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Abstract. Is the fraction of anthropogenically released CO,
that remains in the atmosphere (the airborne fraction) in-
creasing? Is the rate at which the ocean and land sinks
take up CO, from the atmosphere decreasing? We analyse
these questions by means of a statistical dynamic multivari-
ate model from which we estimate the unobserved trend pro-
cesses together with the parameters that govern them. We
show how the concept of a global carbon budget can be used
to obtain two separate data series measuring the same phys-
ical object of interest, such as the airborne fraction. Incor-
porating these additional data into the dynamic multivariate
model increases the number of available observations, thus
improving the reliability of trend and parameter estimates.
We find no statistical evidence of an increasing airborne frac-
tion, but we do find statistical evidence of a decreasing sink
rate. We infer that the efficiency of the sinks in absorbing
CO; from the atmosphere is decreasing at approximately
0.54% yr!.

1 Introduction

A part of the anthropogenically released CO; emitted to the
atmosphere flows to the oceans (the ocean sink) and the ter-
restrial biosphere (the land sink). Approximately 45 % of re-
leased CO; stays in the atmosphere (the airborne fraction),
while the two sinks take up approximately 24 % and 31 % of
the CO», respectively. (These percentages are calculated over
the period 1959 to 2016 using the data described below; see,

for example, Raupach et al., 2014, for similar estimates.) A
key question is whether the airborne fraction is increasing or
if it remains constant at around 45 %. An increasing airborne
fraction implies that the share of anthropogenically released
CO», that ultimately remains in the atmosphere increases, and
projections of future atmospheric CO, levels need to take
this into account (Gloor et al., 2010). Closely related is the
question of whether the sinks will continue taking up CO»
at the same rate (the sink rate) or if this rate is decreasing.
A decreasing sink rate implies that the efficiency with which
ocean and land sinks are absorbing CO; from the atmosphere
is decreasing. Thus, analysing the behaviour of the sink rate
can help predict the future uptake of CO, through the ocean
and the land sink. The answers to the questions posed above
are important for our understanding of the global carbon cy-
cle and are relevant for policymakers and the public in gen-
eral.

A series of papers argue that the airborne fraction of an-
thropogenically released CO;, (mainly through fossil fuel
emissions, cement production, and land-use change) is in-
creasing (Canadell et al., 2007a; Le Quéré et al., 2009; Rau-
pach et al., 2008; Rayner et al., 2015). Similarly, in Raupach
et al. (2014), it is argued that, although the statistical evi-
dence of an increasing airborne fraction is relatively weak,
the evidence of a decreasing CO; sink rate is clearer. How-
ever, the methods in these studies have been criticized in, for
example, Knorr (2009), Gloor et al. (2010), and Ballantyne
et al. (2015). Indeed, by considering a longer data set and
incorporating uncertainties into the data, Knorr (2009) found
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that the conclusion of an increasing airborne fraction was not
warranted. Similarly, Ballantyne et al. (2015) argues that er-
rors in the data can lead to erroneous conclusions regarding
possible trends in the airborne fraction and in the sink rate.

In this paper, we address these statistical issues within the
framework of a state-space system. It allows us to conduct
statistical inference by taking explicit account of stochastic
and deterministic trends in the data, transient shocks to the
data (coming from, e.g. volcanic eruptions or strong El Nifio
events), and (potential) measurement errors. It also allows for
the simultaneous incorporation of multiple data sets for the
same object, which can improve the estimation of trends and
increase reliability of parameter estimates. We find strong
evidence for purely deterministic trends when we incorpo-
rate multiple measurements for the airborne fraction and the
sink rate. These deterministic trends have a statistically sig-
nificantly negative slope in the case of the sink rate and an
insignificant slope in the case of the airborne fraction. These
findings corroborate earlier findings in the literature, espe-
cially those of Raupach et al. (2014), but address the statis-
tical concerns raised by Knorr (2009) and Ballantyne et al.
(2015), among others. Finally, by analysing the ocean and
land sink rates separately, we find no evidence of a decreas-
ing ocean sink rate, but we do find evidence that the land sink
rate is decreasing.

The paper is organized as follows. In Sect. 2 we state the
fundamental equations of the global carbon budget, the defi-
nitions of the airborne fraction of anthropogenically released
CO,, and the CO; sink rate, which will motivate the spec-
ification of the state-space system. Section 3 introduces the
state-space system used in the paper. In Sect. 4 we conduct
a trend analysis of the airborne fraction within the proposed
statistical framework. In Sect. 5 we carry out the correspond-
ing analysis of the CO» sink rate, and in Sect. 6 we carry out
the analysis of the land and ocean sink rates separately. Sec-
tion 7 discusses the results, and Sect. 8 concludes the paper.
The Supplement is available online.

2 The global carbon budget

The so-called global carbon budget is defined as
EMT =G, 4+ 59 + sk, 1)

where EANT is anthropogenically released CO, into the at-

mosphere, G; is growth of atmospheric CO, concentration,
StO is the flux of CO; from the atmosphere to the oceans (the
ocean sink), and S,L is the flux of CO, from the atmosphere
to the terrestrial biosphere (the land sink). In other words,
Eq. (1) states that emissions of CO, should equal the fluxes
of CO» to the atmosphere, the ocean sink, and the land sink.
We use the data set provided by the Global Carbon Project
(Le Quéré et al., 2018)." All data are given in gigatonnes of

IThe data are available at http://www.globalcarbonproject.org/
(last access: 1 June 2018).
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carbon (GtC) and are recorded at a yearly frequency, begin-
ning in 1959 and ending in 2016, resulting in 58 observations
for each quantity in Eq. (1).

