Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-08T14:12:10.777Z Has data issue: false hasContentIssue false

Section 3 - Hereditary and Genetic Conditions and Malformations

Published online by Cambridge University Press:  15 June 2018

Louis Caplan
Affiliation:
Beth Israel-Deaconess Medical Center, Boston
José Biller
Affiliation:
Loyola University Stritch School of Medicine, Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anabtawi, I. N., Ellison, R. G., and Ellison, L. T. 1965. Pulmonary arteriovenous aneurysms and fistulas. Anatomical variations, embryology, and classification. Ann Thorac Surg, 122, 277–85.Google Scholar
Barth, K. H., White, R. I., Kaufman, S. L., et al. 1982. Embolotherapy pulmonary arteriovenous malformations with detachable balloons. Radiology, 142, 599606.CrossRefGoogle ScholarPubMed
Barzilai, B., Waggoner, A. D., Spessert, C., Picus, E., and Goodenberger, D. 1999. Two-dimensional contrast echocardiography in the detection and followup of congenital pulmonary arteriovenous malformations. Am J Cardiol, 68, 1507–10.Google Scholar
Beck, A., Dagan, T., Matitiau, A., et al. 2006. Transcatheter closure of pulmonary arteriovenous malformation with Amplatzer devices. Catheter Cardiovasc Interv, 67, 932–7.Google Scholar
Berg, J. N., Guttmacher, A. E., Marchuk, D. A., et al. 1996. Clinical heterogeneity in hereditary haemorrhagic telangiectasia: Are pulmonary arteriovenous malformations more common in families linked to endoglin? J Med Genet, 33, 256–7.CrossRefGoogle ScholarPubMed
Babaker, M., Breault, S., Beigelman, C., et al. 2015. Endovascular treatment of pulmonary arteriovenous malformations in hereditary haemorrhagic telangiectasia. Swiss Med Wkly, 145: w14151.Google Scholar
Blanco, P., Schaeverbeke, T., Baillet, L., et al. 1998. Rendu–Osler familial telangiectasia angiomatosis and bacterial spondylodiscitis [in French]. Rev Med Interne, 19, 938–9.Google Scholar
Bosher, L. H., Blake, D. A., and Byrd, B. R. 1959. Analysis of the pathologic anatomy of pulmonary arteriovenous aneurysms with particular reference to the applicability of local excision. Surgery, 45, 91104.Google Scholar
Bossler, A. D., Richards, J., George, C., et al., 2006. Novel mutations in ENG and ACVRL1 identified in a series of 200 individuals undergoing clinical genetic testing for hereditary hemorrhagic telangiectasia (HHT): Correlation of genotype with phenotype. Hum Mutat, 27, 667–75.CrossRefGoogle Scholar
Churton, T. 1897. Multiple aneurysms of the pulmonary artery. Br Med J, 1, 1223–5.Google Scholar
Cil, B., Canyigit, M., Ozkan, O. S., et al. 2006. Bilateral multiple pulmonary arteriovenous malformations: Endovascular treatment with the Amplatzer vascular plug. J Vasc Interv Radiol, 17, 141–5.Google Scholar
Cohen, R., Cabanes, L., Burckel, C., et al. 2006. Pulmonary arteriovenous fistulae recurrent stroke. J Neurol Neurosurg Psychiatry, 77, 707–8.Google Scholar
Coley, S. C. and Jackson, J. E. 1998. Endovascular occlusion with a new mechanical detachable coil. AJR Am J Roentgenol, 171, 1075–9.CrossRefGoogle ScholarPubMed
Cottin, V., Chinet, T., Lavole, A., et al. 2007. Pulmonary arteriovenous malformations in hemorrhagic hereditary telangiectasia: A series of 126 patients. Medicine (Baltimore), 86, 117.Google Scholar
Cottin, V., Plauchu, H., Bayle, J. Y., et al. 2004. Pulmonary arteriovenous malformations in patients with hereditary hemorrhagic telangiectasia. Am J Respir Crit Care Med, 169, 994.CrossRefGoogle ScholarPubMed
David, C., Brasme, L., Peruzzi, P., et al. 1997. Intramedullary abscess of the spinal cord in a patient with a right-to-left shunt: Case report. Clin Infect Dis, 24, 8990.Google Scholar
Del Sette, M., Angeli, S., Leandri, M., et al. 1998. Migraine with aura and right-to-left shunt on transcranial Doppler: A case–control study. Cerebrovasc Dis, 8, 327–30.CrossRefGoogle ScholarPubMed
Desproges-Gotteron, R., Francon, F., and Diaz, R. 1973. Un cas d’arthrite purulente au cours d’une angiomatose de Rendu–Osler (telangiectasia hereditaria hemorrhagica). Vie Méd Can F, 2, 223–5.Google Scholar
Devuyst, G. 1999. New trends in neurosonology. In Fisher, M. and Bogousslavsky, J., eds., Current Review of Cerebrovascular Disease. Philadelphia: Current Medicine, Inc., pp. 6576.Google Scholar
Dines, D. E., Arms, R. A., Bernatz, P. E., et al. 1974. Pulmonary arteriovenous fistulas. Mayo Clin Proc, 49, 460–5.Google ScholarPubMed
Dines, D. E., Seward, J. B., Bernatz, P. E., et al. 1983. Pulmonary arteriovenous fistulas. Mayo Clin Proc, 58, 176–81.Google Scholar
Dinkel, H. P. and Triller, J. 2002. Pulmonary arteriovenous malformations: Embolotherapy with the superselective coaxial catheter placement and filling of venous sac with Guglielmi detachable coils. Radiology, 223, 709–14.Google Scholar
Donaldson, J. W., McKeever, T. M., Hall, I. P., Hubbard, R. B., and Fogarty, A. W. 2015. Complications and mortality in hereditary hemorrhagic telangiectasia: A population-based study. Neurology, 84, 1886–93.Google Scholar
Dutton, J. A. E., Jackson, J. E., Hughes, J. M. B., et al. 1995. Pulmonary arteriovenous malformations: Results of treatment with coil embolization in 53 patients. AJR Am J Roentgenol, 165, 1119–25.Google Scholar
Edigo, R., Panades, M. J., Ramos, J., Guajardo, J., and Parra, R. 1991. Renal actinomycosis: presentation of a case. Acta Urol Esp, 15, 580–2.Google Scholar
Faughnan, M. E., Lui, Y. W., Wirth, J. A., et al. 2000. Diffuse pulmonary arteriovenous malformations: Characteristics and prognosis. Chest, 117, 31–8.Google Scholar
Faughnan, ME, Palda, VA, Garcia-Tsao, G., et al. 2011. International guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J Med Genet, 48, 7387.Google Scholar
Gallione, C. J., Repetto, G. M., Legius, E., et al. 2004. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4(SMAD4). Lancet, 363, 852–9.Google Scholar
Gallitelli, M., Guastamacchia, E., Resta, F., et al. 2006. Pulmonary arteriovenous malformations, hereditary haemorrhagic telangiectasia coma and brain abscess. Respiration, 73, 553–7.Google Scholar
Gallitelli, M., Lepore, V., Pasculli, G., et al. 2005. Brain abscess: A need to screen for pulmonary arteriovenous malformations. Neuroepidemiology, 24, 76–8.Google Scholar
Gossage, J. R. and Kanj, G. 1998. Pulmonary arteriovenous malformations. A state of the art review. Am J Respir Crit Care Med, 158, 643–61.Google Scholar
Guttmacher, A. E., Marchuk, D. A., and White, R. I. Jr. 1995. Hereditary hemorrhagic telangiectasia. N Engl J Med, 333, 918–24.Google Scholar
Gupta, P., Mordin, C., Curtis, J., et al., 2002. Pulmonary arteriovenous malformations: Effect of embolization on right-to-left shunt, hypoxemia, and exercise tolerance in 66 patients. AJR Am J Roentgenol, 179, 347–55.Google Scholar
Harlan, N. P., Davies, L. H., Weaver, L. K., et al., 2015. Spontaneous cerebral gas embolism and pulmonary arteriovenous malformation: A case report. Undersea Hyperb Med, 42, 425–8.Google Scholar
Haitjema, T. J., Disch, F., Overtoom, T. T. C., et al. 1995a. Screening family members of patients with hereditary haemorrhagic telangiectasia. Am J Med, 99, 519–24.Google Scholar
Haitjema, T. J., Overtoom, T. T. C., Westermann, C. J. J., et al. 1995b. Embolization of pulmonary arteriovenous malformation: Results and follow up in 32 patients. Thorax, 15, 719–23.Google Scholar
Hinterseer, M., Becker, A., Barth, A. S., et al. 2006. Interventional embolization of a giant pulmonary arteriovenous malformation with right–left-shunt associated with hereditary hemorrhagic telangiectasia. Clin Res Cardiol, 95, 174–8.Google Scholar
Hsu, Y. L., Wang, H. C., and Yang, P. C. 2004. Desbaric air embolism during diving: an unusual complication of Osler–Weber–Rendu disease. Br J Sports Med, 38, e6.Google Scholar
Hu, S. and Davis, C. 2009. Endovascular embolization with a vascular plug corrects a PAVM. JAAPA, 22, 27–8.Google Scholar
Jessurun, G. A., Kamphuis, D. J., van der Zande, E. H., et al. 1993. Cerebral arteriovenous malformations in the Netherlands Antilles: High prevalence of hereditary haemorrhagic telangiectasia-related single and multiple cerebral arteriovenous malformations. Clin Neurol Neurosurg, 95, 193–8.Google Scholar
Kim, H., Nelson, J., Krings, T., terBrugge, K. G. et al., 2015. Hemorrhage rates from brain arteriovenous malformation in patients with hereditary hemorrhagic telangiectasia. Stroke, 46, 1362–4.Google ScholarPubMed
Kimura, K., Minematsu, K., Nakajima, M. 2004. Isolated primary arteriovenous fistula without Rendu–Osler–Weber disease as a cause of cryptogenic stroke. J Neurol Neurosurg Psychiatry, 75, 311–3.Google Scholar
Kucukay, F., Ozdemir, M., Senol, E. et al., 2014. Large pulmonary arteriovenous malformations: Long-term results of embolization with Amplatzer vascular plugs. J Vasc Interv Radiol, 25, 1327–32.CrossRefGoogle ScholarPubMed
Lee, D. W., White, R. I., Egglin, T. K., et al. 1997. Embolotherapy of large pulmonary arteriovenous malformations: Long-term results. Ann Thorac Surg, 64, 930–40.CrossRefGoogle ScholarPubMed
Lee, W. L., Graham, A. F., Pugash, R. A., et al. 2003. Contrast echocardiography remains positive after treatment of pulmonary arteriovenous malformations. Chest, 123, 351–8.Google Scholar
Lubarsky, M., Ray, C., and Funaki, B. 2010. Embolization agents: Which one should be used when? Part 2: Small-vessel embolization. Semin Intervent Radiol, 2010, 27, 99104.Google Scholar
McDonald, J., Damjanovich, K., Millson, A., et al., 2011. Molecular diagnosis in hereditary hemorrhagic telangiectasia: Findings in a series tested simultaneously by sequencing and deletion/duplication analysis. Clin Genet, 79, 335–44.Google Scholar
Mager, J. J., Overtoom, T. T., Mauser, H. W., et al. 2001. Early cerebral infarction after embolotherapy of pulmonary arteriovenous malformation. J Vasc Interv Radiol, 12, 122–3.Google Scholar
Mager, J. J., Overtoom, T. T., Blauw, H., Lammers, J. W., and Westermann, C. J. 2004. Embolotherapy of pulmonary arteriovenous malformations: Long-term results in 112 patients. J Vasc Interv Radiol, 15, 451–6.Google Scholar
Maher, C. O., Piepgras, D. G., Brown, R. D., et al. 2001. Cerebrovascular manifestations in 321 cases of hereditary hemorrhagic telangiectasia. Stroke, 32, 877–82.Google Scholar
Maniscalco, M., Zedda, A., Faraone, S., et al. 2005. Association of Adams–Oliver syndrome with pulmonary arterio-venous malformation in the same family. Am J Med Genet, 136, 269–74.Google Scholar
Marchuk, D. A. 1997. The molecular genetics of hereditary haemorrhagic telangiectasia. Chest, 111 (Suppl), 79s82s.CrossRefGoogle Scholar
Moussouttas, M., Fayad, P., Rosenblatt, M., et al. 2000. Pulmonary arteriovenous malformations: Cerebral ischemia and neurologic manifestations. Neurology, 55, 959–64.Google Scholar
Nanthakumar, K., Graham, A. T., Robinson, T. I., et al. 2001. Contrast echocardiography for detection of pulmonary arteriovenous malformations. Am Heart J, 141, 243–6.Google Scholar
Ondra, S. L., Troupp, H., George, E. D., and Schwab, K. 1990. The natural history of symptomatic arteriovenous malformations of the brain: A 24-year follow-up assessment. J Neurosurg, 73, 387–91.Google Scholar
Parees, I., Horga, A., Santamarima, E., et al. 2010. Stroke after prolonged air travel associated with a pulmonary arteriovenous malformation. J Neurol Sci, 292, 99100.Google Scholar
Peters, B., Ewert, P., Schubert, S., et al. 2005. Rare case of pulmonary arteriovenous fistula simulating residual defect after transcatheter closure of patent foramen ovale for recurrent paradoxical embolism. Catheter Cardiovasc Interv, 64, 348–51.Google Scholar
Petrillo, T., Fortenberry, J., Chambliss, R., and Nall, K. 2001. Radiological case of the month. Arch Pediatr Adolesc Med, 155, 847–48.Google Scholar
Pierucci, P., Murphy, J., Henderson, K. J., et al. 2008. New definition and natural history of patients with diffuse pulmonary arteriovenous malformations: Twenty-seven-year experience. Chest, 133, 653–61.Google Scholar
Plauchu, H., de Chadarevian, J. P., Bideau, A., et al. 1989. Age-related clinical profile of hereditary haemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet, 32, 291–7.Google Scholar
Post, M. C., van Gent, M. W. F., Plokker, H. W. M., et al. 2009. Pulmonary arteriovenous malformations associated with migraine with aura. European Respiratory Journal, 34, 882–87.Google Scholar
Post, M. C., Letteboer, T. G. W., Mager, J. J., et al. 2005. A pulmonary right to left shunt in patients with hereditary haemorrhagic telangiectasia is associated with an increased prevalence of migraine. Chest, 128, 2485–9.CrossRefGoogle ScholarPubMed
Post, M. C., Thijs, V., Herroelen, L., et al. 2004. Closure of a patent foramen ovale is associated with a decrease in prevalence of migraine. Neurology, 62, 1439–40.Google Scholar
Post, M. C., Thijs, V., Schonewille, W. J., et al. 2006. Embolization of pulmonary arteriovenous malformations and decrease in prevalence of migraine. Neurology, 66, 202–5.Google Scholar
Prigoda, N. L., Savas, S., Abdalla, S.A., et al. 2006. Hereditary haemorrhagic telangiectasia: Mutation detection, test sensitivity and novel mutations. J Med Genet, 43, 722–8.CrossRefGoogle ScholarPubMed
Puskas, J. D., Allen, M. S., Moncure, A. C., et al. 1993. Pulmonary arteriovenous malformations: Therapeutic options. Ann Thorac Surg, 56, 253–8.Google Scholar
Remy, J., Remy-Jardin, M., Giraud, F., et al. 1994. Angioarchitecture of pulmonary arteriovenous malformations: Clinical utility of three-dimensional helical CT. Radiology, 191, 657–64.Google Scholar
Retnakaran, R. R., Faughnan, M. E., Chan, R. P., et al. 2003. Pulmonary arteriovenous malformation: A rare, treatable cause of stroke in young adults. Int J Clin Pract, 57, 731–3.Google Scholar
Richards-Yutz, J., Grant, K., Chao, E. C., et al. 2010. Update on molecular diagnosis of hereditary hemorrhagic telangiectasia. Hum Genet, 128, 6177.Google Scholar
Roman, G., Fisher, M., Perl, D. P., et al. 1978. Neurological manifestations of hereditary haemorrhagic telangiectasia (Rendu–Osler–Weber disease): Report of 2 cases and review of the literature. Ann Neurol, 4, 130–44.Google Scholar
Saluja, S., Sitko, L., Lee, R. W., et al. 1999. Embolotherapy of pulmonary AVM with detachable balloons: Long-term durability and efficiency. J Vasc Interv Radiol, 10, 883–9.Google Scholar
Sellon, E., Ring, A., Howlett, D. 2013 Ischaemic stroke secondary to paradoxical emboli through an arteriovenous malformation of the lung in a patient with known breast cancer. BMJ Case Rep, bcr2013008672.Google Scholar
Schwerzmann, M., Wiher, S., Nedeltchev, K., et al. 2004. Percutaneous closure of patent foramen ovale reduces the frequency of migraine attacks. Neurology, 62, 1399–401.Google Scholar
Shovlin, C. L., Guttmacher, A. E., Buscarini, E., et al. 2000. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu–Osler–Weber syndrome). Am J Med Genet, 91, 66–7.Google Scholar
Shovlin, C. L. and Letarte, M. 1999. Hereditary haemorrhagic telangiectasia and pulmonary arteriovenous malformations: Issues in clinical management and review of pathogenic mechanisms. Thorax, 54, 714–29.Google Scholar
Steele, J. G., Nath, P. U., Burn, J., et al. 1993. An association between migrainous aura and hereditary haemorrhagic telangiectasia. Headache, 33, 145–8.CrossRefGoogle ScholarPubMed
Swanson, K. L., Prakash, U. B., and Stanson, A. W. 1999. Pulmonary arteriovenous fistulas: Mayo Clinic experience, 1982–1997. Mayo Clin Proc, 74, 671–80.Google Scholar
Tapping, C. R., Ettles, D. F., and Robinson, G. J. 2011. Long-term follow-up of treatment of pulmonary arteriovenous malformations with Amplatzer vascular plug and Amplatzer vascular plug II devices. J Vasc Interv Radiol, 22, 1740–46.Google Scholar
Thenganatt, J., Schneiderman, J., Hyland, R. H., et al. 2006. Migraines linked to intrapulmonary right-to-left shunt. Headache, 46, 439–43.Google Scholar
Thompson, R. D., Jackson, J., Peters, A. M., et al. 1999. Sensitivity and specificity of radioisotope right–left shunt measurement and pulse oximetry for the early detection of pulmonary arteriovenous malformations. Chest, 115, 109–13.Google Scholar
Todo, K., Moriwaki, H., Higashi, M., et al. 2004. A small pulmonary arteriovenous malformation as a cause of recurrent brain embolism. AJNR Am J Neuroradiol, 25, 428–30.Google Scholar
Trerotola, S. O. and Pyeritz, R. E. 2010. PAVM embolization: An update. AJR Am J Roentgenol, 195, 837–45.Google Scholar
Trulock, E. P. 1997. Lung transplantation. Am J Respir Crit Care Med, 155, 789818.Google Scholar
Vase, P., Holm, M., and Arendrup, H. 1985. Pulmonary arteriovenous fistulas in hereditary haemorrhagic telangiectasia. Acta Med Scand, 218, 105–9.Google Scholar
Watanabe, N., Munakata, Y., Ogiwara, M., et al. 1995. A case of pulmonary arteriovenous malformation in a patient with brain abscess successfully treated with video-assisted thoracoscopic resection. Chest, 108, 1724–7.Google Scholar
Tsetsou, S., Eeckhout, E., Qanadli, S. D., et al., 2013. Nonaccidental arterial cerebral air embolism: A ten-year stroke center experience. Cerebrovasc Dis, 35, 392–5.CrossRefGoogle ScholarPubMed
White, R. I. Jr. 2007. Pulmonary arteriovenous malformations: How do I embolize? Tech Vasc Interv Radiol, 10, 283–90.Google Scholar
White, R. I. Jr., Lunch-Nyhan, A., Terry, P., et al. 1988. Pulmonary arteriovenous malformations: Techniques and long-term outcome of embolotherapy. Radiology, 169, 663–9.Google Scholar
White, R. I. Jr., Pollak, J. S., and Wirth, J. A. 1996. Pulmonary arteriovenous malformations: Diagnosis and transcatheter embolotherapy. J Vasc Interv Radiol, 7, 787804.Google Scholar
Willemse, R. B., Mager, J. J., Westermann, C. J., et al. 2000. Bleeding risk of cerebrovascular malformations in hereditary hemorrhagic telangiectasia. J Neurosurg, 92, 779–84.Google Scholar
Willinsky, R. A., Lasjaunias, P., Terbrugge, K., et al. 1990. Multiple cerebral arteriovenous malformation: Review of our experience from 203 patients with cerebral vascular lesions. Neuroradiology, 32, 207–10.Google Scholar
Wilmshurst, P. T., Nightingale, S., Walsh, K. P., et al. 2000. Effect on migraine of closure of cardiac right-to-left shunts to prevent recurrence of decompression illness or stroke or for haemodynamic reasons. Lancet, 356, 1648–51.Google Scholar
Yeung, M., Khan, K. A., Antecol, D. H., et al. 1995. Transcranial Doppler ultrasonography and transesophageal echocardiography in the investigation of pulmonary arteriovenous malformation in a patient with hereditary haemorrhagic telangiectasia presenting with stroke. Stroke, 26, 1941–4.Google Scholar
Zukotynski, K., Chan, R. P., Chow, C. M., et al. 2007. Contrast echocardiography grading predicts pulmonary arteriovenous malformations on CT. Chest, 132, 1823.Google Scholar

