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1. Introduction

Extensive experimental work has recently been aimed towards electrostatically
defining and controlling semiconductor quantum dots [1, 2, 3, 4, 5]. These efforts
are impelled by proposals for using localized electron spin [6] or charge states [7],
respectively, as qubits, the elementary registers of the hypothetical quantum computer.
The complete control of the quantum dot charge down to the limit of only one trapped
conduction band electron was demonstrated by monitoring single electron tunneling
(SET) current through the device as well as by a nearby charge detector [2, 8, 9].

In this article, we present data on an electron droplet in which the charge can
be controlled all the way to the limit of one electron. The quantum dot is defined
electrostatically by using split gates on top of an epitaxially grown AlGaAs/GaAs
heterostructure. We observe a wide tunability of the electronic transport properties
of our device. Recent work focused either on the case of weak coupling between a
quantum dot and its leads [2], or on the Kondo regime of strong coupling to the
leads [9]. Here, we explore a structure that can be fully tuned between these limits.
In addition, we demonstrate how the shape of the quantum dot confinement potential
can be distorted within the given gate geometry [10] all the way into a double well
potential describing a double quantum dot [11, 12, 13]. The charge of the electron
droplet can be monitored during the deformation process.

The heterostructure used for the measurements embeds a two-dimensional
electron system (2DES) 120 nm below the crystal surface. The electron sheet density
and mobility in the 2DES at the temperature of T = 4.2 K are ns ≃ 1.8 × 1015 m−2

and µ ≃ 75 m2/Vs, respectively. We estimate the 2DES temperature to be of the
order T2DES ∼ 100 mK.

Our gate electrode geometry for defining a quantum dot, shown in the SEM
micrograph of Fig. 1(a), is designed following a geometry introduced by Ciorga et

al. [2]. Because of the triangular shape of the confinement potential, an increasingly
negative voltage on the plunger gate gC depletes the quantum dot and simultaneously
shifts the potential minimum towards the tunnel barriers defined by gates gX and gL,
or gX and gR, respectively. This way, the tunnel barriers between the leads and the
electron droplet can be kept transparent enough to allow the detection of SET current
through the quantum dot even for an arbitrarily small number of trapped conduction
band electrons [2].

Fig. 1(b) shows an exemplary color scale plot of the measured quantum dot SET
current |I| as a function of the gate voltage UgC and the source drain voltage USD.
Within the diamond-shaped light regions in Fig. 1(b) SET is hindered by Coulomb
blockade and the charge of the quantum dot is constant. The gates marked gR and
gQPC in Fig. 1(a) are used to define a quantum point contact (QPC). As demonstrated
in Refs. [8] and [9], a nearby QPC can provide a non-invasive way to detect the charge
of a quantum dot electron by electron. The result of such a measurement is shown
in Fig. 1(c), where the transconductance GT = dIQPC/dUgC obtained using a lock-in
amplifier is plotted for USD ≃ 0, along the corresponding horizontal trace in Fig. 1(b).
Note that Figs. 1(b) and (c) have identical x axes. The advantage of using a QPC
charge detector is that its sensitivity is almost independent of the quantum dot charge
state. In contrast, the current through the quantum dot decreases as it is discharged
electron by electron, because of an increase of the tunnel barriers between the quantum
dot and the leads. This can be clearly seen by a comparison of the magnitude of the
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Figure 1. (Color online) (a) SEM micrograph of the gate electrodes used to
electrostatically define a quantum dot (marked as QD) and a quantum point
contact (marked as QPC). (b) Exemplary measurement of the absolute value
of the SET current I through the quantum dot as a function of the center gate
voltage UgC and the bias voltage USD. (c) Differential transconductance GT(UgC)
of the QPC measured at identical parameters as in (b) but for USD = 0. The
numerals N = 0, 1, 2, 3 in (b) and (c) depict the actual number of conduction
band electrons trapped in the quantum dot.