While the carbon budget is in principle always balanced
for the physical quantities, in the sense that Eq. (1) always
holds, this might not be the case when inserting actual data
for emissions and sinks due to measurement errors in the
data. For this reason, Le Quéré et al. (2018) introduce a resid-
ual term into the budget Eq. (1) to capture measurement er-
ror. It is denoted B/ for budget imbalance. Therefore, when
considering actual data, the carbon budget is defined as

EMT =G, + 8P +SF+BM. 2)

The sample mean of the budget imbalance over the observa-
tion period is not significantly different from zero and shows
no sign of a trend (Le Quéré et al., 2018). These facts are im-
portant in the developments below, since they motivate treat-
ing B™ as part of an error term.

The growth rate in atmospheric CO, data, Gy, is from Dlu-
gokencky and Tans (2018), the ocean sink data, Sto, are ob-
tained from an ensemble of global biochemistry models, and
the land sink data, SIL, are estimated as the multi-model mean
of several dynamic global vegetation models. See Le Quéré
et al. (2018) for further information on the data. The anthro-
pogenic emissions of CO; can be decomposed into two parts:

EtANT — EZFF + E;dUC7

where EFF are emissions from fossil fuel burning, cement
production, and gas flaring, while EFUC are emissions from
land-use change. Fossil fuel emissions, E FF are from Boden
etal. (2018), while land-use change emissions, E,LUC, are av-
erages of the results of the two bookkeeping models of Han-
sis et al. (2015) and Houghton and Nassikas (2017), updated
as in Le Quéré et al. (2018). The time series of concentra-
tions (above pre-industrial levels) of CO» in the atmosphere
is constructed as

t
C; =2.127- (ICO21195 — [CO211750) + D, G,

=1

where [CO»]1750 = 279 ppmv (parts per million by volume)
and [COx]1959 = 315.39 ppmv are the concentrations of CO;
in the atmosphere in 1750 and 1959, respectively; see Rau-
pach et al. (2014). The number 2.127 is the conversion factor
from parts per million by volume to gigatonnes of carbon.
In other words, the atmospheric concentration C; above pre-
industrial levels is given by the initial value in 1959 plus the
cumulative sum of the growth in atmospheric CO, concen-
trations G, which result from the budget Eq. (1).

We follow Raupach (2013) and Raupach et al. (2014) and
define the airborne fraction as

G,

AF[ = W,
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and the CO; sink rate as

S0+ sk
ks,i = c 3)
which is the flux of CO; from the atmosphere to the sinks
(ocean plus land), normalized by the amount of CO; (above
pre-industrial levels) currently in the atmosphere. We can
also consider the individual components of the sink rate for
ocean and land, which are given by

0 L
bos="tr kL= )
respectively, with ks ; = ko s + kL ;.

The airborne fraction and the sink rate are fundamentally
different quantities. The airborne fraction AF, = G,/EANT
is the ratio of the growth of atmospheric CO; in period ¢ to
the amount of CO; emitted in period 7. It is thus a measure of
the fraction of emitted CO, that stays in the atmosphere. In
contrast, the sink rate ks ; = (S,O + S,L)/C, is the ratio of the
CO, flux in the sinks in period ¢ to the total amount of CO;
in the atmosphere (above pre-industrial levels). By writing
Sto + StL = ks ;C;, we can interpret the sink rate ks ; as the
“efficiency” with which CO, flows from the atmosphere to
the sinks, i.e. as the amount of CO, going into the sinks for
an extra unit of CO;, added to the atmosphere (Gloor et al.,
2010; Raupach, 2013). We discuss the relationship between
the airborne fraction and the sink rate further in Sect. 7.

3 Trend model specification

In this section, we consider several models for the data-
generating process behind observations of the objects of in-
terest defined in Sect. 2. Common to all models is that they
can be cast in a state-space system of the form

yi=Ax +&,
X1 =Bx; + Ky, )
where y, is a vector of observations at time t =1, ..., n with

time series length #, and the system matrices A and B have
appropriate dimensions. The vector x; is usually referred
to as the state vector, which can include deterministic and
stochastic trends, and the error terms &, and i, are both inde-
pendent and identically distributed (iid) random vectors of
appropriate dimensions and with a mean of zero. For ex-
ample, when we need to model the airborne fraction alone,
we have y, = AF;, and the state-space system represents a
univariate dynamic model for the airborne fraction. When
modelling the ocean and land sink rates jointly, we have
vy, = (ko.t, kr¢)', and the state-space system is a bivariate
dynamic model. For given matrices A and B, and under the
assumption of mutually and serially uncorrelated Gaussian
errors &, and k, (with their respective variance matrices X¢
and X, ), the state-space system is a linear Gaussian model.

www.biogeosciences.net/16/3651/2019/
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In such regular cases, an analytic formulation for the like-
lihood function is available and relies on the prediction er-
ror decomposition. Hence the parameters (variances and pos-
sibly covariances in X¢ and X,) can be estimated by the
maximum likelihood method. It requires the numerical op-
timization of the log-likelihood function that is evaluated
via the Kalman filter. The resulting algorithm is initialized
with specific starting values; we use a diffuse initialization
as outlined in Chapter 5 of Durbin and Koopman (2012).
The smooth estimate of the state process x; can also be ob-
tained by means of the Kalman filter together with a smooth-
ing algorithm. The extracted state is effectively the condi-
tional mean E(x,|y{,...,y,; A, B, X¢, X)), fort =1,...,n.
Details of the state-space approach are given by Durbin and
Koopman (2012), where both signal extraction and maxi-
mum likelihood estimation are discussed.