References

Adams, H. P., Subbiah, B., and Bosch, E. P. 1977. Neurologic aspects of hereditary haemorrhagic telangiectasia. Arch Neurol, 34, 101–4.Google Scholar
Albucher, J. F., Carles, P., Giron, P., Guiraud-Chaumeil, B., and Chollet, F. 1996. Accident vasculaire cérébral ischémique au cours de la maladie de Rendu Osler: A propos d’un cas. Rev Neurol (Paris), 152, 283–7.Google Scholar
Barreto, L., Amiel, J. B., Dugard, A., et al. 2013. The Rendu–Osler–Weber disease revealed by a refractory hypoxemia and cerebral severe fat embolism. Case Rep Crit Care, Article 434965.Google Scholar
Begbie, M. E., Wallace, G. M., and Shovlin, C. L. 2003. Hereditary haemorrhagic telangiectasia (Osler–Weber–Rendu syndrome): A view from the 21st century. Postgrad Med J, 79, 1824.Google Scholar
Bennesser Alaoui, H., Lehraiki, M., et al. 2015. Bevacizumab: A new success in hereditary hemorrhagic telangiectasia. Rev Med Int, 9, 623–5.Google Scholar
Braverman, I. M., Keh, A., and Jacobson, B. S. 1990. Ultrastructure and three-dimensional organization of the telangiectases of hereditary haemorrhagic telangiectasia. J Invest Dermatol, 95, 422–7.Google Scholar
Dingenouts, C. K., Goumans, M. J., and Bakker, W. 2015. Mononuclear cells and vascular repair in HHT. Front Genet, 6, 114.Google Scholar
Dong, S. L., Reynolds, S. F., and Steiner, I. P. 2001. Brain abscess in patients with hereditary hemorrhagic telangiectasia: Case report and literature review. J Emerg Med, 20, 247–51.Google Scholar
Fisher, M. and Zito, J. L. 1983. Focal cerebral ischemia distal to a cerebral aneurysm in hereditary hemorrhagic telangiectasia. Stroke, 14, 419–21.Google Scholar
Fressinaud, C., Pasco-Papon, A., Brugeilles-Baguelin, H., and Emile, J. 2000. Complication inhabituelle de la maladie de Rendu–Osler–Weber: Le syndrome bulbaire paramédian. Rev Neurol (Paris), 156, 388–91.Google Scholar
Fuchizaki, U., Miyamori, H., Kitagawa, S., et al. 2003. Hereditary haemorrhagic telangiectasia (Rendu–Osler–Weber disease). Lancet, 362, 1490–4.Google Scholar
Fulbright, R., Chaloupka, J., Putman, C., et al. 1998. MR of hereditary haemorrhagic telangiectasia: Prevalence and spectrum of cerebrovascular malformations. Am J Neuroradiol, 19, 477–84.Google Scholar
Garcia-Monaco, R., Taylor, W., Rodesch, G., et al. 1995. Pial arteriovenous fistula in children as presenting manifestation of Rendu–Osler–Weber disease. Neuroradiology, 37, 60–4.Google Scholar
Garcia-Tsao, G., Korzenik, J. R., Young, L., et al. 2000. Liver disease in patients with hereditary haemorrhagic telangiectasia. N Engl J Med, 343, 931–6.Google Scholar
Garg, N., Khunger, M., Gupta, A. et al. 2014. Optimal management of hereditary hemorrhagic telangiectasia. J Blood Med, 5, 191206.Google Scholar
Guttmacher, A. E., Marchuk, D. A., and White, R. I. 1995. Hereditary hemorrhagic telangiectasia. N Engl J Med, 333, 918–24.Google Scholar
Haitjema, T., Westerman, C. J. J., Overtoom, T. T. C., et al. 1996. Hereditary haemorrhagic telangiectasia (Osler–Weber–Rendu disease). New insights in pathogenesis complications and treatment. Arch Intern Med, 156, 714–9.Google Scholar
Hewes, R. C., Auster, M., and White, R. I. 1985. Cerebral embolism: First manifestation of pulmonary arteriovenous malformation in patients with hereditary haemorrhagic telangiectasia. Cardiovasc Intervent Radiol, 8, 151–5.Google Scholar
Hodgson, C. H., Burchell, H. B., Good, G. A., and Clagett, O. T. 1959. Hereditary haemorrhagic telangiectasia and pulmonary arteriovenous fistula. Survey of a large family. N Engl J Med, 261, 625–36.Google Scholar
Kato, Y., Maruyama, H., Uchino, A., and Tanahashi, N. 2014. Late-onset portosystemic encephalopathy in a patient with Rendu–Osler–Weber disease. Intern Med, 53, 2653–4.Google Scholar
Kimura, K., Minematsu, K., and Nakajima, M. 2004. Isolated pulmonary arteriovenous fistula without Rendu–Osler–Weber disease as a cause of cryptogenic stroke. J Neurol Neurosurg Psychiatry, 75, 311–3.Google Scholar
Kjeldsen, A. and Kjeldsen, J. 2000. Gastrointestinal bleeding in patients with hereditary haemorrhagic telangiectasia. Am J Gastroenterol, 95, 415–8.Google Scholar
Krings, T., Ozanne, A., Chng, S. M., et al. 2005. Neurovascular phenotypes in hereditary haemorrhagic telangiectasia patients according to age. Review of 50 consecutive patients aged 1 day–60 years. Neuroradiology, 47, 711–20.Google Scholar
Lesca, G., Plauchu, H., Coulet, F., et al. 2004. Molecular screening of ALK1/ACVRL1 and ENG genes in hereditary haemorrhagic telangiectasia in France. Hum Mutat, 23, 289–99.Google Scholar
Lesca, G., Olivieri, C. H., Burnichon, N., et al. 2007. Genotype–phenotype correlations in hereditary hemorrhagic telangiectasia: Data from the French–Italian HHT network. Genet Med, 9, 1422.Google Scholar
Love, B. B., Biller, J., Landas, S. K., and Hoover, W. W. 1992. Diagnosis of pulmonary arteriovenous malformation by ultrafast chest computed tomography in Rendu–Osler–Weber syndrome with cerebral ischemia: A case report. Angiology, 43, 552–8.Google Scholar
Maher, C. O., Piepgras, D. G., Brown, R. D. et al. 2001. Cerebrovascular manifestations in 321 cases of hereditary hemorrhagic telangiectasia. Stroke, 32, 877–82.Google Scholar
Marchuk, D. A., Srinivasan, S., Squire, T. L., and Zawitowski, J. S. 2003. Vascular morphogenesis: Tales of two syndromes. Hum Mol Genet, 12, R97112.Google Scholar
Matsubara, S., Mandzia, J. L., ter Brugge, K., Willinsky, R. A., and Faughnan, N. E. 2000. Angiographic and clinical characteristics of patients with cerebral arteriovenous malformations associated with hereditary haemorrhagic telangiectasia. Am J Neuroradiol, 21, 1016–20.Google Scholar
McAllister, K. A., Grogg, K. M., Gallione, C. J., et al. 1994. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for haemorrhagic telangiectasia type 1. Nat Genet, 8, 345–51.Google Scholar
McDonald, J., Wooderchak-Donahue, W., VanSant Webb, C., et al. 2015. Hereditary hemorrhagic telangiectasia: Genetics and molecular diagnosis in a new era. Front Genet, 6, 1.Google Scholar
Neau, J. P., Boissonnot, L., Boutaud, P., et al. 1987. Manifestations neurologiques de la maladie de Rendu–Osler–Weber. A propos de 4 observations. Rev Méd Interne, 8, 75–8.CrossRefGoogle Scholar
Nishida, T., Faughan, M.E., Grings, T., et al. 2012. Brain arteriovenous malformations associated with hereditary hemorrhagic telangiectasia: Gene–phenotype correlations. Am J Med Genetic, 11, 2829–34.Google Scholar
Ondra, S. L., Troupp, H., George, E. D., and Schwab, K. 1990. The natural history of symptomatic arteriovenous malformations of the brain: A 24-year follow-up assessment. J Neurosurg, 73, 331–7.Google Scholar
Osler, W. 1901. On a family form of recurring epistaxis, associated with multiple telangiectases of the skin and mucous membranes. John Hopkins Hospital Bulletin, 12, 333–7.Google Scholar
Peery, W. H. 1987. Clinical spectrum of hereditary haemorrhagic telangiectasia (Osler–Weber–Rendu disease). Am J Med, 82, 989–97.Google Scholar
Plauchu, H., de Chadarévian, J. P., Bideau, A., and Robert, J. M. 1989. Age-related clinical profile of hereditary haemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet, 32, 291–7.CrossRefGoogle Scholar
Porteous, M. E. M., Burn, J., and Proctor, S. J. 1992. Hereditary haemorrhagic telangiectasia: A clinical analysis. J Med Genet, 29, 527–30.Google Scholar
Putman, C. M., Chaloupka, J. C., Fulbright, R. K., et al. 1996. Exceptional multiplicity of cerebral arteriovenous malformations associated with hereditary haemorrhagic telangiectasia (Osler–Weber–Rendu syndrome). Am J Neuroradiol, 17, 1733–42.Google Scholar
Rendu, H. 1896. Epistaxis répétées chez un sujet porteur de petits angiomes cutanés et muqueux. Bulletin des Membres de la Société de Médecine Hospitaliére de Paris, 13, 731–3.Google Scholar
Roman, G., Fisher, M., Perl, D. P., and Poser, C. M. 1978. Neurological manifestations of hereditary haemorrhagic telangiectasia (Rendu–Osler–Weber disease): Report of two cases and review of the literature. Ann Neurol, 4, 130–44.Google Scholar
Shovlin, C. L., Guttmacher, A. E., Buscarini, E., et al. 2000. Diagnostic criteria for hereditary haemorrhagic telangiectasia (Rendu–Osler–Weber disease). Am J Med Genet, 91, 66–7.Google Scholar
Sisel, R. J., Parker, B. M., and Bahl, O. P. 1970. Cerebral symptoms in pulmonary arteriovenous fistula. A result of paradoxical emboli? Circulation, 46, 123–8.Google Scholar
Stapf, C., Mast, H., Sciacca, R. R., et al. 2006. Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology, 66, 1350–5.Google Scholar
Thompson, R. L., Cattaneo, S. M., and Barnes, J. 1977. Recurrent brain abscess: Manifestation of pulmonary arteriovenous fistula and hereditary haemorrhagic telangiectasia. Chest, 72, 654–5.Google Scholar
Velthuis, S., Buscarini, E., van Gent, M. W., et al. 2013. Grade of pulmonary right to left shunt on contrast echocardiography and cerebral complications: A striking association. Chest, 144, 542–8.Google Scholar
White, R. I., Lynch-Nyhan, A., Terry, P., et al. 1988. Pulmonary arteriovenous malformations: Techniques and long-term outcome of embolotherapy. Radiology, 169, 663–9.Google Scholar
White, R. I. Jr., Pollak, J. S., and Whurth, J. A. 1996. Pulmonary arteriovenous malformations diagnosis and transcatheter embolotherapy. J Vasc Interv Radiol, 7, 787804.Google Scholar
Wilkins, E. G., O’Fearghail, M., and Carroll, J. D. 1983. Recurrent cerebral abscess in hereditary haemorrhagic telangiectasia. J Neurol Neurosurg Psychiatry, 46, 963–5.Google Scholar
Willemse, R. B., Mager, J. J., Westermann, C. J., et al. 2000. Bleeding risk of cerebrovascular malformations in hereditary haemorrhagic telangiectasia. J Neurosurg, 92, 779–84.Google Scholar
Yoshida, Y., Weon, Y. C., Sachet, M., et al. 2004. Posterior cranial fossa single-hole arteriovenous fistulae in children: 14 consecutive cases. Neuroradiology, 46, 474–81.Google Scholar