current oscillations in Fig. 1(b) with the transconductance minima in Fig. 1(c).‖ The
QPC transconductance measurement plotted in Fig. 1(c) shows no pronounced local
minima corresponding to changes of the quantum dot charge for UgC < −1 V. This
indicates that the quantum dot is here entirely uncharged. This observation has been
confirmed by further careful tests as e.g. variation of the tunnel barriers or variation
of the QPC lock-in frequency and QPC bias. The inferred number of conduction
band electrons N = 0, 1 , . . . trapped in the quantum dot is indicated in the Coulomb
blockade regions in Figs. 1(b) and 1(c). ¶

In the following we demonstrate the flexibility provided by the use of voltage
tunable top-gates for a lateral confinement of a 2DES. We first focus on the regime
of a few electron quantum dot weakly coupled to its leads, where the shell structure
of an artificial two-dimensional atom in the circularly symmetric case is described
by the Fock–Darwin states [14, 15]. Secondly, we present measurements with the
quantum dot strongly coupled to its leads. Here we observe Kondo features. Finally,
we explore the deformation of the few electron droplet into a serial double quantum
dot by means of changing gate voltages. The transport spectrum of this artificial
molecule has been described in previous publications for the low electron number
limit (0 ≤ N ≤ 2) [11, 12, 13, 16].

2. Weak coupling to the leads

The regime of a few electron quantum dot weakly coupled to its leads is reached
for gate voltages of UgL = −0.52 V, UgR = −0.565 V, and UgX = −0.3 V. The

‖ An apparent double peak structure in Fig. 1(b) around USD ∼ 0 can be explained by noise
rectification effects.
¶ The SET current shown in Fig. 1(b) between N = 0 and N = 1 can not be resolved for USD ∼ 0.
We ascribe this to an asymmetric coupling of the quantum dot to the leads.
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observed Coulomb blockade oscillations are shown in Fig. 2(a), where the differential
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Figure 2. (Color online) (a) Differential conductance G of the quantum dot in
dependence on a magnetic field B⊥ perpendicular to the 2DES and the voltage
on gate gC. All other gate voltages are kept fixed (see main text). (b) B⊥-
field dependence of a relative energy corresponding to the local maxima of G.
The traces are numerically obtained from the measurement shown in (a) after
a conversion of the gate voltage to energy and subtraction of an arbitrary but
B⊥-field independent energy, respectively. Black arrows mark common features
of all traces. A gray vertical line indicates the first ground state transition of
the quantum dot for N & 4. Inset: Qualitative prediction for the traces, using a
Fock-Darwin potential and the constant interaction model.

conductance G ≡ dI/dUSD of the quantum dot is plotted in a logarithmic (color)
scale as a function of center gate voltage UgC and magnetic field perpendicular to the
2DES B⊥. The absolute number N of trapped electrons within the Coulomb blockade
regions, derived by means of the QPC charge detection, is indicated by numerals.

The characteristic B⊥-field dependence of the local maxima of differential
conductance in Fig. 2(a), marking the Coulomb oscillations of SET, has also been
observed via capacitance spectroscopy of lateral quantum dots [17] and via transport
spectroscopy of vertically etched quantum dots [18].

The addition energy of a quantum dot for each electron number N can be
derived from the vertical distance (in UgC) between the local SET maxima, by
converting the gate voltage scale UgC into a local potential energy. The conversion
factor for the present quantum dot has been obtained from nonlinear transport
measurements; a constant conversion factor is used as first-order approximation [1].
Accordingly, in Fig. 2(b) the B⊥ dependence of the differential conductance maxima
positions is plotted after conversion to energy scale. The traces are obtained by
numerically tracking the local SET maxima in Fig. 2(a). An arbitrary but B⊥-
independent energy is subtracted from each trace, such that all traces are equidistant
at B⊥ = 1 T – i.e. at a magnetic field high enough such that orbital effects are
not relevant to the B⊥ dependence of the addition energy anymore. For a direct
comparison the inset of Fig. 2(b) displays the B⊥-dependence expected within the
so-called constant interaction model [1], that approximates many particle effects
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with a classical capacitance term, for the so-called Fock-Darwin states. These are
solutions of the single particle Schrödinger equation of a “two-dimensional atom”.
In detail the vector potential of B⊥ and the Fock-Darwin potential V = m∗ω2

0r
2/2

are considered. The latter describes a two-dimensional harmonic oscillator with
characteristic frequency ω0 and effective electron mass m∗, at the distance r from
its potential minimum [14, 15]. The harmonic approximation is justified for a few
electron quantum dot with a relatively smooth electrostatic confinement as usually
provided by remote gate electrodes.

