Electromagnetic Considerations for Computer System Design

Ronald Pose & Carlo Kopp

Department of Computer Science

Monash University

Clayton, Victoria 3168,

Australia

rdp@cs.monash.edu.au

Introduction:

- Computer systems used in sensitive situations and contain valuable information
- Commercial sensitivity e.g. in a bank
- I Industrial sensitivity e.g. control of factory
- Government or political sensistivity
- Military sensitivity

Risks

- I Sensitive information leaking out of the computer system
 - This is well studied and understood
- Disruption of computer system operations through external influences
 - Relatively unstudied and not well understood

Information Leakage Risk

- Much effort has been expended on software
 - Secure Operating Systems
 - Authentication Systems
 - Encryption
 - Encrypted Networking
- Some work has been done on electromagnetic leakage
 - van Eck (Tempest)

Disruption of Normal Computer Operations

- Much Work Done in Increasing Security of Operating Systems and Critical Application Programs
 - encryption
 - authentication
 - replication and redundancy
 - self-checking and self-testing
- Little Work Done in Studying Threats to the Physical Operation of Computer Systems

Threats to Physical Operation of Computer Systems

- I Physical Security
 - keep the machine physically secure
 - ensure its connections to other machines are secure
 - ensure its environment is benign
 e.g. air conditioning is adequate
- Electromagnetic Threats
 - consider computer system as a whole
 - networking, peripherals, power supply

System-Wide Approach is Essential

- Computers Operate as Systems
 - only as strong as the weakest link
 - highly dependent on networks
 - all components in system must be functional
 - power supply is an often overlooked weakness
- Must Deal with Threats Systemically
 - treat computer system as a whole
 - include its environment and its users

Electromagnetic Threats

Eavesdropping

- electromagnetic emissions can be intercepted and analysed to reveal sensitive information
- emission through networking
- emission through monitors
- emission from the computer itself

Disruption

- electromagnetic fields
- magnetic fields
- power surges

Sources of Electromagnetic Threats

- I Terrorist or Commercial Espionage
 - low emitted power weapons
 - low coverage
- Strategic and Military
 - high power weapons
 - could have fairly high coverage
 - designed to disable whole sites

Damage Effects

- Soft Kill disrupts operations, downtime
 - cause the target to crash or reset
 - cause the target to lose data
 - cause the target to get into unrecoverable state requiring a reboot
- Hard Kill permanent electrical or physical damage
 - loss of capacity to perform functions reliant on electronic infrastructure

The Electro Magnetic Pulse Effect:

- A nuclear weapon detonated at altitude ionises the upper atmosphere -> EMP
- EMP produces high voltage transients on cables, which damage electronic equipment
- Computers highly vulnerable due high content of high density MOS devices
- Effect similar to lightning strikes, but faster and more powerful

E-bomb Technology Base:

- Power source explosively pumped Flux Compression Generator (FCG)
- FCG pioneered by Los Alamos Labs during the 1950s
- FCG can produce tens of MegaJoules in tens to hundreds of microseconds
- Peak current of an FCG is 1000 X that of a typical lightning stroke

The Physics of the FCG:

- I Fast explosive compresses a magnetic field
- Compression transfers mechanical energy into the magnetic field
- Peak currents of MegaAmperes demonstrated in many experiments

FCG start current is provided by an external source:

- capacitor bank
- small FCG
- MHD device
- homopolar generator

FIG.2 EXPLOSIVELY PUMPED COAXIAL FLUX COMPRESSION GENERATOR

FCG Internals:

- Armature copper tube / fast explosive
- Stator helical heavy wire coil
- Initiator plane wave explosive lense
- Jacket prevents disintegration due magnetic forces

FCG Operation:

- External power source pumps FCG winding with start current
- When start current peaks, explosive lense fired to initiate explosive burn
- Explosive pressure expands armature and creates moving short
- Moving armature compresses magnetic field

High Power Microwave (HPM) Sources:

Higher lethality than low frequency FCG fields, many device types:

- Relativistic Klystrons
- Magnetrons
- Slow Wave Devices
- | Reflex Triodes
- Virtual Cathode Oscillators (vircators)
- Spark Gap Devices

FIG.3 AXIAL VIRTUAL CATHODE OSCILLATOR

Vircator Physics:

- Relativistic electron beam punches through foil or mesh anode
- "Virtual" cathode formed by space charge bubble behind anode
- Peak power of up to tens of GW for 100s of nanoseconds
- I Anode typically melts in about 1 usec
- Cheap and simple to manufacture
- Wide bandwidth allows chirping of oscillation

Lethality Issues in E-bomb Warheads:

- Diversity of target set makes prediction of lethality difficult
- Different implementations of like equipment have differing hardness
- Coupling efficiency is critical to lethality

Coupling Modes:

Front Door Coupling through antennae.

- Destroys RF semiconductor devices in transmitters and receivers
- Back Door Coupling through power/data cabling, telephone wiring
- Destroys exposed semiconductor devices
- Punches through isolation transformers.

Host Level Susceptibility

System Level Susceptibility

Semiconductor Vulnerability:

- Semiconductor components using CMOS, RF Bipolar, RF GaAs, NMOS DRAM processes are destroyed by exposure to volts to tens of volts of electrical voltage
- High speed high density semiconductors are highly vulnerable due small junction sizes and low breakdown voltages

Damage Mechanisms:

- Low frequency pulses produced by FCG create high voltage spikes on fixed wiring infrastructure
- Microwave radiation from HPM devices creates high voltage standing waves on fixed wiring infrastructure
- Microwave radiation from HPM devices can couple directly through ventilation grilles, gaps between panels, poor interface shielding producing a spatial standing wave inside the equipment cavity

Example Scenario:

- 1 10 GigaWatt 5 GHz HPM E-bomb initiated at several hundred metres altitude
- Footprint has diameter of 400 500 metres with field strengths of kiloVolts/metre

HPM E-bomb Lethality:

Microwave bombs are potentially more lethal due better coupling and more focussed effects

- chirping allows weapon to couple into any in-band resonances
- circular polarisation of antenna allows coupling with any aperture orientation
- reducing detonation altitude increases field strength at the expense of footprint size

Defences Against E-bombs:

Destroy the delivery vehicle or launch platform

I Electromagnetically harden important assets

Hide important assets

Vulnerability Reduction (Hardening):

- Convert computer rooms in to Faraday cages
- use optical fibres for data
- I isolate power feeds with transient arrestors
- use non-electrical power feed schemes
- use electromagnetic "air lock"
- I shielding must be comprehensive

I/O and Power Interface Hardening

Fig 3.1 I/O and Power Interface Hardening

Comprehensive Host Hardening

Comprehensive Shieldir Ferrite Beads on Power Optical Fibre Network In Non-Electrically Coupler Optical Mouse Optically Coupled Keybi No I/O Slot Apertures No Peripheral Apertures No Pushbutton Aperture I/O Cables

Fig 3.2 Comprehensive Host Hardening

Computer Room Hardening

E-bomb Advantages

- Not lethal to humans
- Negligible collateral damage
- High tempo campaigns possible due the powerful "shock" effect of using a weapon of electomagnetic mass destruction
- No mass media coverage of bombing casualties (broadcast equipment destroyed) will reduce the threshold for the use of stronger measures

Punitive Missions

- The E-bomb is a useful punitive weapon as it can cause much economic and military damage with no loss of civilian life
- E-bombs could be profitably used against countries which sponsor terrorism and infoterrorism

Conclusions

- Hackers will soon realize that hardware is more susceptible at present than is software
- E-bombs are a non-lethal weapon
- The critical issues for the next decade are the hardening of fundamental infrastructure
- The cost of attack is very low
- Defensive measures need not be expensive if included in initial system design
- It is essential to consider electromagnetic attack as well as the usual hackers