References

Adachi, T., Kobayashi, S., Yamashita, K., Shimote, K., & Tsunematsu, T. (1992). Nippon Ronen Igakkai Zasshi 29, 591595.Google Scholar
Auer, D. P., Putz, B., Gossl, C., et al. (2001). Radiology 218, 443451.Google Scholar
Aylward, E. D., Roberts-Willie, J. V., Barta, P. E., et al. (1994). Am J Psychiatry 5, 687693.Google Scholar
Baudrimont, M., Dubas, F., Joutel, A., Tournier-Lasserve, E., & Bousser, M. G. (1993). Stroke 24, 122125.Google Scholar
Bhatia, K. & Marsden, C. (1994). Brain 117, 859876.Google Scholar
Bianchi, S., Scali, O., Dotti, M. T., et al. (2005). Hum Genet 118, 546.Google Scholar
Biousse, V., Chabriat, H., Amarenco, P., & Bousser, M. G. (1995). Lancet 346, 767.Google Scholar
Bousser, M. G. & Tournier-Lasserve, E. (1994). Stroke 25, 704707.Google Scholar
Capone, C., Cognat, E., Ghezali, L., et al. (2016). Ann Neurol 79, 387403.Google Scholar
Chabriat, H. & Bousser, M. G. (2000). Rev Prat 50, 585588.Google Scholar
Chabriat, H., Tournier-Lasserve, E., Vahedi, K., et al. (1995b). Neurology 45, 10861091.Google Scholar
Chabriat, H., Vahedi, K., Iba-Zizen, M. T., et al. (1995b). Lancet 346, 934939.Google Scholar
Chabriat, H., Joutel, A., Vahedi, K., et al. (1996). J Mal Vasc 21, 277282.Google Scholar
Chabriat, H., Joutel, A., Vahedi, K., et al. (1997). Rev Neurol (Paris) 153, 376385.Google Scholar
Chabriat, H., Levy, C., Taillia, H., et al. (1998). Neurology 51, 452457.Google Scholar
Chabriat, H., Mrissa, R., Levy, C., et al. (1999). Stroke 30, 457459.Google Scholar
Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E., & Bousser, M. G. (2009). Lancet Neurol 8, 643653.Google Scholar
Chabriat, H., Herve, D., Duering, M., et al. (2016). Stroke 47, 4-11.Google Scholar
Colmant, H. (1980). Zbl Allgemein Pathol Bd 124, 163.Google Scholar
Coto, E., Menendez, M., Navarro, R., Garcia-Castro, M., & Alvarez, V. (2006). Eur J Neurol 13, 628–31.Google Scholar
Cumurciuc, R., Guichard, J. P., Reizine, D., et al. (2006). Eur J Neurol 13, 187190.Google Scholar
Davous, P. & Bequet, D. (1995). Rev Neurol (Paris) 151, 634–9.Google Scholar
Davous, P. & Fallet-Bianco, C. (1991). Rev Neurol (Paris) 147, 376384.Google Scholar
Desmond, D. W., Moroney, J. T., Lynch, T., et al. (1999). Stroke 30, 12301233.Google Scholar
Dichgans, M. & Petersen, D. (1997). Lancet 349, 776777.Google Scholar
Dichgans, M. & Gasser, T. (1998). Deutsche Med Wochenschr 123, 979981.Google Scholar
Dichgans, M., Herzog, J., & Gasser, T. (2001). Neurology 57, 17141717.Google Scholar
Dichgans, M., Ludwig, H., Muller-Hocker, J., Messerschmidt, A., & Gasser, T. (2000). Eur J Hum Genet 8, 280285.Google Scholar
Dichgans, M., Markus, H. S., Salloway, S., et al. (2008). Lancet Neurol 7, 310318.Google Scholar
Dichgans, M., Mayer, M., Uttner, I., et al. (1998). Ann Neurol 44, 731739.Google Scholar
Dotti, M. T., De Stefano, N., Bianchi, S., et al. (2004). Arch Neurol 61, 942945.Google Scholar
Duering, M., Gesierich, B., Seiler, S., et al. (2014). Neurology 82, 1946-1950.Google Scholar
Formichi, P., Parnetti, L., Radi, E., et al. (2010). Int J of Alzheimer’s Dis 2010.Google Scholar
Furby, A., Vahedi, K., Force, M., et al. (1998). J Neurol 245, 734740.CrossRefGoogle Scholar
Gray, F., Robert, F., Labrecque, R., et al. (1994). Neuropathol Appl Neurobiol 20, 2230.Google Scholar
Guey, S., Mawet, J., Herve, D., et al. (2015). Cephalalgia 36, 1038–1047.Google Scholar
Gutierrez-Molina, M., Caminero Rodriguez, A., Martinez Garcia, C., et al. (1994). Acta Neuropathol 87, 98105.CrossRefGoogle Scholar
Holtmannspotter, M., Peters, N., Opherk, C., et al. (2005). Stroke 36, 25592565.Google Scholar
Joutel, A., Chabriat, H., Vahedi, K., et al. (2000). Neurology 54, 18741875.Google Scholar
Joutel, A., Corpechot, C., Ducros, A., et al. (1996). Nature 383, 707710.Google Scholar
Joutel, A., Corpechot, C., Ducros, A., et al. (1997a). Ann N Y Acad Sci 826, 213217.Google Scholar
Joutel, A., Favrole, P., Labauge, P., et al. (2001). Lancet 358, 20492051.Google Scholar
Joutel, A., Vahedi, K., Corpechot, C., et al. (1997b). Lancet 350, 15111515.Google Scholar
Jouvent, E., Reyes, S., De Guio, F., & Chabriat, H. (2015). J Alzheimer’s Dis 47, 413419.Google Scholar
Kilarski, L. L., Rutten-Jacobs, L. C., Bevan, S., et al. (2015). PloS One 10, e0136352.Google Scholar
Lammie, G. A., Rakshi, J., Rossor, M. N., Harding, A. E., & Scaravilli, F. (1995). Clin Neuropathol 14, 201206.Google Scholar
Lesnik Oberstein, S. A., van Duinen, S. G., van den Boom, R., et al. (2003). Acta Neuropathol 106, 107111.Google Scholar
Low, W. C., Junna, M., Borjesson-Hanson, A., et al. (2007). Brain 130, 357367.Google Scholar
Lucas, C., Pasquier, F., Leys, D., Ruchoux, M. M., & Pruvo, J. P. (1995). Rev Med Int 16, 290292.Google Scholar
Monet-Lepretre, M., Haddad, I., Baron-Menguy, C., et al. (2013). Brain 136, 18301845.Google Scholar
Monet, M., Domenga, V., Lemaire, B., et al. (2007). Hum Mol Genet 16, 982992.Google Scholar
Narayan, S. K., Gorman, G., Kalaria, R. N., Ford, G. A., & Chinnery, P. F. (2012). Neurology 78, 10251027.Google Scholar
Opherk, C., Duering, M., Peters, N., et al. (2009). Hum Mol Genet 18, 27612767.Google Scholar
Opherk, C., Peters, N., Herzog, J., Luedtke, R., & Dichgans, M. (2004). Brain 127, 25332539.Google Scholar
Peters, N., Opherk, C., Bergmann, T., et al. (2005). Arch Neurol 62, 10911094.Google Scholar
Pullicino, P., Ostow, P., Miller, L., Snyder, W., & Muschauer, F. (1995). Ann Neurol 37, 460466.Google Scholar
Ragno, M., Tournier-Lasserve, E., Fiori, M. G., et al. (1995). Ann Neurol 38, 231236.Google Scholar
Razvi, S. S., Davidson, R., Bone, I., & Muir, K. W. (2005). J Neurol Neurosurg Psychiatry 76, 739741.Google Scholar
Requena, I., Indakoetxea, B., Lema, C., et al. (1999). Revista Neurol 29, 10481051.CrossRefGoogle Scholar
Reyes, S., Viswanathan, A., Godin, O., et al. (2009). Neurology 72, 905910.Google Scholar
Rinnoci, V., Nannucci, S., Valenti, R., et al. (2013). J Neurol Sci 330, 4551.Google Scholar
Ruchoux, M. M. & Maurage, C. A. (1997). J Neuropathol Exp Neurol 56, 947964.Google Scholar
Ruchoux, M. M., Chabriat, H., Bousser, M. G., Baudrimont, M., & Tournier-Lasserve, E. (1994). Stroke 25, 22912292.Google Scholar
Ruchoux, M. M., Guerouaou, D., Vandenhaute, B., et al. (1995). Acta Neuropathol 89, 500512.Google Scholar
Sabbadini, G., Francia, A., Calandriello, L., et al. (1995). Brain 118, 207215.Google Scholar
Salvi, F., Michelucci, R., Plasmati, R., et al. (1992). Ital J Neurol Sci 13, 135140.Google Scholar
Schon, F., Martin, R. J., Prevett, M., et al. (2003). J Neurol Neurosurg Psychiatry 74, 249252.Google Scholar
Schroder, J. M., Sellhaus, B., & Jorg, J. (1995). Acta Neuropathol 89, 116121.Google Scholar
Singhal, S., Bevan, S., Barrick, T., Rich, P., & Markus, H. S. (2004). Brain 127, 20312038.Google Scholar
Tikka, S., Mykkanen, K., Ruchoux, M. M., et al. (2009). Brain 132, 933939.Google Scholar
Tournier-Lasserve, E., Iba-Zizen, M. T., Romero, N., & Bousser, M. G. (1991). Stroke 22, 12971302.Google Scholar
Tournier-Lasserve, E., Joutel, A., Melki, J., et al. (1993). Nat Genet 3, 256259.Google Scholar
Tuominen, S., Juvonen, V., Amberla, K., et al. (2001). Stroke 32, 17671774.Google Scholar
Unlu, M., de Lange, R. P., de Silva, R., Kalaria, R., & St Clair, D. (2000). Neurosci Lett 282, 149152.Google Scholar
Vahedi, K., Chabriat, H., Levy, C., et al. (2004). Arch Neurol 61, 12371240.Google Scholar
van Den Boom, R., Lesnik Oberstein, S. A., van Duinen, S. G., et al. (2002). Radiology 224, 791796.Google Scholar
Verin, M., Rolland, Y., Landgraf, F., et al. (1995). J Neurol Neurosurg Psychiatry 59, 579585.Google Scholar
Viswanathan, A., Guichard, J. P., Gschwendtner, A., et al. (2006). Brain 129, 23752383.Google Scholar
Viswanathan, A., Gschwendtner, A., Guichard, J. P., et al. (2007). Neurology 69, 172179.Google Scholar
Viswanathan, A., Godin, O., Jouvent, E., et al. (2010). Neurobiol Aging 31, 16291636.Google Scholar
Wang, T., Sharma, S. D., Fox, N., et al. (2000). J Neurol Neurosurg Psychiatry 69, 652654.Google Scholar
Weller, M., Petersen, D., Dichgans, J., & Klockgethe, T. (1996). Neurology 46, 844.Google Scholar
Yamamoto, Y., Ihara, M., Tham, C., et al. (2009). Stroke 40, 20042011.Google Scholar
Yao, M., Herve, D., Jouvent, E., et al. (2014). Cerebrovasc Dis 37, 155163.Google Scholar
Zhang, W. W., Ma, K. C., Andersen, O., et al. (1994). Acta Neuropathol 87, 317324.Google Scholar
Zicari, E., Tassi, R., Stromillo, M. L., et al. (2008). Stroke 39, 21552157.Google Scholar