Although not necessarily expected for lateral quantum dots, where the tunnel
barriers to the 2DES leads automatically induce symmetry breaking, for electron
numbers 1 ≤ N ≤ 7 the measured B⊥ dependence (Fig. 2(b)) resembles these
model expectations (inset). The observed and predicted pairing of SET differential
conductance maxima corresponds to an alternating filling of two-fold spin-degenerate
levels [18, 19, 20].

A local maximum of addition energy is visible at N = 6, which would correspond
to a filled shell in a circular symmetric potential [18]. For 4 ≤ N ≤ 7 the first
orbital ground state transition is visible as cusps at 0.25 T . B⊥ . 0.3 T. The
cusps are marked by a vertical gray line in Fig. 2(b) and its inset, respectively. The
magnetic field at which this transition happens allows to estimate the characteristic
energy scale of the confinement potential [21] ~ω0 =

√
2 ~ωc(B⊥) ∼ 680 µeV. The

expected maximum slopes of the E(B⊥) traces are given by the orbital energy shift
and expected to be in the order of dE/dB⊥ = ±~ωc/2B, where ωc = eB⊥/m∗ is the
cyclotron frequency in GaAs. These expected maximum slopes are indicated in the
upper left corner of Fig. 2(b) and agree well with our observations.

For the 4 ≤ N ≤ 5 transition and at a small magnetic field B⊥ . 0.2 T our data
exhibit a pronounced cusp marking a slope reversal, as indicated by a gray ellipsoid
in Fig. 2(b). This deviation from the prediction of the constant interaction model
seems similar to the consequences of Hund’s rules as observed in quantum dots with
high circular symmetry [18]. Along this model the electronic exchange energy would
be estimated as J ∼ 90 µeV for the involved states. However, an according deviation
from the constant interaction model for the 3 ≤ N ≤ 4 transition [18] predicted by
Hund’s rules is not observed here. Therefore and since a clear rotational symmetry
is never present in lateral quantum dots, a definite identification of this ground state
transition observed in our measurements is not possible. For N ≥ 7 the E(B⊥) traces
do not anymore resemble the Fock-Darwin state predictions. We attribute this to
modifications of the transport spectrum caused by electron-electron interactions. In
addition, the measurements plotted in Fig. 2(a) indicate strong co-tunneling currents
within the Coulomb blockade regions for N & 7. This can be seen by the growing
conductance in the Coulomb blockade regions as the electron number is increased.

At the magnetic fields of B⊥ ≃ 0.88 T and B⊥ ≃ 1.17 T all traces exhibit a
common shift, as marked by black arrows in Fig. 2(b). This may be explained by
an abrupt change of the chemical potential in the leads, since at these magnetic
fields the 2DES in the leads reaches even integer filling factors of ν2DES = 8 and
ν2DES = 6, respectively.+ The integer filling factors of the 2DES have been identified
in the Coulomb blockade measurements up to ν2DES = 1 at B⊥ ≃ 7.1 T, where as in

+ A step-like feature in the data at B⊥ ≃ 1.75 T can be identified with the filling factor ν2DES = 4
(gray arrow in Fig. 2(b)), however here the observation is far less clear than at ν2DES = 6 and
ν2DES = 8. At higher filling factors ν2DES = 10, 12, . . . (also gray arrows) the effect diminishes and
is partially shadowed by the orbital transitions.
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previous publications [2, 22] also a shift at odd ν2DES is observed (data not shown).∗

3. Strong coupling to the leads

By increasing the voltages on the side gates UgL and UgR the quantum dot in the
few electron limit is tuned into a regime of strong coupling to the leads. During this
process the position of the SET differential conductance maxima is tracked so that
the quantum dot charge state remains well known. At strong coupling we observe
enhanced differential conductance in Coulomb blockade regions due to the Kondo
effect [23, 24, 25].