Our baseline model is the local linear trend (LLT) model.
For a univariate time series y;, we treat the underlying trend
T; as a stochastic process given by

Tip=Ti+B+mn, (6)

where B € R is a fixed and unknown coefficient and 7, is
an iid Gaussian random variable with a mean of zero and
variance 0,72. The solution to the difference equation in Eq. (6)
is given as

t—1
T =Ti+tB+ D ni,

i=0
where T can be treated as a fixed unknown coefficient (inter-
cept or constant) or as a random variable. The solution shows
that the trend component is made up of the starting value 77,
a deterministic linear term with slope 8, and a random-walk
component z;;(l)m,i. Thus, 7; can be interpreted as a long-
term trend in the time series and B as the slope of the deter-
ministic part of the trend. We also considered a time-varying
slope, B, but found no evidence supporting this generaliza-
tion in either the airborne fraction or the sink rate. The ob-
servation equation for y, is given by

i =T +e, (7

where T is given by Eq. (6) and ¢, captures deviations of the
observed time series from the unobserved trend component.
The deviations €, can be viewed as (i) actual (transient) dis-
turbances of the physical systems arising from, for example,
volcanic eruptions and El Nifio events, and/or (ii) measure-
ment errors arising from the way the data are collected. The
random variable ¢, is assumed to be iid Gaussian with a mean
of zero and variance o 2.

The local linear trend model can be cast in the state-space
system Eq. (5) where vectors and matrices are defined as

T, 11
w=(F). a=rr o w=[ ]
& =« lCtZ(rg),
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fort =1,...,n. The state vector x; consists of the two vari-
ables of interest: stochastic trend variable 7; and determin-
istic slope variable 8. The state-space methods as discussed
above can treat such mixed compositions of the state vector.
We have illustrated how the state-space system can be used
for a univariate time series. In the next sections, we also con-
sider trend analyses based on multivariate time series models.

4 Trend analysis of the airborne fraction

It follows immediately from Eq. (2) that we can measure the
airborne fraction AF, in two alternative ways:

ATM
ApD _ G
= E;\NT ’
EANT _ SO _ SL
AF® =2t 2 7% AR g 8)

E;ANT

where & = BM/EANT since EANT — 50 — SL = G, + BM.
Although the two quantities in Eq. (8) measure the same
underlying object (the airborne fraction AF;), they differ in
practice because of a non-zero budget imbalance, i.e. & # 0.
Our statistical analysis implies that &, is a well-behaved zero-
mean and covariance stationary error process.

We consider our baseline local linear trend model of
Sect. 3 for each of the objects, that is,

y,=AFD =10 4

for i = 1,2, where the trend T,(') is specified in Eq. (6) and
with error et(l). Table 1 reports the output of the estimation,
using the state-space system and the Kalman filter. The first
part of Table 1 presents estimates of the standard deviations
of the observation error term et(l) and the trend error term 7 [(’),
as well as the estimate of the slope parameter §, including the
estimated standard error (SE) of 8 and the resulting ¢ statis-
tic, ¢-stat = ,é / SE(,@). Based on these estimation results, we
can formally test hypotheses of the type

Hy:B=0 against H:p #0, ®
or, more relevantly,
Hy:B=0 against H;:p>0. (10)

By using the normal approximation to the ¢ distribution
and for a 95% confidence level, the critical value for the
test Eq. (9) is 1.96, and for Eq. (10), it is 1.645. In the case of
the airborne fraction, we are interested in testing Eq. (10). It
is evident from Table 1 that we cannot reject Hy in this case
(p values 0.2711 and 0.4042 for the case of AF!" and AF{?,
respectively). In other words, although the estimate E is pos-
itive, we cannot conclude, statistically at 95 % confidence,
that the airborne fraction is increasing over time.
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Table 1 also contains diagnostic statistics for the standard-
ized prediction residual u; based on

Yi—EWdyr -0 y—13A B, Xg, Xy,

for t=1,...,n, and where X¢ and X, are replaced by
their respective maximum likelihood estimates. Under the as-
sumption that the local linear trend model is correctly spec-
ified for the time series y,, the residuals u; are Gaussian iid
(see Durbin and Koopman, 2012, p. 38). To verify these prop-
erties of u; empirically, we consider two residual diagnostic
statistics: the normality test statistic N of Jarque and Bera
(1987) and the serial correlation test statistic of Durbin and
Watson (1971). As a goodness-of-fit statistic, we consider
the Ré, which is a relative measure of model fit against a
random-walk model. Since the statistic is defined in a similar
way to the standard regression fit measure RZ, we have

Z?:z”zz
2;1:2[())[ —Yi—1) — m]2

Ri=1-

m=(n— 1)_1 Z(yt — Yi—1)-

=2

The reported diagnostic statistics and goodness of fit in Ta-
ble 1 are satisfactory for the time series AFl(l) and AF,(Z). We
may conclude from these results that the local linear trend
model from Egs. (6)—(7) provides an adequate description
of the dynamic features in the time series. Since the AF;
is well-described within our state-space framework, the ex-
tra error term & = BM/EANT in AF,(Z), as introduced by the
budget imbalance term in Eq. (8), is well-behaved. Hence the
assumptions underlying the state-space system appear to be
valid.

The state-space s?/stem allows both measures for the air-
borne fraction, AF; ) and AFZ(Z), to be included in a single
model with the purpose of improving the quality of the trend
estimation and inference. We begin with an “uninformed”
system using two different trend components, T,(l) and T,(z),
both specified as Eq. (6), for the two time series. We have

y = AFt(l) _ GtATM E;‘\NT
t AFI(Z) 1— (StOCEAN + S}AND)/E;ANT

(1) (D
T; €
= + , 11
[Tr(z’} sz) ] o

where the error terms e,(l), for i =1, 2, are correlated and
their correlation coefficient can be estimated by the method
of maximum likelihood together with the other parameters.
The estimation results for this model are presented in panel
a of Table 2. The main difference from Table 1 is the inclu-
sion of the estimated correlation matrix for (et(l), et(z)). The
diagnostic test statistics are reasonable. In comparison with
the univariate analysis, the goodness-of-fit values for R§ are
slightly higher for the multivariate model. Hence we trust the

www.biogeosciences.net/16/3651/2019/
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Table 1. Univariate analysis of the airborne fraction.

