB

when the magnetic length becomes smaller than the

geometrical confinement of the quantum dots. Thus,

the diameter of both quantum dots is assumed to scale

with the Fock-Darwin length [29]

LFD =
LB

4
p

1 + 4ω2
0/ω2

c

, (3)

where ω0 describes the harmonic oscillator potential

and ωc = |e|B⊥/m∗ is the cyclotron frequency. This

defines a magnetic field dependent “effective tunnel

barrier width”

d(B⊥) = d∞ − LFD(B⊥). (4)

Inserting this expression into the WKB approximation

yields a functional dependence for the tunnel splitting

2t0(B⊥). Fig. 3(b) displays the measured tunnel split-

ting as well as a model curve (solid line) with ω0, d∞,

and φ as fit parameters [7]. The agreement with our

data is satisfactory.

A magnetic field perpendicular to the 2DES not only

leads to magnetic compression of the quantum states,

but also modifies the orbital level spectrum. In our

case for B⊥ & 1T, an additional excited state enters

the transport window defined by the source-drain volt-

age [30], as shown in Fig. 3(c) for B⊥ = 1.4 T. Here, the

excited state becomes visble as new line of enhanced

conductance marked with I∗. Remarkably, for a large

potential asymmetry ∆ ≃ 0.275 meV, a second level

anticrossing involving lines I∗ and II becomes visible.

Whereas the tunnel splitting 2t0 = 0.064 meV, as ob-

tained in Ref. [7] for the ground state – ground state

hybridization, is already strongly decreased at B⊥ =

1.4 T, for this second level anticrossing the splitting re-

mains 2t∗0 ≃ 0.2 meV. The energy level diagrams that

are shown as insets in Fig. 3(c) illustrate the origin

of the observed second anticrossing. In this case, the

ground state of one of the quantum dots and an excited

state of the other dot are energetically aligned, lead-

ing to hybridized molecular states. Consistently, this is

also observed when measuring dc current, where delo-

calization causes a significant increase in SET tunnel-

ing, and in the QPC signal (data not shown).

The situation involving both single dot ground states

and one additional excited state can be modeled by the

Hamiltonian

H
.
=

0

B

B

@

∆ −t0 −t∗0

−t0 −∆ 0

−t∗0 0 −∆ + ǫ∗

1

C

C

A

, (5)

where ∆ and 2t0 again describe the ground state two-

level system. The excitation energy in one of the two

quantum dots is given by ǫ∗ and the tunnel splitting

caused by hybridization between this excited state and

the ground state of the other dot is 2t∗0 . The model

curves in Fig. 3(c) (solid lines) corespond to this Hamil-

tonian for 2t0 = 0.064 meV, 2t∗0 = 0.2 meV, and ǫ∗ =

0.55 meV. They show good agreement with the mea-

sured data. 3

4. Two-electron transport spectrum

A large body of theoretical literature has been ded-

icated to the level spectrum of a double quantum dot

occupied with two electrons, the “quantum dot hydro-

gen molecule” [12,31–34]. This is to a considerable ex-

tent due to the proposed use of the spin exchange cou-

pling for realizing controlled two-spin interaction, or

“two-qubit gates”. The ground state for N = 2 is at

zero magnetic field expected to be a singlet, the first ex-

cited states are given by three spin-degenerate triplet

states. In both cases the two electrons are predomi-

nantly distributed over the double quantum dot. The

energy difference between singlet and triplet is the ef-

fective Heisenberg exchange coupling J . Time-resolved

experiments have recently been successfully used for

quantifying J in the weak coupling limit [11]. However,

few data on direct dc observation of the two electron

levels in GaAs in the strong coupling case is published.

Figure 4(a) displays a measurement of the transport

spectrum near the triple point for degenerate charge

configurations NL/NR = 1/0 ↔ 0/1 ↔ 1/1. Here, the

charge of the symmetric double quantum dot varies

between one and two electrons. By means of the volt-

age on gate gC, which couples nearly equally to both

3 The actual value of the parameter 2t0 = 0.064meV is
taken from magnetic field dependent measurements shown
in Ref. [7] that also take into account the data of Fig. 3(c).
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Fig. 4. (a) Differential conductance G of the strongly cou-
pled double quantum dot, as function of UgC and USD, for
1 ≤ N ≤ 2 electrons. Constant values for UgL and UgR are
chosen such that the double well potential is approximately
symmetric. Isolated black regions mark negative differen-
tial conductance. (b) From Ref. [32]: Theoretical expecta-
tions for this parameter region. (c) Averaged trace through
the measurement of (a), showing regular lines of enhanced
conductance (see text).