References

Arima, K., Yanagawa, S., Ito, N., et al. (2003). Cerebral arterial pathology of CADASIL and CARASIL (Maeda syndrome). Neuropathology, 23, 327–34.Google Scholar
Arisato, T., Hokezu, Y., Suehara, M., et al. (1993). Juvenile Binswanger-type encephalopathy with alopecia and spondylosis deformans: A case report. Clinical Neurology (Rinsho Shinkeigaku), 33, 400–4. (in Japanese with English abstract)Google Scholar
Bayrakli, F., Balaban, H., Gurelik, M., et al. (2014). Mutation in the HTRA1 gene in a patient with degenerated spine as a component of CARASIL syndrome. Turkish Neurosurgery, 24, 67–9.Google Scholar
Beaufort, N., Scharrer, E., Kremmer, E. et al. (2014). Cerebral small vessel disease-related protease HTRA1 processes latent TGF-β binding protein 1 and facilitates TGF-β signaling. Proceedings of the National Academy of Sciences of the United States of America, 111, 16496–501.Google Scholar
Bianchi, S., Di Palma, C., Gallus, G. N., et al. (2014). Two novel HTRA1 mutations in a European CARASIL patient. Neurology, 82, 898900.Google Scholar
Bowler, J. V. & Hachinski, V. (1994). Progress in the genetics of cerebrovascular disease: inherited subcortical arteriopathies. Stroke, 25, 1696–8.Google Scholar
Cai, B., Zeng, J., Lin, Y., et al. (2015). A frameshift mutation in HTRA1 expands CARASIL syndrome and peripheral small arterial disease to the Chinese population. Neurological Sciences, 36, 1387–91.Google Scholar
Caplan, L. R. & Gomes, J. A. (2010). Binswanger disease: An update. Journal of the Neurological Sciences, 299, 910.Google Scholar
Caplan, L. R. & Schoene, W. C. (1978). Clinical features of subcortical arteriosclerotic encephalopathy (Binswanger disease). Neurology, 28, 1206–15.Google Scholar
Chen, Y., He, Z., Meng, S., et al. (2013). A novel mutation of the high-temperature requirement A serine protease 1 (HTRA1) gene in a Chinese family with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). The Journal of International Medical Research, 41, 1445–55.Google Scholar
Clausen, T., Southan, C., & Ehrmann, M. (2002). The HTRA family of proteases: Implications for protein composition and cell fate. Molecular Cell, 10, 443–55.Google Scholar
Dewan, A., Lie, M., Hartman, S., et al. (2006). HTRA1 promotor polymorphism in wet age-related macular degeneration. Science, 314, 989–92.Google Scholar
Di Donato, I., Bianchi, S., Gallus, G. N., et al. (2017). Heterozygous mutations of HTRA1 gene in patients with familial cerebral small vessel disease. CNS Neuroscience & Therapeutics, 23, 759–65.Google Scholar
Filliat, G., Mirsaidi, A., Tiaden, A. N., et al. (2017). Role of HTRA1 in bone formation and regeneration: In vitro and in vivo evaluation. PLoS One, 12, e0181600.Google Scholar
Filley, C. M. (2012). The Behavioral Neurology of White Matter, 2nd edn. Oxford: Oxford University Press.Google Scholar
Fujita, Y., Lin, J. X., Tkahashi, R., et al. (2008). Cilostazol alleviates cerebral small-vessel pathlogy and white-matter lesions in stroke-prone spontaneously hypertensive rats. Brain Research, 1203, 170–6.Google Scholar
Fukutake, T. (2006). Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): A severe model of cerebral small vessel diseases frequently seen in Japan. Neurological Medicine (Shinkei Naika), 65, 460–7. (in Japanese)Google Scholar
Fukutake, T. (2010). Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencepahlopathy (CARASIL): Presenting with cerebral small-vessel disease, alopecia and spinal degeneration. Neurological Medicine (Shinkei Naika), 72, 391–9. (in Japanese)Google Scholar
Fukutake, T. (2011). Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy: From discovery to gene identification. Journal of Stroke and Cerebrovascular Diseases, 20, 8593.Google Scholar
Fukutake, T. & Hirayama, K. (1995). Familial young-adult-onset arteriosclerotic leukoencephalopathy with alopecia and lumbago without arterial hypertension (clinical review). European Neurology, 35, 6979.Google Scholar
Fukutake, T., Hattori, T., Kita, K., et al. (1985). Familial juvenile encephalopathy (Binswanger type) with alopecia and lumbago: A syndrome. Clinical Neurology (Rinsho Shinkeigaku), 25, 949–55. (in Japanese with English abstract)Google Scholar
Fukutake, T., Shimoe, Y., & Hattori, T. (2000) Differences in MRI lesion patterns of two hereditary vascular leukoencephalopathy: CADASIL and CARASIL. Journal of Stroke and Cerebrovascular Disease, 9 (Suppl 1), 263–4.Google Scholar
Hara, K., Shiga, A., Fukutake, T., et al. (2009). Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. New England Journal of Medicine, 360, 1729–39.Google Scholar
Hashida, N., Ito, S., Hasegawa, T., et al. (2009). Case of optic neuritis associated with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Nippon Ganka Gakkai Zasshi, 113, 505–12. (in Japanese with English abstract)Google Scholar
Inui, S., Fukuzato, Y., Nakajima, T., et al. (2002). Androgen-inducible TGF-beta1 from balding dermal papilla cells inhibits epithelial cell growth: A cue to understand paradoxical effect of androgen on human hair growth. FASEB Journal, 16, 1967–9.Google Scholar
Ito, S., Takao, M., Fukutake, T., et al. 2016. Histopathologic analysis of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): Neuropathology and general pathology in three genetically-confirmed cases. J Neuropathol Exp Neurol Sep 15 [Epub ahead of print].Google Scholar
Iwasaki, Y., Kato, T., Sone, M., et al. (1997). Young adult onset Binswanger-type leukoencephalopathy with alopecia and spondylosis deformans. Report of a female case. Neurological Medicine (Shinkei Naika), 47, 593600. (in Japanese with English abstract)Google Scholar
Joutel, A., Corpechot, C., Ducros, A., et al. (1996). NOTCH3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature, 383, 707–10.Google Scholar
Kast, J., Hanecker, P., Beaufort, N., et al. (2014). Sequestration of latent TGF-β binding protein 1 into CADASIL-related NOTCH3-ECD deposits. Acta Neuropathologica Communications, 2, 96.Google Scholar
Khaleeli, Z., Jaunmuktane, Z., Beaufort, N., et al. (2015). A novel HTRA1 exon 2 mutation causes loss of protease activity in a Pakistani CARASIL patient. Journal of Neurology, 262, 1369–72.Google Scholar
Kuriyama, N., Mizuno, T., Kita, M., et al. (2014). TGF-beta1 is associated with the progression of intracranial deep white matter lesions: A pilot study with 5 years of magnetic resonance imaging follow-up. Neurological Research, 36, 4752.Google Scholar
Lan, T. H., Huang, X. Q., & Tan, H. M. (2013). Vascular fibrosis in atherosclerosis. Cardiovascular Pathology, 22, 401–7.Google Scholar
Maeda, S., Nakayama, H., Isaka, K., et al. (1976). Familial unusual encephalopathy of Binswanger’s type without hypertension. Folia Psychiatrica et Neurologica Japonica, 30, 165–77.Google Scholar
Mendioroz, M., Fernández-Cadenas, I., Del Rio-Espinola, A., et al. (2010). A missense HTRA1 mutation expands CARASIL syndrome to the Caucasian population. Neurology, 75, 2033–5.Google Scholar
Menedez Cordeiro, I., Nzwalo, H., , F., et al. (2015). Shifting the CARASIL paradigm: Report of non-Asian family and literature review. Stroke, 46, 1110–2.Google Scholar
Nemoto, S. (1966). Einige Beitrage zur Encephalitis subcorticalis chronic progressive (Binswanger). In Festschrift zum Rucktritt von Prof. Toshimi Ishibashi. Sendai: Tohoku University, pp. 5167. (in Japanese with German abstract)Google Scholar
Nishimoto, Y., Shibata, M., Nihonmatsu, M., et al. (2011). A novel mutation in the HTRA1 gene causes CARASIL without alopecia. Neurology, 76, 1353–5.Google Scholar
Nozaki, H., Nishizawa, M., & Onodera, O. (2014). Features of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke, 45, 3447–53.Google Scholar
Nozaki, H., Kato, T.., Nihonmatsu, M., et al. (2016). Distinct molecular mechanisms of HTRA1 mutants in manifesting heterozygotes with CARASIL. Neurology, 86, 1964–74.Google Scholar
Nozaki, Y., Sekine, Y., Fukutake, T., et al. (2015). Characteristic features and progression of abnormalities on MRI for CARASIL. Neurology, 85, 459–63.Google Scholar
Oide, T., Nakayama, H., Yanagawa, S., et al. (2008). Extensive loss of arterial medial muscle cells and mural extracellular matrix in cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Neuropathology, 28, 132–42.Google Scholar
Oka, C., Tsujimoto, R., Kajikawa, M., et al. (2004). HTRA1 serine protease inhibits signaling mediated by TGF beta family proteins. Development, 131, 1041–53.Google Scholar
Okeda, R., Murayama, S., Sawabe, M., et al. (2004). Pathology of the cerebral artery in Binswanger’s disease in the aged: Observation by serial sections and morphometry of the cerebral arteries. Neuropathology, 24, 21–9.Google Scholar
Onodera, O., Nozaki, H., & Fukutake, T. (2010). CARASIL. GeneReview, Apr 27 [updated Sep 11, 2014].Google Scholar
Shiga, A., Nozaki, H., Yokoseki, A., et al. (2011). Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-β1 via cleavage of proTGF-β1. Human Molecular Genetics, 20, 1800–10.Google Scholar
Shin, H., Yoo, H.G., Inui, S., et al. (2013). Induction of transforming growth factor-beta 1 by androgen is mediated by reactive oxygen species in hair follicle dermal papilla cells. BMB Reports, 46, 460–4.Google Scholar
Shirata, A. & Yamane, K. (2004). A case of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. The Journal of Movement Disorder and Disability, 14, 71–4. (in Japanese with English abstract)Google Scholar
Shizuma, N., Ikeguchi, K., Hiranouchi, N., et al. (1993). A female case of young-adult-onset subcortical encephalopathy with diffuse baldness and spondylosis. Neurological Medicine (Shinkei Naika), 39, 406–10. (in Japanese with English abstract)Google Scholar
Takeshita, T., Nakagawa, S., Ttsumi, R., et al. (2014). Cilostazol attenuates ischemia-perfusion-induced blood–brain barrier dysfunction enhanced by advanced glycation endproducts via transforming growth factor-β1 signaling. Molecular and Cellular Neurosciences, 60, 19.Google Scholar
Tang, S. Y. & Alliston, T. (2013). Regulation of postnatal bone homeostasis by TGFβ. BoneKey Reports, 2, 255.Google Scholar
Tiaden, A. N. & Richards, P. J. (2013). The emerging roles of HTRA1 in musculoskeletal disease. The American Journal of Pathology, 182(5), 1482–8.Google Scholar
Tikka, S., Baumann, M., Siitonen, M., et al. (2014). CADASIL and CARASIL. Brain Pathology, 24, 525–44.Google Scholar
Tsuchiya, A., Yano, M., Tocharus, J., et al. (2005). Expression of mouse HTRA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone, 37, 323–36.Google Scholar
Urano, T., Narusawa, K, Kobayashi, S., et al. (2010). Association of HTRA1 promotor polymorphism with spinal disc degeneration in Japanese women. Journal of Bone and Mineral Metabolism, 28, 220–6.Google Scholar
van der Knaap, M. S. & Valk, J. (2005). Magnetic Resonance of Myelination and Myelin Disorders, 3rd edn. Berlin: Springer, pp. 541–51.Google Scholar
Verdura, E., Herve, D., Scharrer, E., et al. (2015). Heterozygous HTRA1 mutations are associated with autosomal dominant cerebral small vessel disease. Brain, 138, 2347–58.Google Scholar
Wang, X. L., Li, C. F., Guo, H. W., et al. (2012). A novel mutation in the HTRA1gene identified in Chinese CARASIL pedigree. CNS Neuroscience and Therapeutics, 18, 867–9.Google Scholar
Yamamura, T., Nishimura, M., Shirabe, T., et al. (1987). Subcortical vascular encephalopathy in a normotensive, young adult with premature baldness and spondylitis deformans. A clinicopathological study and review of the literature. Journal of the Neurological Science, 78, 175–88.Google Scholar
Yanagawa, S., Ito, N., Arima, K., et al. (2002). Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Neurology, 58, 817–20.Google Scholar
Zheng, D. M., Xu, F. F., Gao, Y., et al. (2009). A Chinese pedigree of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): Clinical and radiological features. Journal of Clinical Neuroscience, 16, 847–9.Google Scholar