Parameter estimates ‘ Diagnostics
Ge G B SE@) tstaB) | N R?Z DW
AFD 01357 00101 000109 0.00179 0.60934 | 0274 0442 1.829
AF? 01353 00122 000049 0.00203 024246 | 2324 0489 1991

‘We report parameter estimates for the standard deviations o and oy, and slope coefficient 8 together with its standard

error (SE) and 1 statistic (z-stat). We further report the normality (N) test, the goodness-of-fit statistic R%), and the
Durbin—Watson (DW) test statistic for serial correlation; all are computed for the standardized prediction errors iy,
which are obtained from the Kalman filter. The normality test N is the x2 distributed, with 2 degrees of freedom,
statistic of Jarque and Bera (1987), with its 95 % critical value of 5.99; the statistic relies on the sample estimates of
skewness and kurtosis of u;. The goodness-of-fit statistic Rg is defined as 1 — ESS/DSS, where ESS = Z’:zzu,z and

DSS = 3" ,[(y; — yi—1) —m]? withm = (n —2)~!

1—2>(¥¢ — y1—1)- The DW test statistic is developed by Durbin

and Watson (1971), where also its critical values are tabulated. If DW = 2 the sequence u; is serially uncorrelated, if
DW < 2 there is evidence that the errors u; are positively autocorrelated, and if DW > 2 there is evidence that the

errors u; are negatively autocorrelated.

model to be a good representation of the data. Furthermore,
the slope is estimated to be positive in both cases (that is
,3 > 0). However, when testing the null hypothesis given in
Eq. (10), we cannot reject the hypothesis that the slopes are
zero (p values 0.3753 and 0.4895 for the case of AFI(I) and
Ang), respectively).

Since the two quantities in Eq. (8) measure the same ob-
ject, the airborne fraction, we now force the state-space sys-
tem to recognize that these data are driven by the same un-
derlying common trend, TtA, but with possibly different error

terms 6,(1) and et(z). In other words, we consider

b= AF?I) B |: G;ATM E;ANT ]
t AF;Z) 1— (SIOCEAN 4 StLAND)/EtANT

— TtAj| Gt( b

|:T1A + |:Er(2) : (12)
The output of the estimation of this system is shown in panel
b of Table 2; the estimated common trend and the data are
plotted in Fig. 1. A slight deterioration of the diagnostic
statistics is to be expected when introducing a common trend
into the system, but the diagnostic statistics are still such that
we can accept Eq. (12) as a plausible model. For the esti-
mate of the slope E , we find a larger ¢ statistic in absolute
value than in the uninformed model, indicating that the re-
striction to the common trend increases the precision of the
estimates. An explanation of this finding is that the informed
system used twice as many observations for estimating the
trend compared to the uninformed system. The hypothesis
test in Eq. (10) reveals that the estimate of the slope param-
eter, although again positive, is still not statistically different
from zero (p value 0.2199).

5 Trend analysis of the CO; sink rate

In this section, we analyse the CO; sink rate in the same way
as the airborne fraction above. Analogously we can define

www.biogeosciences.net/16/3651/2019/

two alternative versions of the sink rate:

5P + st EMT -G
k) =2 T o kP = = ke +&, (13)
where now &, = B,IM /C; and where we used Eq. (2). As was
the case for the airborne fraction, these two quantities mea-
sure the same underlying object (the sink rate, ks ;) but dif-
fer in practice because of a non-zero budget imbalance, i.e.
& #0.

The basic (univariate) local linear trend model for each of
these objects is then given by

5=k =T 4

fori =1, 2, where Tl(') is specified as in Eq. (6). When the
model is cast in the state-space system, the parameters can be
estimated for each of the data series individually. The estima-
tion results are presented in Table 3. The diagnostic statistics
are satisfactory, and we conclude again that the error term
& = B,IM /C; is well-behaved in the sense that the assump-
tions underlying the state-space system appear to be valid
also for the alternative sink rate data, kézg Even though the
estimates of the slopes are negative, we cannot reject the null
hypothesis off = 0 (p values 0.2233 and 0.0761 for the case
of kg ; and kg}, respectively). We still consider a one-sided
test as in Eq. (10), but now the relevant alternative hypothesis
is Hy: B <O.

Analogously to the airborne fraction above, these data can
be put in a joint uninformed system with two different trend
components, and we have

1
b ks [ (52 +SH/C ] _ ['n(”} N [eﬁ”] (14)
! kgzg (EPNT—Gp)/C, 7 2]
which can be compared with the model in Eq. (11). The es-
timation results for this model are reported in panel a of Ta-
ble 4. Although the slope estimates are negative, they are not

significant (p values 0.3106 and 0.1947 for the case of kglz

and k_(gzg, respectively).

Biogeosciences, 16, 3651-3663, 2019
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Table 2. Multivariate analysis of the airborne fraction.
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Parameter estimates ‘ Correlation matrix (€) ‘ Diagnostics

(a) Two individual trends as in Eq. (11).

Ge & B SE@) rtstat(B) | AFD AF® | N R? DW
AF(D 01268  0.0333  0.00146  0.00459 031797 | 1.0000 0.7612 | 0.603 0.484 2.0152
AF® 01307  0.0274 0.00010 0.00383  0.02629 | 0.7612 1.0000 | 1.469 0.525 2.0853
(b) One common trend as in Eq. (12).