Fig. 3(a) shows part of the transport spectrum of the quantum dot as a function
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Figure 3. (Color online) (a) Differential conductance G at strong coupling to the
leads as a function of perpendicular magnetic field B⊥ and gate voltage UgC. A
distinct chessboard-like pattern of enhanced conductance is observed (see dotted
lines). Black arrows mark Shubnikov-de-Haas conductance minima of the 2DES in
the leads. (b) Conductance traces G(UgC) at constant B⊥ = 495 mT for different
cryostat temperatures. The traces are measured along the vertical line marked
with “B” in (a). (c) Cryostat temperature dependence of the conductance G at
B⊥ = 495 mT and UgC = −0.635V (vertical gray line in (b)). The solid line is a
model curve for a Kondo temperature of TK = 1.9K (see text for details).

of B⊥ and UgC at UgL = −0.508 V, UgR = −0.495 V, and UgX = −0.3 V. Compared to
the weak coupling case displayed in Fig. 2 the SET differential conductance maxima
(almost horizontal lines) are broader in Fig. 3. This broadening can be explained
by a much stronger coupling to the leads. In addition, a background differential
conductance increases monotonously towards more positive gate voltage UgC. This
background is independent of the Coulomb blockade oscillations. The quantum dot is
here near the mixed valence regime where charge quantization within the confinement
potential is lost. Thus, the conductance background is explained by direct scattering of
electrons across the quantum dot. Vertical lines of decreased differential conductance,
marked in Fig. 3(a) with black arrows, indicate minima in the density of states at the
Fermi energy of the lead 2DES caused by Shubnikov-de-Haas oscillations.

∗ The magnetic field has in all measurements been stepped towards higher field values. These results
are thus consistent with a shift caused by long-living eddy currents in the 2DES of the leads, as
discussed in Ref. [22].
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Between the maxima of SET differential conductance Coulomb blockade is
expected. Instead we observe a distinct chessboard-like pattern of areas of enhanced
or supressed differential conductance, in the region highlighted by the white dashed
or dotted lines in Fig. 3(a). This feature is independent of the Shubnikov-de-Haas
oscillations (vertical lines). Similar phenomena have already been observed in many-
electron quantum dots and have been identified as a B⊥-dependent Kondo effect [26].
For the many electron regime, they have been modelled such that the magnetic field
perpendicular to the 2DES leads to the formation of Landau-like core and ring states
in the quantum dot, as sketched in Fig. 3(c) [27, 28]. The electrons occupying the
lowermost Landau level effectively form an outer ring and dominate the coupling of
the quantum dot to its leads, whereas the higher Landau-like levels form a nearly
isolated electron state in the core of the quantum dot [27, 29, 30].♯ On one hand, with
increasing magnetic field one electron after the other moves from the core into the
outer ring, and hence the total spin of the strongly coupled outer ring can oscillate
between S = 0 and S = 1/2. Only for a finite spin the Kondo-effect causes an enhanced
differential conductance. On the other hand a change in UgC eventually results in a
change of the total number and total spin of the conduction band electrons trapped
in the quantum dot.

In addition, charge redistributions between the levels of the quantum dot may
influence the SET maxima positions [9, 27, 30]. The combination of these effects
explains the observed chessboard-like pattern of enhanced and supressed differential
conductance through the quantum dot. For a higher magnetic field where the filling
factor falls below ν = 2 inside the electron droplet a separation in outer ring and core
state can not exist anymore. The chessboard-like pattern disappears and the Kondo-
effect is expected to depend monotonously on B⊥. Indeed, for B⊥ larger than a field
marked by the dashed white line in Fig. 3(a) the Kondo-current stops to oscillate
as a function of B⊥. From this we conclude that the dashed white line in Fig. 3(a)
identifies the ν = 2 transition inside the quantum dot.