References

Adams, R., Aaslid, R., el Gammal, T., Nichols, F., & McKie, V. (1988a) Detection of cerebral vasculopathy in sickle cell disease using transcranial Doppler ultrasonography and magnetic resonance imaging. Case report. Stroke, 19, 518520.Google Scholar
Adams, R. J., Nichols, F. T., McKie, V., et al. (1988b) Cerebral infarction in sickle cell anemia: Mechanism based on CT and MRI. Neurology, 38, 1012.Google Scholar
Adams, R. J., Nichols, F. T., Stephens, S., et al. (1988c) Transcranial Doppler: The influence of age and hematocrit in normal children. Journal of Cardiovascular Ultrasonography, 7, 201205.Google Scholar
Adams, R. J., Nichols, F. T., McKie, V. C, et al. (1989) Transcranial Doppler: Influence of hematocrit in children with sickle cell anemia without stroke. Journal of Cardiovascular Technology, 8, 97101.Google Scholar
Adams, R. J., Nichols, F. T. I., Aaslid, R., et al. (1990) Cerebral vessel stenosis in sickle cell disease: Criteria for detection by transcranial Doppler. Journal of Pediatric Hematology/Oncology, 12, 277282.Google Scholar
Adams, R., McKie, V., Nichols, F., et al. (1992a) The use of transcranial ultrasonography to predict stroke in sickle cell disease. New England Journal of Medicine, 326, 605610.Google Scholar
Adams, R. J., Nichols, F. T., Figueroa, R., McKie, V., & Lott, T. (1992b) Transcranial Doppler correlation with cerebral angiography in sickle cell disease. Stroke, 23, 10731077.Google Scholar
Adams, R. J., McKie, V. C., Hsu, L., et al. (1998) Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. New England Journal of Medicine, 339, 511.Google Scholar
Adams, R. J., Brambilla, D. J., Granger, S., et al. (2004) Stroke and conversion to high risk in children screened with transcranial Doppler ultrasound during the STOP study. Blood, 103, 36893694.Google Scholar
Adams, R. J., Brambilla, D., & Optimizing Primary Stroke Prevention in Sickle Cell Anemia (STOP 2) Trial Investigators (2005) Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. New England Journal of Medicine, 353, 27692778.Google Scholar
Alkan, O., Kizilkilic, E., Kizilkilic, O., et al. (2010) Cranial involvement in sickle cell disease. Eur J Radiol, 76, 151156.Google Scholar
Atweh, G. F., DeSimone, J., Saunthararajah, Y., et al. (2003) Hemoglobinopathies. Hematology, 1, 1439.Google Scholar
Aygun, B., Padmanabhan, S., Paley, C., & Chandrasekaran, V. (2002) Clinical significance of RBC alloantibodies and autoantibodies in sickle cell patients who received transfusions. Transfusion, 42, 3743.Google Scholar
Bernaudin, F., Verlhac, S., Freard, F., et al. (2000) Multicenter prospective study of children with sickle cell disease: Radiographic and psychometric correlation. Journal of Child Neurology, 15, 333343.Google Scholar
Bernaudin, F., Verlhac, S., Arnaud, C., et al. (2011) Impact of early transcranial Doppler screening and intensive therapy on cerebral vasculopathy outcome in a newborn sickle cell anemia cohort. Blood, 117, 11301140; quiz 1436.Google Scholar
Bernaudin, F., Verlhac, S., Arnaud, C., et al. (2015) Chronic, acute anemia and eICA stenosis are independent risk factors for silent cerebral infarcts in sickle cell anemia. Blood, 125, 16531661.Google Scholar
Borgna Pignatti, C., Carnelli, V., Caruso, V., et al. (1998) Thromboembolic events in beta thalassemia major: An Italian multicenter study. Acta Haematologica, 99, 7679.Google Scholar
Centers for Disease Control and Prevention (2012) Children with sickle cell disease had significantly higher medical costs than those without sickle cell disease. Atlanta, GA: Centers for Disease Control and Prevention.Google Scholar
Clarke, G. M. & Higgins, T. N. (2000) Laboratory investigation of hemoglobinopathies and thalassemias: Review and update. Clinical Chemistry, 46, 12841290.Google Scholar
Connes, P., Verlhac, S., & Bernaudin, F. (2013) Advances in understanding the pathogenesis of cerebrovascular vasculopathy in sickle cell anaemia. British Journal of Haematology, 161, 484498.Google Scholar
DeBaun, M. R., Gordon, M., McKinstry, R. C., et al. (2014) Controlled trial of transfusions for silent cerebral infarcts in sickle cell anemia. New England Journal of Medicine, 371, 699710.Google Scholar
Dobson, S. R., Holden, K. R., Nietert, P. J., et al. (2002) Moyamoya syndrome in childhood sickle cell disease: A predictive factor for recurrent cerebrovascular events. Blood, 99, 31443150.Google Scholar
Dowling, M. M., Quinn, C. T., Plumb, P., et al. (2012) Acute silent cerebral ischemia and infarction during acute anemia in children with and without sickle cell disease. Blood, 120, 38913897.Google Scholar
England, J., Rowan, R., Dawson, D., et al. (1988) Guidelines for haemoglobinopathy screening. Clinical & Laboratory Haematology, 10, 8794.Google Scholar
Feldenzer, J., Mears, J. G., Burns, A. L., Natta, C., & Bank, A. (1979) Heterogeneity of DNA fragments associated with the sickle-globin gene. Journal of Clinical Investigation, 64, 751755.Google Scholar
Fisher, T. C. (2000) PEG-coated red blood cells: Simplifying blood transfusion in the new millennium? Immunohematology, 16, 3748.Google Scholar
Gebreyohanns, M. & Adams, R. J. (2004) Sickle cell disease: Primary stroke prevention. CNS Spectrums, 9, 445449.Google Scholar
Gluckman, E. (2013) Allogeneic transplantation strategies including haploidentical transplantation in sickle cell disease. Hematology, 2013, 370376.Google Scholar
Goldstein, L. B., Bushnell, C. D., Adams, R. J., et al. (2011) Guidelines for the primary prevention of stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 42, 517584.Google Scholar
Griessenauer, C. J., Lebensburger, J. D., Chua, M. H., et al. (2015) Encephaloduroarteriosynangiosis and encephalomyoarteriosynangiosis for treatment of moyamoya syndrome in pediatric patients with sickle cell disease. J Neurosurg Pediatr, 16, 6473.Google Scholar
Herrick, J. B. (1910) Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Archives of Internal Medicine, VI, 517521.Google Scholar
Hulbert, M. L., Scothorn, D. J., Panepinto, J. A., et al. (2006) Exchange blood transfusion compared with simple transfusion for first overt stroke is associated with a lower risk of subsequent stroke: A retrospective cohort study of 137 children with sickle cell anemia. The Journal of Pediatrics, 149, 710712.Google Scholar
Hulbert, M. L., McKinstry, R. C., Lacey, J. L., et al. (2011) Silent cerebral infarcts occur despite regular blood transfusion therapy after first strokes in children with sickle cell disease. Blood, 117, 772779.Google Scholar
Jeffries, B., Lipper, M., & Kishore, P. (1980) Major intracerebral arterial involvement in sickle cell disease. Surgical Neurology, 14, 291295.Google Scholar
Jordan, L. C., Casella, J. F., & DeBaun, M. R. (2012) Prospects for primary stroke prevention in children with sickle cell anaemia. British Journal of Haematology, 157, 1425.Google Scholar
Kan, Y. W. & Dozy, A. M. (1980) Evolution of the hemoglobin S and C genes in world populations. Science, 209, 388391.Google Scholar
Kennedy, B. C., McDowell, M. M., Yang, P. H., et al. (2014) Pial synangiosis for moyamoya syndrome in children with sickle cell anemia: A comprehensive review of reported cases. Neurosurg Focus, 36, E12.Google Scholar
Kernan, W. N., Ovbiagele, B., Black, H. R., et al. (2014) Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 45, 21602236.Google Scholar
Kotb, M. M., Tantawi, W. H., Elsayed, A. A., Damanhouri, G. A., & Malibary, H. M. (2006) Brain MRI and CT findings in sickle cell disease patients from western Saudi Arabia. Neurosciences (Riyadh), 11, 2836.Google Scholar
Kwiatkowski, J. L., Zimmerman, R. A., Pollock, A. N., et al. (2009a) Silent infarcts in young children with sickle cell disease. British Journal of Haematology, 146, 300305.Google Scholar
Kwiatkowski, J. L., Zimmerman, R. A., Pollock, A. N., et al. (2009b) Silent infarcts in young children with sickle cell disease. British Journal of Haematology, 146, 300305.Google Scholar
Merkel, K., Ginsberg, P., Parker, J., & Post, M. (1978) Cerebrovascular disease in sickle cell anemia: A clinical, pathological and radiological correlation. Stroke, 9, 4552.Google Scholar
Miller, S. T., Macklin, E. A., Pegelow, C. H, et al. (2001) Silent infarction as a risk factor for overt stroke in children with sickle cell anemia: A report from the Cooperative Study of Sickle Cell Disease. Journal of Pediatrics, 139, 385390.Google Scholar
Moritani, T., Numaguchi, Y., Lemer, N. B., et al. (2004) Sickle cell cerebrovascular disease: Usual and unusual findings on MR imaging and MR angiography. Clinical Imaging, 28, 173186.Google Scholar
Neel, J. V. (1949) The inheritance of sickle cell anemia. Science, 110, 6466.Google Scholar
Nemtsas, P., Arnaoutoglou, M., Perifanis, V., Koutsouraki, E., & Orologas, A. (2015) Neurological complications of beta-thalassemia. Annals of Hematology, 94, 12611265.Google Scholar
Ohene-Frempong, K., Weiner, S. J., Sleeper, L. A., et al. (1998) Cerebrovascular accidents in sickle cell disease: Rates and risk factors. Blood, 91, 288294.Google Scholar
Oyesiku, N. M., Barrow, D. L., Eckman, J. R., Tindall, S. C., & Colohan, A.R. (1991) Intracranial aneurysms in sickle-cell anemia: Clinical features and pathogenesis. Journal of Neurosurgery, 75, 356363.Google Scholar
Pauling, L. & Itano, H. A. (1949) Sickle cell anemia a molecular disease. Science (New York), 110, 543548.Google Scholar
Pavlakis, S., Prohovnik, I., Piomelli, S., & De Vivo, D. (1989) Neurologic complications of sickle cell disease. Advances in Pediatrics, 36, 247276.Google Scholar
Powars, D., Wilson, B., Imbus, C., Pegelow, C., & Allen, J. (1978) The natural history of stroke in sickle cell disease. The American Journal of Medicine, 65, 461471.Google Scholar
Powars, D. R., Wong, W.-Y., & Vachon, L. A. (2001) Incomplete cerebral infarctions are not silent. Journal of Pediatric Hematology/Oncology, 23, 7983.Google Scholar
Prohovnik, I., Pavlakis, S., Piomelli, S., et al. (1989) Cerebral hyperemia, stroke, and transfusion in sickle cell disease. Neurology, 39, 344344.Google Scholar
Prohovnik, I., Hurlet-Jensen, A., Adams, R., De Vivo, D., & Pavlakis, S. G. (2009) Hemodynamic etiology of elevated flow velocity and stroke in sickle-cell disease. Journal of Cerebral Blood Flow & Metabolism, 29, 803810.Google Scholar
Roberts, D. O., Covert, B., Lindsey, T., et al. (2012) Directed blood donor program decreases donor exposure for children with sickle cell disease requiring chronic transfusion. Immunohematology, 28, 712.Google Scholar
Russell, M. O., Goldberg, H. I., Hodson, A., et al. (1984) Effect of transfusion therapy on arteriographic abnormalities and on recurrence of stroke in sickle cell disease. Blood, 63, 162169.Google Scholar
Steinberg, M. H., Forget, B. G., Higgs, D. R., & Weatherall, D. J. (2009) Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge: Cambridge University Press.Google Scholar
Stephens, A., Baine, R., Rucknagel, D., Schneider, R., & Serjeant, G. (1988) Recommendations for neonatal screening for haemoglobinopathies. Clinical & Laboratory Haematology, 10, 335345.Google Scholar
Stockman, J. A., Nigro, M. A., Mishkin, M. M., & Oski, F. A. (1972) Occlusion of large cerebral vessels in sickle-cell anemia. New England Journal of Medicine, 287, 846849.Google Scholar
Strouse, J. J., Hulbert, M. L., DeBaun, M. R., Jordan, L. C., & Casella, J. F. (2006) Primary hemorrhagic stroke in children with sickle cell disease is associated with recent transfusion and use of corticosteroids. Pediatrics, 118, 19161924.Google Scholar
Strouse, J. J., Lanzkron, S., & Urrutia, V. (2011) The epidemiology, evaluation and treatment of stroke in adults with sickle cell disease. Expert Review of Hematology, 4, 597606.Google Scholar
Sydenstricked, V. P., Mulherin, W. A., & Houseal, R. W. (1923) Sickle cell anemia: Report of two cases in children, with necropsy in one case. American Journal of Diseases of Children, 141, 612615.Google Scholar
Tam, D. A. (1997) Protein C and protein S activity in sickle cell disease and stroke. Journal of Child Neurology, 12, 1921.Google Scholar
Vermeer, S. E., Hollander, M., van Dijk, E. J., et al. (2003) Silent brain infarcts and white matter lesions increase stroke risk in the general population: The Rotterdam scan study. Stroke, 34, 11261129.Google Scholar
Ware, R. E., Helms, R. W. & SWiTCH Investigators (2012) Stroke with transfusions changing to hydroxyurea (SWiTCH). Blood, 119, 39253932.Google Scholar
Weatherall, D. J. (2008) Hemoglobinopathies worldwide: Present and future. Current Molecular Medicine, 8, 592599.Google Scholar
Westerman, M. P., Green, D., Gilman-Sachs, A., et al. (1999) Antiphospholipid antibodies, proteins C and S, and coagulation changes in sickle cell disease. Journal of Laboratory and Clinical Medicine, 134, 352362.Google Scholar
Wood, J. C., Cohen, A. R., Pressel, S. L., Aygun, , et al. (2016) Organ iron accumulation in chronically transfused children with sickle cell anaemia: Baseline results from the TWiTCH trial. Br J Haematol, 172, 122130.Google Scholar
Woods, D. H. (1978) Cerebrovascular complications of sickle cell anemia. Stroke, 9, 7375.Google Scholar
Yawn, B. P., Buchanan, G. R., Afenyi-Annan, A. N., et al. (2014) Management of sickle cell disease: Summary of the 2014 evidence-based report by expert panel members. JAMA, 312, 10331048.Google Scholar