Ge Gy B SE@) tstat(B) | AFD AF® | N R? DW
AE(D 01370 7.2e-09  0.00073  0.00095  0.77258 | 1.0000 0.5518 | 0.245 0.470 1.8722
AF® 01375 - - - - | 05518 1.0000 | 2.573 0.516 1.9820

()

We report parameter estimates for the standard deviations o~ and a,(,l), for i = 1,2, correlation matrix for ¢, and slope coefficient 8 together with its

standard error (SE) and ¢ statistic (z-stat). We further report the normality (N) test, the goodness-of-fit statistic R%), and the Durbin—Watson (DW) test

statistic for serial correlation. For details, see Table 1. In panel b, the trend coefficients (o) and g) for AF® are the same as for AF(D given the

construction of the model (Eq. 12).

T
TA (estimate)
08 } — — AF(data) |-
5 1\ / — — AF?(data)
B o6l | “\ I‘ /\,\ I\\ \ /\\ A |
hae ° A \
E \\/\ /I\\\. /l}\\ .,3. N IA\VI:f\ /A\ /\ / \\ /'(\ /il\\ / \\ /A\\A 7\ // \\// )
5040 PNV B NA SV ERLE N/ [ \ \ vV / .
2 \ \Il \W \, \\/ ”\l ;( \VA, \/\ ¥/ \/ t/ Y Iov
=z - \ \ In] o\ \ \
02+ | -
\l
0 1 \ L | 1 1
1960 1970 1980 1990 2000 2010 2020

Figure 1. Estimated trend T,A of the airborne fraction from the model 12.

Finally, we consider the state-space system that imposes a
common trend for both time series, TtS , that is,

_e ] T seashre 1L 4] s
G| [(E,ANT - Gt)/C,] B [T,S} Tl
which can be compared with model in Eq. (12). The estima-
tion results are presented in panel b of Table 4. Similar to
the analysis of the airborne fraction in the previous section,
the diagnostic statistics are somewhat worse for the less flex-
ible system with a common trend. However, the diagnostics

are still satisfactory, while the goodness-of-fit statistics im-
proved overall. The estimate of the slope is

B = —0.00014,

and this estimate is statistically significant: we reject the hy-
pothesis Hy : B =0 in favour of H; : B < 0 at a 95 % confi-
dence level (p value 0.0014). The mean of the sink rate (cal-
culated using either data set kél) or k(sz)) is 0.0258. It follows
that we estimate the sink rate to be decreasing with approx-
imately 0.00014/0.0258 = 0.54 % yr~'. The estimated trend
and the data are plotted in Fig. 2.

Biogeosciences, 16, 3651-3663, 2019

The state-space system is also well-suited for forecast-
ing; see Durbin and Koopman (2012). Using the model in
Eq. (15), we forecast the sink rate 25 years ahead in time.
The output is presented in Fig. 3. For reference, the forecasts
coming from an autoregressive model of order 1 (AR1) are
also presented. The downward trend in the forecasts from the
state-space model is the result of the negative estimate of 8.
Under current conditions, the forecast implies that in approx-
imately 15 years, the sink rate will have declined to below
2 %. Conversely, the autoregressive model produces forecasts
that converge to the mean of the original data series.

It is important to recognize that the validity of these fore-
casts are conditional on the assumption that the sink rate, kg,
is linear in concentrations. As seen from the analysis above,
see also Fig. 2, this assumption has been approximately satis-
fied over the time period considered in this paper, but whether
it will continue to be accurate is an open question (see Ap-
pendix A for a discussion of the possible future behaviour of
the sink rate). The model-based forecasts of Fig. 3 should be
seen in this light: these forecasts are obtained under the as-
sumption that the sink rate will continue to be approximately
linear in concentrations. Whether this assumption is reason-
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Table 3. Univariate analysis of the CO, sink rate.

Parameter estimates ‘ Diagnostics
G Gy B SE(B) tsa(B) | N R  DW
k00066 8.8077x 107  —0.00010 0.00013 —0.76117 | 4.880 0.464 1.968
kP 00063 6.3982x 1074 —0.00015 0.00010 —1.43179 | 0.967 0442 1875

We report parameter estimates for the standard deviations o and oy, and slope coefficient 8 together with its standard error (SE)

and 1 statistic (¢-stat). We further report the normality (N) test, the goodness-of-fit statistic R%), and the Durbin—Watson (DW) test
statistic for serial correlation; all are computed for the standardized prediction errors u;, which are obtained from the Kalman

filter; for details see Table 1.

Table 4. Multivariate analysis of the CO; sink rate.

Parameter estimates ‘ Correlation matrix (€) ‘ Diagnostics
(a) Two individual trends as in Eq. (14).
G Gy B SE@)  tstat(B) | AFD AF® | N R3 DW
kgl) 0.0064 0.0015 —0.00010 0.00020 —0.49406 | 1.0000 0.7733 | 3.348 0.511 2.0233
k§2) 0.0060 0.0014 —0.00017 0.00020 —0.86071 | 0.7733 1.0000 | 1.365 0.488 2.0185
(b) One common trend as in Eq. (15).
e &y B SEB) s | k) Pl N RZ DW
kgl) 0.0068 4.1762x 1072  —0.00014 0.00005 —2.99145 | 1.0000 0.5621 | 4.012 0.499 2.0276
kS 0.0065 - - - ~ | 05621 1.0000 | 0.090 0474 1.7967
We report parameter estimates for the standard deviations o) and o,\"”, for i = 1,2, the correlation matrix for ¢;, and slope coefficient f together with its standard

error (SE) and ¢ statistic (¢-stat). We further report the normality (N) test, the goodness-of-fit statistic R%, and the Durbin—Watson (DW) test statistic for serial

correlation; for details, see Table 1. In panel b, the trend coefficients (o7 and g) for kS are the same as for kS

able is an interesting question beyond the scope of the present
study.