Fig. 3(b) displays exemplary traces G(UgC) of the differential conductance as a
function of the gate voltage UgC at a fixed magnetic field B⊥ = 495 mT for different
cryostat temperatures. These traces are taken along the black vertical line in Fig. 3(a)
marked by ‘B‘. The vertical line in Fig. 3(b) marks the expected position of a minimum
of the differential conductance due to Coulomb blockade, as indeed observed for the
traces recorded at high temperature. At low temperature, instead of a minimum
an enhanced differential conductance is measured due to the Kondo effect. Note,
that the two minima of the differential conductance adjacent to the Kondo feature in
Fig. 3(b) show the usual temperature behavior indicating the here the Kondo effect
is absent (in accordance with the chessboard-like pattern in Fig. 3(a)). Fig. 3(c)
displays the differential conductance at the center of the Coulomb blockade region
marked by the vertical line in Fig. 3(b), as a function of the cryostat temperature.
The solid line is a model curve given by G(T ) = G0

(

T ′2
K /

(

T 2 + T ′2
K

))s
+ Goffset

with T ′

K = TK/
√

21/s − 1 [25]. The low temperature limit of the Kondo differential
conductance G0 is taken as a free parameter, as well as an offset Goffset that has
been introduced to take into account the effect of the temperature-independent
background current described above. For s = 0.22 as expected for spin-1/2 Kondo

♯ As has been shown by the authors of Ref. [9], a comparable model based on single particle Fock-
Darwin states still describes measurements successfully down to the range of low electron numbers
7 ≤ N ≤ 9. In close analogy, Ref. [9] describes the transport spectrum in terms of “localized” and
“extended” electron states.
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Figure 4. (Color online) Differential conductance of the electron droplet as
a function of UgC (x axis) and the simultaneously varied side gate voltages
UgL ∝ UgR (y axis). As the gate voltage is decreased below UgC ≃ −1.2V
lines of conductance maxima form pairs with smaller distance, indicating the
deformation of the quantum dot into a double quantum dot (see text). Insets:
A SEM micrograph of the top gates with sketches of the approximate potential
shapes of the quantum dot or double quantum dot. The third inset shows a sketch
of the stability diagram as expected for the case of a double quantum dot. The
thick solid lines are guides for the eye.

effect [25] we find best agreement between the model and our data at a Kondo
temperature of TK = 1.9 K, a limit Kondo conductance G0 = 0.41 e2/h and a
conductance offset Goffset = 0.73 e2/h. All nearby areas of enhanced Kondo differential
conductance display a similar behaviour with Kondo temperatures in the range of
1.2 K . TK . 2.0 K.

In addition, the dependence of the differential conductance G on the source-drain
voltage USD has been measured for different regions of the parameter range in Fig. 3(a)
(data not shown). These measurements are fully consistent with above results. They
display a zero-bias conductance anomaly in the high conductance ’Kondo’ regions,
that can be suppressed by changing the magnetic field B⊥.

4. Deformation into a double quantum dot

The shape of the confinement potential of our quantum dot can be modified by
changing the voltages applied to the split gate electrodes. This is a general feature of
electrostatically defined structures in a 2DES. A non-parabolic confinement potential
is e.g. discussed by the authors of Ref. [10]. Here, we demonstrate a controlled
deformation of the confinement potential, transforming one local minimum, i.e. a
quantum dot, into a double well potential describing a double quantum dot. Such a
transition is shown in Fig. 4, which plots Coulomb blockade oscillations of differential
conductance (color scale) in dependence of the center gate voltage UgC along the x-
axis. We aim to transform a quantum dot charged by N = 0, 1, 2, ... electrons into a
peanut-shaped double quantum dot with the same charge (see insets of Fig. 4). This
is done by creating a high potential ridge between gates gX and gC, i.e. by making UgC

more negative. In order to keep the overall charge of our device constant, both side
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gate voltages UgL and UgR (y-axis) are changed in the opposite direction than UgC.
For the opposed center gate gX we choose UgX = −0.566 V, causing a significantly
higher potential than in the previous measurements.

For UgC & −1 V the Coulomb oscillations are in first order quasiperiodic, as can
be seen in the upper right quarter of Fig. 4. This is expected for a single quantum
dot with addition energies large compared to the orbital quantization energies. In
contrast, for more negative UgC an onset of a doubly periodic behavior is observed.
I.e. along the thick solid horizontal line in the lower left corner of Fig. 4 the distance
between adjacant conductance maxima oscillates, most clearly visible for N < 4.
Such a doubly periodic behaviour is expected for a double quantum dot in case of a
symmetric double well potential. This is the case along the thick solid line in the inset
of Fig. 4 sketching the double quantum dot’s stability diagram. In a simplified picture,
if the double quantum dot is charged by an odd number of electrons the charging
energy for the next electron is approximately given by the interdot Coulomb repulsion
of two electrons separated by the tunnel barrier between the adjacent quantum dots.
However, for an even number of electrons the charging energy for the next electron
corresponds to the larger intradot Coulomb repulsion between two electrons confined
within the same quantum dot. Therefore, the difference between interdot and intradot
Coulomb repulsion on a double quantum dot causes the observed doubly periodic
oscillation.