References

Altarescu, G., Moore, D. F., and Schiffmann, R. 2005. Effect of genetic modifiers on cerebral lesions in Fabry disease. Neurology, 64, 2148–50.Google Scholar
Archer, B. W. C. 1927. Multiple cavernous angiomata of the sweat glands associated with hemiplegia. Lancet, 2, 595–6.Google Scholar
Avierinos, J.-F., Brown, R. D., Foley, D. A., et al. 2003. Cerebral ischemic events after diagnosis of mitral valve prolapse. Stroke, 34, 1339–44.Google Scholar
Bamford, J., Sandercock, P., Dennis, M., et al. 1991. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet, 337, 1521–6.Google Scholar
Barbey, F., Brakch, N., Linhart, A., et al. 2006. Increased carotid intima–media thickness in the absence of atherosclerotic plaques in an adult population with Fabry disease. Acta Paediatr, 95(Suppl 451), 63–8.Google Scholar
Barnett, H. J. M., Boughner, D. R., Taylor, D. W. et al. 1980. Further evidence relating mitral-valve prolapse to cerebral ischemic events. N Engl J Med, 302, 139–44.Google Scholar
Bass, B. H. 1958. Angiokeratoma corporis diffusum. Br Med J, 1, 1418.Google Scholar
Beck, M. 2006. The Mainz Severity Score Index (MSSI): Development and validation of a system for scoring the signs and symptoms of Fabry disease. Acta Paediatr, 95(Suppl 451), 43–6.Google Scholar
Becker, A. E., Schoorl, R., Balk, A. G., and van der Heide, R. M. 1975. Cardiac manifestations of Fabry’s disease. Am J Cardiol, 36, 829–35.Google Scholar
Bethune, J. E., Landrigan, P. L. and Chipman, C. D. 1961. Angiokeratoma corporis diffusum universale (Fabry’s disease) in two brothers. N Engl J Med, 264, 1280–5.Google Scholar
Bird, T. D. and Lagunoff, D. 1978. Neurological manifestations of Fabry disease in female carriers. Ann Neurol, 4, 537–40.Google Scholar
Bogousslavsky, J., Van Melle, G., and Regli, F. 1988. The Lausanne Stroke Registry: Analysis of 1,000 consecutive patients with first stroke. Stroke, 19, 1083–92.Google Scholar
Brown, A. 1952. Diffuse angiokeratoma: Report of two cases with diffuse skin changes, one with neurological symptoms and splenomegaly. Glasgow Med J, 33, 361–8.Google Scholar
Burlina, A. P., Manara, R., Caillaud, C., et al. 2008. The pulvinar sign: Frequency and clinical correlations in Fabry disease. J Neurol, 255, 738744.Google Scholar
Cable, W. J. L., Kolodny, E. H., and Adams, R. D. 1982. Fabry disease: Impaired autonomic function. Neurology, 32, 498502.Google Scholar
Chen, C. H., Shyu, P. W., Wu, S. J., et al. 1998. Identification of a novel point mutation (S65 T) in alpha-galactosidase A gene in Chinese patients with Fabry disease. Mutations in brief no. 169. Online. Hum Mutat, 11, 328–30.Google Scholar
Cohen, I. S., Fluri-Lundeen, J., and Wharton, T. P. 1983. Two dimensional echocardiographic similarity of Fabry’s disease to cardiac amyloidosis: A function of ultrastructural analogy? J Clin Ultrasound, 11, 437–41.Google Scholar
Colley, J. R., Miller, D. L., Hutt, M. S. R., and Wallace, H. J. 1958. The renal lesion in angiokeratoma corporis diffusum. Br Med J, 1, 1266–8.Google Scholar
Crutchfield, K. E., Patronas, N. J., Dambrosia, J. M., et al. 1998. Quantitative analysis of cerebral vasculopathy in patients with Fabry disease. Neurology, 50, 1746–9.Google Scholar
Curry, H. B., Fleisher, T. L., and Howard, F. 1961. Angiokeratoma corporis diffusum: A case report. JAMA, 175, 864–8.Google Scholar
DeGraba, T., Azhar, S., Dignat-George, F., et al. 2000. Profile of endothelial and leukocyte activation in Fabry patients. Ann Neurol, 47, 229–33.Google Scholar
De Groot, W. P. 1964. Angiokeratoma corporis diffusum Fabry. Dermatologica, 128, 321–49.Google Scholar
Desnick, R. S., Ioannou, Y. A., and Eng, C. M. 2001. ⍺-Galactosidase A deficiency: Fabry disease. In Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds., The Metabolic Basis of Inherited Disease, 8th edn. New York: McGraw Hill; pp. 3733–74.Google Scholar
Desnick, R. J., Brady, R., Barranger, J., et al. 2003. Fabry disease, an underrecognized multi-systemic disorder: Expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med, 138, 338–46.Google Scholar
DiLorenzo, P. A., Kleinfeld, J., Tellman, W., and Nay, L. 1969. Angiokeratoma corporis diffusum (Fabry’s disese). Acta Derm Venereol, 49, 319–25.Google Scholar
Dobkin, B. H. 1989. Orthostatic hypotension as a risk factor for symptomatic occlusive cerebrovascular disease. Neurology, 39, 30–4.Google Scholar
Dobyns, W. B. 2006. The pattern of inheritance of X-linked traits is not dominant or recessive, just X-linked. Acta Paediatr Suppl, 95, 1115.Google Scholar
Eng, C. M., Guffon, N., Wilcox, W. R., et al. 2001. Safety and efficacy of recombinant human ⍺-galactosidase A replacement therapy in Fabry’s disease. N Engl J Med, 345, 916.Google Scholar
Eng, C. M., Fletcher, J., Wilcox, W. R., et al. 2007. Fabry disease: Baseline medical characteristics of a cohort of 1765 males and females in the Fabry registry. J Inherit Metab Dis, 30, 184–92.Google Scholar
Fellgiebel, A., Mazanek, M., Whybra, C., et al. 2006a. Pattern of microstructural brain tissue alterations in Fabry disease. J Neurol, 253, 780–7.Google Scholar
Fellgiebel, A., Müller, M. J., and Ginsberg, L. 2006b. CNS manifestations of Fabry’s disease. Lancet Neurol, 5, 791–5.Google Scholar
Fellgiebel, A., Keller, I., Martus, P., et al. 2011. Basilar artery diameter is a potential screening tool for Fabry disease in young stroke patients. 2011. Cerebrovasc Dis, 31, 294–9.Google Scholar
Fellogiebel, A., Gartenschlanger, M., Wildberger, K., et al. 2014. Enzyme replacement therapy stabilized white matter lesion progression in Fabry disease. Cerebrovasc Dis, 38, 448–56.Google Scholar
Furlan, A. J., Craciun, A. R., Raju, N. R., and Hart, N. 1984. Cerebrovascular complications associated with idiopathic hypertrophic subaortic stenosis. Stroke, 15, 282–4.Google Scholar
Ginsberg, L. 2006. Nervous system manifestations of Fabry disease: Data from the FOS – the Fabry Outcome Survey. In Mehta, A., Beck, M., Sunder-Plassmann, G., eds. Fabry Disease: Perspectives from 5 years of FOS. Oxford: Oxford PharmaGenesis, ch. 23.Google Scholar
Ginsberg, L., Manara, R., Valentine, A. R., et al. 2006. Magnetic resonance imaging changes in Fabry disease. Acta Paediatr, 95(Suppl 451), 5762.Google Scholar
Goldman, M. E., Cantor, R., Schwartz, M. F., et al. 1986. Echocardiographic abnormalities and disease severity in Fabry’s disease. J Am Coll Cardiol, 7, 1157–61.Google Scholar
Grewal, R. P. and Barton, N. W. 1992. Fabry’s disease presenting with stroke. Clin Neurol Neurosurg, 94, 177–9.Google Scholar
Grewal, R. P. and McLatchey, S. K. 1992. Cerebrovascular manifestations in a female carrier of Fabry’s disease. Acta Neurol Belg, 92, 3640.Google Scholar
Guin, G. H. and Saini, N. 1976. Diffuse angiokeratoma (Fabry’s disease): Case report. Mil Med, 141, 259–63.Google Scholar
Hasholt, L., Sorensen, S. A., Wandall, A., et al. 1990. A Fabry’s disease heterozygote with a new mutation: Biochemical, ultrastructural, and clinical investigations. J Med Genet, 27, 303–6.Google Scholar
Ho, P. C. and Feman, S. S. 1981. Internuclear ophthalmoplegia in Fabry’s disease. Ann Ophthalmol, 13, 949–51.Google Scholar
Hughes, D. A. and Mehta, A. B. 2005. Vascular complications of Fabry disease: Enzyme replacement and other therapies. Acta Paediatr, 94(Suppl 447), 2333.Google Scholar
Igarashi, T., Sakuraba, H., and Suzuki, Y. 1986. Activation of platelet function in Fabry’s disease. Am J Hematol, 22, 63–7.Google Scholar
Imbriaco, M., Pisani, A., Spinelli, L., et al. 2009. Effects of enzyme replacement therapy in patients with Anderson–Fabry disease: A prospective long term cardiac magnetic resonance imaging study. Heart, 95, 1103–07.Google Scholar
Jensen, E. 1966. On the pathology of angiokeratoma corporis diffusum (Fabry). Acta Pathol Microbiol Scand, 68, 313–31.Google Scholar
Kahn, P. 1973. Anderson–Fabry disease: A histopathological study of three cases with observations on the mechanism of production of pain. J Neurol Neurosurg Psychiatr, 36, 1053–62.Google Scholar
Kaye, E. M., Kolodny, E. H., Logigian, E. L., and Ullman, M. D. 1988. Nervous system involvement in Fabry’s disease: Clinicopathological and biochemical correlation. Ann Neurol, 23, 505–9.Google Scholar
Kleijer, W. J., Hussaarts-Odijk, L. M., Sachs, E. S., et al. 1987. Prenatal diagnosis of Fabry’s disease by direct analysis of chorionic villi. Prenat Diagn, 7, 283–7.Google Scholar
Kleinert, J., Dehout, F., Schwarting, A., et al. 2006. Prevalence of uncontrolled hypertension in patients with Fabry disease. Am J Hypertens, 19, 782–7.Google Scholar
Kolodny, E., Fellgiebel, A., Hilz, M. J., et al. 2015. Cerebrovascular involvement in Fabry disease. Current status of knowledge. Stroke, 46, 302–13.Google Scholar
Kramer, W. J., Thormann, J., Mueller, K., and Frenzel, H. 1985. Progressive cardiac involvement by Fabry’s disease despite successful renal allotransplantation. Int J Cardiol, 7, 72–5.Google Scholar
Di Lazzaro, V., Pilato, F., Profice, P., et al. 2013. Cerebral hemorrhage in a paucisymptomatic young patient with Fabry disease. J Stroke Cerebrovasc Dis, 22, e254e255.Google Scholar
Lou, H. O. C. and Reske-Nielsen, E. 1971. The central nervous system in Fabry’s disease. Arch Neurol, 25, 351–9.Google Scholar
Maisey, D. N. and Cosh, J. A. 1980. Basilar artery aneurysm and Anderson–Fabry disease. J Neurol Neurosurg Psychiatry, 43, 85–7.Google Scholar
Marino, S., Borsini, W., Buchner, S., et al. 2006. Diffuse structural and metabolic brain changes in Fabry disease. J Neurol, 253, 434–40.Google Scholar
Medin, J. A., Tudor, M., Simonovitch, R., et al. 1996. Correction in trans for Fabry disease: Expression, secretion and uptake of alpha-galactosidase A in patient-derived cells driven by a high-titer recombinant retroviral vector. Proc Natl Acad Sci USA, 93, 7917–22.Google Scholar
Mendez, M. F., Stanley, T. M., Medel, N. M., Li, Z., and Tedesco, D. T. 1997. The vascular dementia of Fabry’s disease. Dement Geriatr Cogn Disord, 8, 252–7.Google Scholar
Menzies, D. G., Campbell, I. W., and Kean, D. M. 1988. Magnetic resonance imaging in Fabry’s disease. J Neurol Neurosurg Psychiatr, 51, 1240–1.Google Scholar
Mitsias, P. and Levine, S. R. 1996. Cerebrovascular complications of Fabry’s disease. Ann Neurol, 40, 817.Google Scholar