6 Trend analysis of the ocean and land sink rates

We may conclude from the analysis in the previous section
that the combined (land plus ocean) sink rate appears to be
decreasing. To investigate this finding in more detail, we
study two alternative models, which consider the two sink
variables separately. The first model specifies local linear
trends for ocean and land sink rates, i.e.

4 = ko] _ se/c _[10]., el
t kL,t S[L/Ct T[L 6[(2) s

where the time series ko ; and k. ; are defined in Eq. (4),
while the trend variables T,° and T, are specified as in
Eq. (6). To inform the state-space system of the structure of

(16)
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) (I

given the construction of the model (Eq. 15).

the carbon budget, we also consider the model equations
$2/Cy 1,0

SF/C =| 1t
(EMNT —Gyy/Cy 7O + Tt

kO,t
kp: | =
kS,t

Y =

+]e® (17)

e
This trivariate model equation can be cast in the state-space
system (Eq. 5) as well. The model specification has two in-
dependent trend processes of the form Eq. (6) for land and
ocean sinks. Since ks ; = ko ; + ki ¢, the time series kg ; of
combined ocean and land sinks must feature the sum of the
two trend processes for the individual sinks as its trend pro-
cess.

The estimation results for these two model specifications
are presented in Table 5. The residual diagnostic statistics N
and DW are satisfactory, but we are particularly interested
in the estimates of the slope parameters. It seems that most
of the decrease in the sink rate can be attributed to the land
sink. The slope estimates of the trend driving the ocean sink
rate are very close to zero and not statistically significant (p
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Figure 2. Estimated trend T,S of the CO; sink rate from Model (Eq. 15).
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Figure 3. The blue solid line represents the data, while the red solid line represents the point forecasts from the Kalman filter with the
unknown parameters estimated by maximum likelihood. The dashed red lines are 95 % confidence bands (1.96 standard deviation) for the
forecasts. The green line represents the forecasts from an autoregressive model of order 1.

values 0.5227 and 0.5168, respectively). On the other hand,
the slope estimates of the trend driving the land sink rate are
negative for both specifications. In the first model (Eq. 16),
we can reject the hypothesis that the slope of the trend driving
the land sink rate is zero in favour of the one-sided alternative
Hy: B <0 at a 95% confidence level (p value of 0.0420).
For the more informed model specification (Eq. 17), the esti-
mation results are reported in panel b of Table 5. Here we can
reject Hy at a 90 % confidence level (p value of 0.0882). Fur-
ther, the results show that the estimate of the slope parameter
from the land sink rate is equal to the estimate of the slope
parameter from the combined sink rate as in Sect. 5, that is,
,3 = —0.00014. In other words, it appears that the decrease
in the combined sink rate studied in the previous section is
entirely explained by the decrease in the land sink rate.

7 Discussion

Previous studies of the airborne fraction and the CO, sink
rate have focused on detecting a single linear and determin-
istic trend in the data of the form ag + a;t, where ag and ay,
are constants (Canadell et al., 2007a; Le Quéré et al., 2009;
Knorr, 2009; Raupach et al., 2008, 2014). However, possi-
ble statistical difficulties in such analyses have been pointed
out in Knorr (2009). For instance, a linear regression anal-
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ysis of two or more non-stationary variables can yield in-
valid inference (Granger and Newbold, 1974). The approach
of this paper is to consider the data in a state-space system. In
this way, non-stationary components are explicitly modelled
as unobserved trend components and inference is valid (e.g.
Durbin and Koopman, 2012). Furthermore, the trend specifi-
cation of the state-space system allows for both deterministic
and stochastic trend components.

In some of the uninformed models (cf. Table 1, panel a
of Table 2, and panel a of Table 4), we estimate &511, > 0,
and, thus, in these cases, we find evidence of the trend com-
ponent varying in time. However, in our “informed” models
with a single trend object for two alternative time series, the
extracted trends are practically deterministic, that is, the es-
timates of ogyp, in panel b of Tables 2 and 4 are near zero (cf.
also Figs. 1 and 2). In conclusion, there is evidence that a
simple deterministic trend fits both the airborne fraction and
the sink rate data well, although this only becomes evident
when incorporating two data sets for each of these objects.

Several studies have highlighted the need for accounting
for noise in measurements of climate-related data (Knorr,
2009; Ballantyne et al., 2015). The state-space approach ex-
plicitly incorporates such noise in the framework as well.
Ballantyne et al. (2015) argue that errors in EtANT might be
autocorrelated. As shown in Tables 1-5, the diagnostic statis-
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Table 5. Analysis of ocean and land sink rates.
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(a) Two trends and two observation series as in Eq. (16).