quantum dots, the electrostatic potential in both dots

is varied simultaneously keeping the double quantum

dot approximately symmetric. A gradual modification

of 2t0 is naturally expected in this case and has been

observed. In addition, USD can influence the potential

asymmetry ∆. A detailed treatment of these effects is

however outside the scope of this article. In Fig. 4(a)

the conductance is plotted as function of USD and UgC,

displaying diamond-shaped regions of Coulomb block-

ade similar as in the case of a single quantum dot.

From comparisons with measurements as shown in

Fig. 2, the three dominant lines of enhanced differential

conductance can be unambiguously identified. At line

IV, the two-electron ground state enters the transport

window. The source-drain voltage provides sufficient

energy that even an energetically lower-lying electron

can leave the quantum dot, such that the dot remains

in the excited antisymmetric one-electron state. Along

line V, this second transport channel is “switched off”,

meaning that only the molecular ground states for N =

1 and N = 2 electrons contribute to transport. Line VI

then again corresponds to the transition into Coulomb

blockade with N = 2. Thus, these main features di-

rectly mirror the data of the first triple point. At the

left edge of the plot, at high source-drain voltage line

III of the first triple point becomes visible, bordering

the two electron tunneling region.

Figure 4(b) displays the theoretical expectations for

the transport spectrum in this parameter region un-

der the condition 2t0 ≪ ~ω0, as presented in Ref. [32].

As stated previously, for the first triple point the en-

ergy of the one-electron molecular states can be treated

synonymously with the associated chemical potential

µ(1) = E(1) − E(0) = E(1) + const. Here, the chemi-

cal potential that has to be aligned with the source or

drain Fermi edge is given by the relation

µ(2) = E(2) − E(1), (6)

with E(2) as a two-electron eigenenergy and E(1) as

a one-electron eigenenergy. Thus, both the one and

two electron level spectra are expected to be visible in

transport. The triplet states separated by the exchange

energy J from the singlet state result for certain condi-

tions in a second line of finite differential conductance

parallel to both line IV and V [32].

A comparison of experiment (Fig. 4(a)) and theory

(Fig. 4(b)) displays significant differences. In the mea-

surement data of Fig. 4(a), the additional line marked

“?” with an excitation engergy ∆ǫ > 2 × 2t0 probably

corresponds to a higher orbital one-electron excitation.

In the lower-energy range, a pronounced region of nega-

tive differential conductance becomes visible. Although

excited states are observed, a unique identification has

not been possible for most of the lines that involve two

electron states. Clearly our data do not allow the iden-

tification of the exchange coupling J . A possible rea-

son for this is that the confinement potential is already

quite shallow for the more positive gate voltages UgC

required to reach 1 ≤ N ≤ 2. For 0 ≤ N ≤ 1 a higher

excited orbital state can e.g. be observed at an exci-

tation energy ∆ǫ ∼ 0.4 meV, as indicated in Fig. 2(a)

with a black arrow. At the gate voltages present in the

1 ≤ N ≤ 2 region, however, a nearly regular pattern

of two-electron excited states with excitation energies

∆ǫ ∼ 0.2 meV, 0.4 meV, 0.55 meV is found. While dif-

ficult to recognize in the raw data of Fig. 4(a), where

the corresponding resonances are indicated with white

dashed lines, they can be easily seen in the line plot of

Fig. 4(c). Here, the differential conductance along mul-

tiple traces through Fig. 4(a) starting from line IV and

parallel to line VI (as indicated by the black arrows) is

averaged. One-electron resonances run parallel to line

VI and are therefore not visible in the line plot, whereas

two-electron resonances occur at fixed distances to line

IV and are emphasized by this averaging. Assuming

that these regularly spaced resonances correspond to

orbital excitations within the single quantum dot po-
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tential wells and thereby ~ω0 ∼ 0.2 meV . 2t0, further

level hybridizations can take place, and a complex level

spectrum is expected.

Because of the strong tunnel coupling between the

double quantum dot and its leads, it has been pos-

sible to observe Kondo-enhanced differential conduc-

tance for the one, two, and three electron case in the

presented double quantum dot. More details will be

published in the near future [35].
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