Moore, D. F., Scott, T. C. S., Gladwin, M. T., et al. 2001. Regional cerebral hyperperfusion and nitric oxide pathway dysregulation in Fabry disease. Circulation, 104, 1506–12.Google Scholar
Moore, D. F., Altarescu, G., Herscovitch, P., and Schiffmann, R. 2002. Enzyme replacement reverses abnormal cerebrovascular responses in Fabry disease. BMC Neurol, 2, 4.Google Scholar
Moore, D. F., Altarescu, G., Barker, W. C., et al. 2003a. White matter regions in Fabry disease occur in ‘prior’ selectively hypometabolic and hyperperfused brain regions. Brain Res Bull, 62, 231–40.Google Scholar
Moore, D. F., Ye, F., Schiffmann, R., and Butman, J. A. 2003b. Increased signal intensity in the pulvinar on T1-weighted images: A pathognomonic MR imaging sign of Fabry disease. Am J Neuroradiol, 24, 1096–101.Google Scholar
Moore, D. F., Ye, F., Brennan, M., et al. 2004. Ascorbate decreases Fabry cerebral hyperperfusion suggesting a reactive oxygen species abnormality: An arterial spin tagging study. J Magn Reson Imaging, 20, 674–83.Google Scholar
Moore, D. F., Kaneski, C. R., Askari, H., Schiffmann, R. 2007. The cerebral vasculopathy of Fabry disease. J Neurol Sci, 257, 258–63.Google Scholar
Morgan, S. H., Rudge, P., Smith, S. J. M., et al. 1990. The neurological complications of Anderson–Fabry disease (⍺-galactosidase A deficiency). Investigation of symptomatic and presymptomatic patients. QJ Med, 75, 491504.Google Scholar
Motwani, M., Banypersad, S., Woolfson, P., and Waldek, S. 2012. Enzyme replacement therapy improves cardiac features and severity of Fabry disease. Mol Genet Metab, 107, 197202.Google Scholar
Moumdjian, R., Tampieri, D., Melanson, D., and Ethier, R. 1989. Anderson–Fabry disease: A case report with MR, CT, and cerebral angiography. Am J Neuroradiol, 10, S6970.Google Scholar
Mutoh, T., Senda, Y., Sugimura, K., et al. 1988. Severe orthostatic hypotension in a female carrier of Fabry’s disease. Arch Neurol, 45, 468–72.Google Scholar
Nakamura, K., Sekijima, Y., Nakamura, K., et al. 2010. Cerebral hemorrhage in Fabry’s disease. Stroke, 41, 431–6.Google Scholar
Nishide, M., Irino, T., Gotoh, M., et al. 1983. Cardiac abnormalities in ischemic cerebrovascular disease studied in two-dimensional echocardiography. Stroke, 14, 541–5.Google Scholar
Nishizaki, T., Tamaki, N., Takeda, N., et al. 1986. Dolichoectatic basilar artery: A review of 23 cases. Stroke, 17, 1277–81.Google Scholar
Ohsugi, K., Kobayashi, K., Itoh, K., Sakuraba, H., and Sakuragawa, N. 2000. Enzymatic corrections for cells derived from Fabry disease patients by a recombinant adenovirus vector. J Hum Genet, 45, 15.Google Scholar
Oto, S., Kart, H., Kadayifcilar, S., Ozdemir, N., and Aydin, P. 1998. Retinal vein occlusion in a woman with heterozygous Fabry’s disease. Eur J Ophthalmol, 8, 265–7.Google Scholar
Pacienza, N., Yoshimitsu, M., and Mizue, N. 2012. Lentivector transduction improves outcomes over transplantation of human HSCs alone in NOD/SCID/Fabry mice. Mol Ther, 20, 1454–61.Google Scholar
Petersen, R. C., Garrity, J. A., and Houser, O. W. 1989. Fabry’s disease: An unusual cause of stroke with unique angiographic findings. Neurology, 39(Suppl. 1), 123.Google Scholar
Pisani, A., Visciano, B., Roux, G. D., et al. 2012. Enzyme replacement therapy in patients with Fabry disease: state of the art and review of the literature. Mol Genet Metab, 107, 267–75.Google Scholar
Politei, J., Schenone, A. B., Burlina, A., et al. Vertebrobasilar dolichoectasia in Fabry disease: The earliest marker of neurovascular involvement. 2014. J Inborn Errors Metab Screening, 2, 16.Google Scholar
Pompen, A. W. M., Ruiter, M., and Wyers, H. J. G. 1947. Angiokeratoma corporis diffusum (universale) Fabry, as a sign of an unknown internal disease; two autopsy reports. Acta Med Scand, 128, 234–55.Google Scholar
Prüss, H., Bohner, G., and Zschenderlein, R. 2006. Paroxysmal vertigo as the presenting symptom of Fabry disease. Neurology, 66, 249.Google Scholar
Ries, M., Moore, D. F., Robinson, C. J., et al. 2006. Quantitative dysmorphology assessment in Fabry disease. Genet Med, 8, 96101.Google Scholar
Roach, E. S. 1989. Congenital cutaneouvascular syndromes. In Vinken, P. J. et al., eds. Handbook of Clinical Neurology: Vascular Diseases, Volume 11. Amsterdam: Elsevier, pp. 443–62.Google Scholar
Rolfs, A., Böttcher, T., Zschiesche, M., et al. 2005. Prevalence of Fabry disease in patients with cryptogenic stroke: A prospective study. Lancet, 366, 1794–6.Google Scholar
Russel, J. W., Biller, J., Hajduczok, Z. D., et al. 1991. Ischemic cerebrovascular complications and risk factors in idiopathic hypertrophic subaortic stenosis. Stroke, 22, 1143–7.Google Scholar
Rombach, S. M., Smid, B. E., Bouwman, M. G., et al. 2013. Long term enzyme replacement therapy for Fabry disease: Effectiveness on kidney, heart and brain. Orphanet J Rare Dis, 8, 47, 19.Google Scholar
Saarinen, J. T., Sillanpaa, N., and Kantola, I. 2015. A male Fabry disease patient treated with intravenous thrombolysis for acute ischemic stroke. J Clin Neurosci, 22, 423–5.Google Scholar
Saito, S., Ohno, K., and Sakuraba, H. 2011. Fabry-database.org: Database of the clinical phenotypes, genotypes and mutant α-galactosidase A structures in Fabry disease. J Hum Genet, 56, 467–8.Google Scholar
Sakuraba, H., Yanagawa, Y., Igarashi, T., et al. 1986. Cardiovascular manifestations in Fabry’s disease. A high incidence of mitral valve prolapse in hemizygotes and heterozygotes. Clin Genet, 29, 276–83.Google Scholar
Sakuraba, H., Igarashi, T., Shibata, T., and Suzuki, Y. 1987. Effect of vitamin E and ticlopidine on platelet aggregation in Fabry’s disease. Clin Genet, 31, 349–54.Google Scholar
Schatzki, P. F., Kipreos, B., and Payne, J. 1979. Fabry’s disease. Primary diagnosis by electron microscopy. Am J Surg Pathol, 3, 211–9.Google Scholar
Schermuly, C., Müller, M. J., Müller, K. M., et al. 2011. Neuropsychiatric symptoms and brain structural alterations in Fabry disease. Eur J Neurol, 18, 347–53.Google Scholar
Schiffman, R. 2009. Fabry disease. Phamacol Ther, 122, 6577.Google Scholar
Schiffman, R., 2015. Fabry disease. In Aminoff, M. J., Boller, F., and Swaab, D. F., eds., Handbook of Clinical Neurology. Amsterdam: Elsevier, vol. 137, pp. 231–48.Google Scholar
Schiffman, R., Koff, J. B., Austin, H. A., et al. 2001. Enzyme replacement therapy in Fabry disease. JAMA, 285, 2743–9.Google Scholar
Schwartz, A., Rautenberg, W., and Hennerici, M. 1993. Dolichoectatic intracranial arteries: Review of selected aspects. Cerebrovasc Dis, 3, 273–9.Google Scholar
Scott, L. J., Griffin, J. W., Luciano, C., et al. 1999. Quantitative analysis of epidermal innervation in Fabry disease. Neurology, 52, 1249–54.Google Scholar
Scully, R. E., Mark, E. J., and McNeely, B. U. 1984. Case records of Massachusetts General Hospital: Case 2, 1984. N Engl J Med, 310, 106–14.Google Scholar
Sher, N. A., Reiff, W., Letson, R. D., and Desnick, R. J. 1978. Central retinal artery occlusion complicating Fabry’s disease. Arch Ophthalmol, 96, 815–7.Google Scholar
Sims, K., Politei, J., Banikazemi, M., et al. 2009. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: Natural history data from the Fabry registry. Stroke, 40, 788–94.Google Scholar
Spada, M., Pagliardini, S., Yasuda, M., et al. 2006. High incidence of later-onset Fabry disease revealed by newborn screening. Am J Med Genet, 79, 3140.Google Scholar
Steward, V. W. and Hitchcock, C. 1968. Fabry’s disease (Angiokeratoma corporis diffusum). Pathol Eur, 3, 377–88.Google Scholar
Stoughton, R. B. and Clendenning, W. E. 1959. Angiokeratoma corporis diffusum (Fabry). Arch Dermatol, 79, 601–2.Google Scholar
Tagliavini, F., Pietrini, V., Gemignani, F., et al. 1982. Anderson–Fabry’s disease: Neuropathological and neurochemical investigation. Acta Neuropathol (Berlin), 56, 93–8.Google Scholar
Takanashi, J., Barkovish, A. J., Dillon, W. P., et al. 2003. T1 hyperintensity in the pulvinar: Key imaging feature for diagnosis of Fabry disease. Am J Neuroradiol, 24, 916–21.Google Scholar
Takenaka, T., Sakuraba, H., Hashimoto, K., et al. 1996. Coexistence of gene mutations causing Fabry disease and Duchenne muscular dystrophy in a Japanese boy. Clin Genet, 49, 255–60.Google Scholar
Takenaka, T., Hendrickson, C. S., Tworeck, D. M., et al. 1999. Enzymatic and functional correction along with long-term enzyme secretion from transduced bone marrow hematopoietic stem/progenitor and stromal cells derived from patients with Fabry disease. Exp Hematol, 27, 1149–59.Google Scholar
Tedeschi, G., Bonavita, S., Banerjee, T. K., Virta, A., and Schiffmann, R. 1999. Diffuse central neuronal involvement in Fabry disease. A proton MRS imaging study. Neurology, 52, 1663–7.Google Scholar
Topaloglou, A. K., Ashley, G. A., Tong, B., et al. 1999. Twenty novel mutations in the alpha-galactosidase A gene causing Fabry disease. Mol Med, 5, 806–11.Google Scholar
Uceyler, N., Homola, G. A., Guerrero Gonzalez, H., et al. Increased arterial diameters in the posterior cerebral circulation in men with Fabry disease. 2014. PLoS One, 9, e87054.Google Scholar
Utsumi, K., Yamamoto, N., Kase, R., et al. 1997. High incidence of thrombosis in Fabry’s disease. Intern Med, 36, 327–9.Google Scholar
Utsumi, K., Seta, T., Katsumata, T., et al. 2006. Effect of selective LDL-apheresis in a Fabry patient with recurrent strokes. European Journal of Neurology, 13, 429–30.Google Scholar
van der Tol, L., Smid, B. E., Poorthuis, B. J., et al. 2014. A systematic review on screening for Fabry disease: Prevalence of individuals with genetic variants of unknown significance. J Med Genet, 51, 19.Google Scholar
Wallace, R. D. and Cooper, W. J. 1965. Angiokeratoma corporis diffusum universale (Fabry’s disease). Am J Med, 39, 656–61.Google Scholar
Wise, D., Wallace, H. J., and Jellinek, E. H. 1962. Angiokeratoma corporis diffusum. QJ Med, 122, 177206.Google Scholar
Yokoyama, A., Yamazoe, M., and Shibata, A. 1987. A case of heterozygous Fabry’s disease with a short PR interval and giant T waves. Br Heart J, 57, 296–9.Google Scholar
Zeluff, G. W., Caskey, C. T., and Jackson, D. 1978. Heart attack or stroke in a young man? Think Fabry’s disease. Heart Lung, 7, 1056–61.Google Scholar
Zerate, Y. A. and Hopkin, R. J. 2008. Fabry’s disease. Lancet, 372, 1427–35.Google Scholar