Parameter estimates ‘ Correlation matrix (€) ‘ Diagnostics

e &y B SE(B) rtsa(B) | ko, kr s | N R} DW
ko, 0.0001 0.00081 0.00001  0.00011 0.057 1.00 —1.00 4.839 0.0343 1.847
k. 0.0067 0.00015 —0.00010 0.00006  —1.728 —1.00 1.00 5.332 0.513  1.908
(b) Two trends and three observation series as in Eq. (17).

e G B SE(B) tst(B) | ko, kp ks | N RZ  DW
ko, 0.0001 0.00081 0.00000 0.0001 0.0422 1.00 —-0.122 —0.884 | 4.839 0.0343 10916
kr 0.0068 0.00068 —0.00014 0.0001 —1.352 | —0.122 1.00 0.572 | 4.054 0.494  1.989
ks;  0.0065 - - - - | —0.884 0.572 1.00 | 1.114 0.477  1.801

We report parameter estimates for standard deviations ae(i) and a,gi) ,fori =1,2,3, correlation matrix for ¢, and slope coefficient g together with its standard error

(SE) and ¢ statistic (¢-stat). We further report the normality (N) test, the goodness-of-fit statistic R%) and the Durbin—Watson (DW) test statistic for serial correlation;
for details see Table 1. In panel b, we have two trends and two sets of trend coefficients (o) and ) for k¢ ; and ky, ;. The trend for kg ; is a combination of the two

given the construction of the model (Eq. 17).

tics do not indicate that autocorrelated errors pose a serious
problem in our specifications. Nevertheless, the state-space
framework can incorporate autocorrelated errors in the mea-
surement equation.

Why do we find statistical evidence of a decreasing CO»
sink rate but no evidence of an increasing airborne fraction
when these two quantities are closely linked and the data en-
tering the analyses are the same? It was noted in Gloor et al.
(2010) that the airborne fraction and the sink rate are actually
not as closely linked as they may seem prima facie. In partic-
ular, an increasing airborne fraction does not necessarily im-
ply a decreasing sink rate and vice versa (Gloor et al., 2010,
Section 8). The findings of this paper support this claim by
providing statistical evidence for a constant airborne fraction
but at the same time for a decreasing sink rate. Secondly, the
concept of an airborne fraction is that of a long-term quan-
tity: the airborne fraction should represent the amount of an-
thropogenically released CO, that eventually stays in the at-
mosphere after other fluxes have been taken into account.
However, the ratio of the concurrent fluxes, i.e. G;/ EtANT,
is likely a very noisy measurement of this object. Also, as
we saw above, it is reasonable to consider sink fluxes, and
therefore indirectly G, as being dependent on the level of
CO; in the atmosphere (i.e. C; = > G;), which is not cap-
tured by the concurrent ratio G,/ E,ANT. When studying the
airborne fraction, it would perhaps be more reasonable to
study an object taking this cumulative nature into account,
e.g. .G,/ > EANT = C,/> EANT (in fact, such specifica-
tions were often considered in earlier parts of the literature;
e.g. Keeling, 1973; Bacastow and Keeling, 1979; Oeschger
and Heimann, 1983; Enting and Pearman, 1986). However,
cumulative statistics of this type would present other diffi-
culties. The dominance of the long-term history may mask
sudden changes, for example. In contrast, the sink rate S; /Cy,
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as a flow-to-stock ratio, is immediately compatible with the
underlying theory, at least as long as the linear approxima-
tion of the relationship between S; and C;, such as was made
in, for example, Gloor et al. (2010) and Rayner et al. (2015),
is adequate.

What are possible physical explanations for the apparent
decrease in the sink rate? Raupach (2013) argues that a nec-
essary condition for a constant sink rate is that the so-called
“LinExp” assumption holds, i.e. that the sink fluxes S,O and
S,L are linear in concentrations C; (“Lin”) and that emissions
(EANT) grow exponentially (“Exp”). Constancy of the air-
borne fraction rests on a similar LinExp argument. Since we
find no statistical evidence that the airborne fraction, AF;,
and the ocean sink rate, ko ;, are non-constant in time, it is
unlikely that the Exp assumption is grossly violated over the
observation period considered in this paper. In contrast, it
was found above that the efficiency of the land sink, kg, ;,
is decreasing. A plausible explanation of these findings is
that the Lin assumption no longer holds for the land sink,
for instance because the terrestrial sink could be slowly sat-
urating (Canadell et al., 2007b). In Appendix A we give a
formal argument for how this could lead to the findings doc-
umented above. In particular, we show that the findings of
this paper can be explained by the land sink’s response to
high atmospheric CO, concentrations: it is plausible that due
to a rising level of CO, concentration, non-linear effects in
the terrestrial CO, carbon cycle have become noticeable. If
this is indeed the case, it has obvious consequences for our
understanding of the carbon cycle and should be a cause for
substantial concern (Gloor et al., 2010, p. 7740). Howeyver,
although this explanation of our findings is consistent with
the data, we can not conclude that it is the only possible ex-
planation. Further research into the underlying reasons for
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the decreasing sink rate would be very valuable and is left
for future work.

It is possible that the analyses conducted above are in-
fluenced by external natural events such as the El Nifio—
Southern Oscillation (ENSO), volcanic eruptions, and the
like (Frolicher et al., 2013). The state-space system used in
this paper can explicitly account for such effects through the
additive error terms ¢, (cf. Eq. 5). To verify that the approach
is indeed robust to such external and transitory events, we
have also conducted our analyses using 5-year average data.
The findings from the estimated state-space system for these
time series of averages confirm those reported above: in the
joint estimation, we find no statistical evidence of a trend
in the airborne fraction (p value of 0.3214), and we do find
statistical evidence of a decreasing trend in the sink rate (p
value of 0.00064). We conclude that the findings of this pa-
per are not likely to be driven by external natural events such
as ENSO and volcanic eruptions. We also considered 2-, 3-,
and 4-year averages with similar results. We present details
of this analysis in the Supplement (Sect. 3). To further check
the robustness of the results, we examined whether there are
any observations in the data set which are particularly influ-
ential. Statistically influential observations could be due to
outliers, caused for instance by external natural events, such
as the ones mentioned above. Using a statistic called Cook’s
distance (Cook, 1977, 1979; Atkinson et al., 1997), which is
a measure of how influential a given observation is on the
analysis, we did not find evidence of any one observation be-
ing particularly influential. Similarly, we tried estimating the
slope parameter 8 after deleting the zth observation for each
time point ¢ in the sample, i.e. for t = 1959, 1960, ...,2016;
the estimates of the slope parameter found in this way were
very stable, which is further evidence of the robustness of the
analyses to potential outliers and external events. Details can
be found in the Supplement (Sect. 2.1).