The asymmetry of the double quantum dot with respect to the potential minima
of the double well potential can be controlled by means of the side gate voltages
UgL and UgR. Coulomb blockade results in a stability diagram characteristic for
a double quantum dot as sketched in an inset of Fig. 4 in dependence of the side
gate voltages [31, 32, 33]. Gray lines separate areas of stable charge configurations.
The corners where three different stable charge configurations coexist are called triple
points of the stability diagram. For a serial double quantum dot with weak interdot
tunnel coupling, the charge of both quantum dots can fluctuate only near the triple
points and only here current is expected to flow. The bisector of the stability digram
(solid bold line in the inset) defines a symmetry axis, along which the double well
potential and, hence, the charge distribution in the double quantum dot is symmetric.
In the case of two (one) trapped conduction band electrons we identify our structure
as an artificial two-dimensional helium (hydrogen) atom that can be continuously
transformed into an (ionized) molecule consisting of two hydrogen atoms.

To prove the presence of a few electron double quantum dot after performing the
described transition, we plot in Fig. 5 the measured stability diagram of our device.
Fig. 5(a) shows the linear response dc current through the device (USD = 50 µV)
as a function of the side gate voltages UgL and UgR. Fig. 5(b) displays the QPC
transconductance GT ≡ dIQPC/dUgL. The areas of stable charge configurations
are marked by numerals indicating the number of conduction band electrons in the
left / right quantum dot [11, 12]. Both plots clearly feature areas of stable charge
configurations separated by either a current maximum (in (a)) or a transconductance
minimum (in (b)), respectively. The transconductance measurement confirms the
electron numbers obtained from the single QD case, as even for very asymmetric
confinement potential no further discharging events towards more negative gate
voltages UgL and UgR are observed. In comparison to the gray lines in the inset of Fig. 4
the edges of the hexagon pattern are here strongly rounded. This indicates a sizable
interdot tunnel coupling that cannot be neglected compared to the interdot Coulomb
interaction [11, 12]. A large interdot tunnel coupling results in molecular states
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Figure 5. (Color online) (a) Dc-current through the double quantum dot, (b)
transconductance GT ≡ dIQPC/dUgL of the nearby QPC used as a double
quantum dot charge sensor, with identical axes UgL and UgR. The additional
gate voltages are in both plots chosen as UgC = −1.4V, UgX = −0.566 V, and
UgQPC = −0.458 V.

delocalized within the double quantum dot. This additionally explains the observation
of finite current not only on the triple points of the stability diagram, but also along
edges of stable charge configurations in Fig. 5(a). Here the total charge of the molecule
fluctuates, allowing current via a delocalized state. In previous publications the low-
energy spectrum of the observed double well potential was analyzed and the tunability
of the tunnel coupling demonstrated [11, 12].

Summary

Using a triangular gate geometry, a highly versatile few electron quantum dot has
been defined in the 2DES of a GaAs/AlGaAs heterostructure. The couplings between
the quantum dot and its leads can be tuned in a wide range. For weak quantum dot
– lead coupling, the shell structure of the states for 1 . N . 7 trapped conduction
band electrons is observed. The transport spectrum supports the assumption of a
Fock-Darwin like trapping potential and subsequent filling of spin-degenerate states.
For strong quantum dot – lead coupling, a chessboard pattern of regions of enhanced
zero bias conductance in dependence of a magnetic field perpendicular to the 2DES
is observed. The enhanced conductance regions are explained in terms of the Kondo
effect, induced by the formation of Landau-like core and ring states in the quantum
dot. Finally, for strongly negative center gate voltages, the quantum dot trapping
potential can be distorted at constant charge into a peanut shaped double quantum
dot with strong interdot tunnel coupling.
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