This paper considers data recorded at a yearly frequency,
while many of the previous studies of the airborne fraction
and the sink rate use monthly data. The advantage of using
monthly data is obvious: more observations. However, there
are also some disadvantages. For instance, while the CO;
concentration C; (and therefore also the growth rate G;) is
recorded every month, these data contain a strong seasonal
component induced by the photosynthesis—respiration cycle
of terrestrial vegetation. This seasonality needs to be ac-
counted for in some way; for instance, Raupach et al. (2014)
smooth the data using a 15-month running mean. In contrast,
some of the other data are recorded only yearly, for instance,
the emission data available to us, E;’*NT. In this case, Rau-
pach et al. (2014) use linear interpolation to get monthly es-
timates of emissions. Such transformations of the data, i.e.
smoothing or interpolation, might introduce new and com-
plicated errors, possibly invalidating the analyses. For these
reasons, we prefer to work with yearly data.
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8 Conclusions

We have argued that the state-space system can be a useful
approach for analysing possible trends in the airborne frac-
tion of anthropogenically released CO; and in the CO; sink
rate. We have shown that deterministic and stochastic trend
processes can be explicitly and jointly incorporated as unob-
served components, allowing for valid inference, even when
the observed time series are non-stationary. The state-space
framework also allows for the incorporation of multiple data
sets for the same object, which increases reliability of the re-
sulting estimates.

We estimate a positive, yet statistically insignificant, slope
in the data for the airborne fraction. Using two alternative
time series for the sink rate and imposing a common trend,
we obtain a significantly negative deterministic trend. Our
analyses support the conclusions as set out by Raupach et al.
(2014): the rate at which the combined (ocean plus land)
sink takes up CO, from the atmosphere seems to be decreas-
ing. The best estimate resulting from our state-space system
is that the CO» sink rate, and therefore the efficiency with
which the combined land and ocean sink is absorbing carbon
from the atmosphere, is decreasing by 0.54 % yr~!. We do
not find evidence of this rate itself changing over time.

Finally, there is tentative evidence that the decrease in the
sink rate is mainly driven by a weakening uptake in the land
sink. This could be the result of non-linearities in the re-
sponse of the terrestrial carbon sink to the level of atmo-
spheric concentrations of CO;. That is, although the land
sink is itself increasing and thus continuing to take up a large
part of anthropogenically emitted CO», as also noted recently
by, for example, Rayner et al. (2015), Keenan et al. (2016),
and Ferndndez-Martinez et al. (2019), the rate of this uptake
appears to be decreasing. The statistical evidence for this is
not strong, however, and we suggest that additional research
must be conducted to further investigate this question.

Data availability. The data used in this paper are available
at the website of the Global Carbon Project (https://www.
globalcarbonproject.org, Le Quéré et al., 2018).
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Appendix A: Linear approximation of the relation of
land sink and concentrations

In this Appendix, we argue that the levels of atmospheric
concentrations of CO, may have risen to a point where a
linear expansion of the logarithmic Bacastow and Keeling
(1973) formula, describing the flux of CO» into the land sink,
is no longer sufficient. Consequently, the Lin assumption of
Raupach (2013) might be violated for the land sink, imply-
ing that 2nd-order effects may be driving the negative slope
of the sink rate that we document in this paper.
From Eq. (4) we obtain the relation

S;L = kL,t . Ct,

which implies that the flux of CO; to the land sink is lin-
ear in C;, where kz ; would then be treated as a constant.
On the other hand, a decreasing kz ; implies that the effi-
ciency with which the land sink absorbs CO» is decreasing,
i.e. that the flux of CO; to the land sink is non-linear in C;
and that this non-linearity is such that the efficiency is de-
creasing. These statements are consistent with simulation re-
sults from climate cycle models (Friedlingstein et al., 2006).
Here we illustrate mathematically how such non-linearities
can arise.

The precise relationship between SZL and C; still eludes us,
but (Bacastow and Keeling, 1973, p. 94) suggest that (in our
notation)

SL ~ alog(1+C,/CY,

where « is a constant and C° = 591.30 GtC is the amount
of CO; in the atmosphere in pre-industrial times. Using this
function, we can write a 2nd-order Taylor expansion:

C 1 (C\?
Stl‘%ozlog(l+C,/Co)%ozC—(t)—Ecx(c—é) )
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Thus, if C° is large compared to C;, this implies that the
squared term in the above equation is small and thus that a
linear specification between S* and C; is reasonable. How-
ever, once C; becomes large compared to CY, this shows that
the estimated sink rate will be found to be decreasing. To see
this, use the Taylor expansion to write

L
S~k Cr,

where

o 1l a C
=Ty
is decreasing in C;. In our data, we have Cj959 ~ 80 GtC
and Cyp16 & 267 GtC, resulting in C1959/CO ~ 14% and
C2016/C0 ~45%. In other words, the linear approxima-
tion to the Bacastow and Keeling model of the land
sink flux might have been reasonable in the past, since
C1959/C% ~ 14 %, but is likely misspecified in the present,
since Cpo16 /C0 ~ 45%. That is, if this model is accurate,
then a decreasing (land) sink rate indicates that we have en-
tered a regime of atmospheric CO;, concentrations, where
the linear approximation breaks down and higher-order terms
should be taken into account.

Biogeosciences, 16, 3651-3663, 2019
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Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-16-3651-2019-supplement.
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