References

American Academy of Pediatrics Committee on Genetics. 1996. Health supervision for children with Marfan syndrome. Pediatrics, 98, 978–82.Google Scholar
Baer, R. W., Taussig, H. B., and Oppenheimer, E. H. 1943. Congenital aneurysmal dilatation of the aorta associated with arachnodactyly. Bull Johns Hopk Hosp, 72, 309.Google Scholar
Benoit, M. E. 1908. Displacement of the larynx as a sign of aneurysm of the arch of the aorta. Lancet, 172, 1695–6.Google Scholar
Boerger, F. 1914. Ueber zwei Faelle von Arachnodactylie. Z Kinderheilkd, 12, 161–84.Google Scholar
Brooke, B. S., Habashi, J. P., Judge, D.P., et al. 2008. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med, 358, 2787–95.Google Scholar
Chembala, J., Natarajan, I., and Roffe, C. 2012. Thrombolysis in a stroke patient with Marfan syndrome. JRSM Short Rep, 3, 22.Google Scholar
De Paepe, A., Devereux, R. B., Dietz, H. C., Hennekam, R. C., and Pyeritz, R. E. 1996. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet, 62, 417–26.Google Scholar
Fukutake, T., Sakakibara, R., Mori, M., Araki, M., and Hattori, T. 1997. Chronic intractable headache in a patient with Marfan’s syndrome. Headache, 37, 291–5.Google Scholar
Gójska-Grymajło, A., Chwojnicki, K., and Nyka, W. M. 2014. First non-complicated thrombolysis in a young patient with Marfan syndrome and brainstem ischaemic stroke. Kardiol Pol, 72, 557.Google Scholar
Gott, V. L. 1998. Antoine Marfan and his syndrome: One hundred years later. Md Med J, 47, 247–52.Google Scholar
Gray, J. R., Bridges, A. B., West, R. R., et al. 1998. Life expectancy in British Marfan syndrome populations. Clin Genet, 54, 124–8.Google Scholar
Hobbs, W. R., Sponseller, P. D., Weiss, A. P., and Pyeritz, R. E. 1997. The cervical spine in Marfan syndrome. Spine, 22, 983–9.Google Scholar
Hollister, D. W., Godfrey, M., Sakai, L. Y., and Pyeritz, R. E. 1990. Immunohistologic abnormalities of the microfibrillar-fiber system in the Marfan syndrome. N Engl J Med, 323, 152–9.Google Scholar
Huggon, I. C., Burke, J. P., and Talbot, J. F. 1990. Contractural arachnodactyly with mitral regurgitation and iridodonesis. Arch Dis Child, 65, 317–9.Google Scholar
Hwa, J., Richards, J. G., Huang, H., et al. 1993. The natural history of aortic dilatation in Marfan syndrome. MedJ Aust, 158, 558–62.Google Scholar
Judge, D. P. and Dietz, H. C. 2005. Marfan’s syndrome. Lancet, 366, 1965–76.Google Scholar
Kainulainen, K., Pulkkinen, L., Savolainen, A., Kaitila, I., and Peltonen, L. 1990. Location on chromosome 15 of the gene defect causing Marfan syndrome. N Engl J Med, 323, 935–9.Google Scholar
Kainulainen, K., Steinmann, B., Collins, F., et al. 1991. Marfan syndrome: No evidence for heterogeneity in different populations, and more precise mapping of the gene. Am J Hum Genet, 49, 662–7.Google Scholar
Loeys, B. L., Dietz, H. C., Braverman, A. C., et al. 2010. The revised Ghent nosology for the Marfan syndrome. J Med Genet, 47, 476–85.Google Scholar
Kim, S. Y., Martin, N., Hsia, E., Pyeritz, R. E., and Albert, D. A. 2005. Management of aortic disease in Marfan syndrome: A decision analysis. Arch Intern Med, 165, 749–55.Google Scholar
Magenis, R. E., Maslen, C. L., Smith, L., Allen, L., and Sakai, L. Y. 1991. Localization of the fibrillin (FBN) gene to chromosome 15, band q21.1. Genomics, 11, 346–51.Google Scholar
Mizuguchi, T., Collod-Beroud, G., Akyiama, T., et al. 2004. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet, 36, 855–60.Google Scholar
Nagatani, T., Inao, S., and Yoshida, J. 1998. Hemifacial spasm associated with Marfan’s syndrome: A case report. Neurosurg Rev, 21, 152–4.Google Scholar
Pereira, L., Andrikopoulos, K., Tian, J., et al. 1997. Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet, 17, 218–22.Google Scholar
Pyeritz, R. E. 2000. The Marfan syndrome. Annu Rev Med, 51, 481510.Google Scholar
Ramachandra, C. J., Mehta, A., Guo, K.W., et al. 2015. Molecular pathogenesis of Marfan syndrome. Int J Cardiol, 6, 585–91.Google Scholar
Ramos Arroyo, M. A., Weaver, D. D., and Beals, R. K. 1985. Congenital contractural arachnodactyly. Report of four additional families and review of literature. Clin Genet, 27, 570–81.Google Scholar
Schievink, W. I., Björnsson, J., and Piepgras, D. G. 1994a. Coexistence of fibromuscular dysplasia and cystic medial necrosis in a patient with Marfan’s syndrome and bilateral carotid artery dissections. Stroke, 25, 2492–6.Google Scholar
Schievink, W. I., Michels, V. V., and Piepgras, D. G. 1994b. Neurovascular manifestations of heritable connective tissue disorders. A review. Stroke, 25, 889903.Google Scholar
Schievink, W. I., Parisi, J. E., Piepgras, D. G., and Michels, V. V. 1997. Intracranial aneurysms in Marfan’s syndrome: An autopsy study. Neurosurgery, 41, 866–70.Google Scholar
Schoenhoff, F. S., Jungi, S., Czerny, M., et al. 2013. Acute aortic dissection determines the fate of initially untreated aortic segments in Marfan syndrome. Circulation, 16, 1569–75.Google Scholar
Schoenhoff, F. S., Langhammer, B., Wustmann, K., et al. 2015. Decision-making in aortic root surgery in Marfan syndrome: Bleeding, thromboembolism and risk of reintervention after valve-sparing or mechanical aortic root replacement. Eur J Cardiothorac Surg, 48, 931–6.Google Scholar
van den Berg, J. S., Limburg, M., and Hennekam, R. C. 1996. Is Marfan syndrome associated with symptomatic intracranial aneurysms? Stroke, 27, 10–2.Google Scholar
Wityk, R. J., Zanferrari, C., and Oppenheimer, S. 2002. Neurovascular complications of Marfan syndrome: A retrospective, hospital-based study. Stroke, 33, 680–4.Google Scholar
Youl, B. D., Coutellier, A., Dubois, B., Leger, J. M., and Bousser, M. G. 1990. Three cases of spontaneous extracranial vertebral artery dissection. Stroke, 21, 618–25.Google Scholar
Zambrino, C. A., Berardinelli, A., Martelli, A., et al. 1999. Dolicho-vertebrobasilar abnormality and migraine-like attacks. Eur Neurol, 41, 10–4.Google Scholar

References

Araki, Y., Imai, S., Saitoh, A., et al. 1986. A case of carotid rete mirabile associated with pseudoxanthoma elasticum: A case report. No To Shinkei, 38, 495500.Google Scholar
Bergen, A. A., Plomp, A. S., Schuurman, E. J., et al. 2000. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat Genet, 25, 228–31.Google Scholar
Biere, L., Donal, E., Terrien, G., et al. 2014. Left ventricular function in a large cohort of pseudoxanthoma elasticum patients. PLoS One, 9, e90364.Google Scholar
Bock, A. and Schwegler, G. 2008. Intracerebral haemorrhage as first manifestation of pseudoxanthoma elasticum. Clin Neurol Neurosurg, 110, 262–4.Google Scholar
Bolognia, J. L. and Braverman, I. 1992. Pseudoxanthoma-elasticum-like skin changes induced by penicillamine. Dermatology, 184, 12–8.Google Scholar
Campens, L., Vanakker, O. M., Trachet, B., et al. 2013. Characterization of cardiovascular involvement in pseudoxanthoma elasticum families. Arterioscler Thromb Vasc Biol, 33, 2646–52.Google Scholar
Davies, M. J., Moore, B. P., and Brainbridge, M. V. 1978. The floppy mitral valve: Study of incidence, pathology, and complications in surgical, necropsy, and forensic material. Br Heart J, 40, 468–81.Google Scholar
Defillo, A. and Nussbaum, E. S. 2010. Intracranial aneurysm formation in siblings with pseudoxanthoma elasticum: case report. J Neurosurg Sci, 54, 105–7.Google Scholar
Del Zotto, E., Ritelli, M., Pezzini, A., et al. 2012. Clinical, neuroradiological and molecular features of a patient affected by pseudoxanthoma elasticum associated to carotid rete mirabile: Case report. Clin Neurol Neurosurg, 114, 758–61.Google Scholar
Dyer, J. A. (2012). Lipoid proteinosis and heritable disorders of connective tissue. In Fitzpatrick’s Dermatology in General Medicine, 8th edn., eds. Goldsmith, L. A., Katz, S. I., Gilchrest, B. A., et al. New York, NY, The McGraw-Hill Companies, ch. 137.Google Scholar
Finger, R. P., Charbel Issa, P., Ladewig, M. S., et al. 2009. Pseudoxanthoma elasticum: Genetics, clinical manifestations and therapeutic approaches. Surv Ophthalmol, 54, 272–85.Google Scholar
Georgalas, I., Papaconstantinou, D., Koutsandrea, C., et al. 2009. Angioid streaks, clinical course, complications, and current therapeutic management. Ther Clin Risk Manag, 5, 8189.Google Scholar
Germain, D. P., Boutouyrie, P., Laloux, B., and Laurent, S. 2003. Arterial remodeling and stiffness in patients with pseudoxanthoma elasticum. Arterioscler Thromb Vasc Biol, 23, 836–41.Google Scholar
Goto, K. 1975. Involvement of central nervous system in pseudoxanthoma elasticum. Folia Psychiatr Neurol Jpn, 29, 263–77.Google Scholar
Grönblad, E. 1929. Angioid streaks: Pseudoxanthoma elasticum. Acta Opthalmol, 7, 329–33.Google Scholar
Huang, S., Kumar, G., Steele, H. D., and Parker, J. O. 1967. Cardiac involvement in pseudoxanthoma elasticum: Report of a case. Am Heart J, 74, 680–6.Google Scholar
Iqbal, A., Alter, M., and Lee, S. H. 1978. Pseudoxanthoma elasticum: A review of neurological complication. Ann Neurol, 4, 1820.Google Scholar
Josien, E. 1992. Extracranial vertebral artery dissection: Nine cases. J Neurol, 239, 327–30.Google Scholar
Karam, C., Soulat, G., Germain, D. P., Lacombe, P., and Dubourg, O. 2015. Coronary CT angiography for chest pain in pseudoxanthoma elasticum and cardiac intervention management. J Cardiovasc Comput Tomogr, 9, 238–41.Google Scholar
Kaplan, L. and Hartman, S. W. 1954. Elastica disease: Case of Grönblad–Strandberg syndrome with gastrointestinal hemorrhage. Arch Intern Med, 94, 489–92.Google Scholar
Kito, K., Kobayashi, N., Mori, N., and Kohno, H. 1983. Ruptured aneurysm of the anterior spinal artery associated with pseudoxanthoma elasticum. Case report. J Neurosurg, 58, 126–8.Google Scholar
Koo, A. H. and Newton, T. H. 1972. Pseudoxanthoma elasticum associated with carotid rete mirabile. Case report. Am J Roentgenol Radium Ther Nucl Med, 116, 1622.Google Scholar
Kornet, L., Bergen, A. A., Hoeks, A. P., et al. 2004. In patients with pseudoxanthoma elasticum a thicker and more elastic carotid artery is associated with elastin fragmentation and proteoglycans accumulation. Ultrasound Med Biol, 30, 1041–8.Google Scholar
Kupetsky-Rincon, E. A., Li, Q., and Uitto, J. 2012. Magnesium reduces carotid intima–media thickness in a mouse model of pseudoxanthoma elasticum: A novel treatment biomarker. Clin Transl Sci, 5, 259–64.Google Scholar
Laube, S. and Moss, C. 2005. Pseudoxanthoma elasticum. Arch Dis Child, 90, 754–6.Google Scholar
Lebwohl, M. 1993. Pseudoxanthoma elasticum. N Engl J Med, 329, 1240.Google Scholar
Lebwohl, M. G., Distefano, D., Prioleau, P. G., et al. 1982. Pseudoxanthoma elasticum and mitral-valve prolapse. N Engl J Med, 307, 228–31.Google Scholar
Lebwohl, M., Halperin, J., and Phelps, R. G. 1993. Brief report: Occult pseudoxanthoma elasticum in patients with premature cardiovascular disease. N Engl J Med, 329, 1237–9.Google Scholar
Leftheriotis, G., Abraham, P., Le Corre, Y., et al. 2011. Relationship between ankle brachial index and arterial remodeling in pseudoxanthoma elasticum. J Vasc Surg, 54, 1390–4.Google Scholar
Leftheriotis, G., Omarjee, L., Le Saux, O., et al. 2013. The vascular phenotype in pseudoxanthoma elasticum and related disorders: Contribution of a genetic disease to the understanding of vascular calcification. Front Genet, 4, 4.Google Scholar
Li, Q., Jiang, Q., Pfendner, E., Varadi, A., and Uitto, J. 2009a. Pseudoxanthoma elasticum: Clinical phenotypes, molecular genetics and putative pathomechanisms. Exp Dermatol, 18, 111.Google Scholar
Li, Q., Larusso, J., Grand-Pierre, A. E., and Uitto, J. 2009b. Magnesium carbonate-containing phosphate binder prevents connective tissue mineralization in Abcc6(-/-) mice: Potential for treatment of pseudoxanthoma elasticum. Clin Transl Sci, 2, 398404.Google Scholar
Li, Q., Guo, H., Chou, D. W., et al. 2013. Warfarin accelerates ectopic mineralization in Abcc6(-/-) mice: Clinical relevance to pseudoxanthoma elasticum. Am J Pathol, 182, 1139–50.Google Scholar
Mayer, S. A., Tatemichi, T. K., Spitz, J. L., et al. 1994. Recurrent ischemic events and diffuse white matter disease in patients with pseudoxanthoma elasticum. Cerebrovascular Diseases, 4, 294–7.Google Scholar
Meyer, S., Zanardo, L., Kaminski, W. E., et al. 2005. Elastosis perforans serpiginosa-like pseudoxanthoma elasticum in a child with severe Moya Moya disease. Br J Dermatol, 153, 431–4.Google Scholar
Mokri, B., Sundt, T. M. Jr., and Houser, O. W. 1979. Spontaneous internal carotid artery dissection, hemicrania, and Horner’s syndrome. Arch Neurol, 36, 677–80.Google Scholar
Morcher, M., Hausser, I., Brandt, T. and Grond-Ginsbach, C. 2003. Heterozygous carriers of pseudoxanthoma elasticum were not found among patients with cervical artery dissections. J Neurol, 250, 983–6.Google Scholar
Munyer, T. P. and Margulis, A. R. 1981. Pseudoxanthoma elasticum with internal carotid artery aneurysm. AJR Am J Roentgenol, 136, 1023–4.Google Scholar
Murthy, S. and Prasad, S. 2004. Pseudoxanthoma elasticum and nonarteritic anterior ischaemic optic neuropathy. Eye, 18, 201–2.Google Scholar
Navarro-Lopez, F., Liorian, A., Ferrer-Roca, O., Betriu, A., and Sans, G. 1980. Restrictive cardiomyopathy in pseudoxanthoma elasticum. Chest, 78, 113–15.Google Scholar
Neldner, K. H. 1988. Pseudoxanthoma elasticum. Clin Dermatol, 6, 1159.Google Scholar
Neldner, K. H. 1993. Pseudoxanthoma elasticum. In Connective Tissue and its Heritable Disorders: Molecular, Genetic, and Medical Aspects, ed. Royce, P. M. and Steinman, B.. New York: Wiley-Liss, pp. 425–36.Google Scholar
Nguyen, L. D., Terbah, M., Daudon, P. and Martin, L. 2006. Left ventricular systolic and diastolic function by echocardiogram in pseudoxanthoma elasticum. Am J Cardiol, 97, 1535–7.Google Scholar
Pavlovic, A. M., Zidverc-Trajkovic, J., Milovic, M. M., et al. 2005. Cerebral small vessel disease in pseudoxanthoma elasticum: Three cases. Can J Neurol Sci, 32, 115–8.Google Scholar
Pfendner, E. G., Vanakker, O. M., Terry, S. F., et al. 2007. Mutation detection in the ABCC6 gene and genotype-phenotype analysis in a large international case series affected by pseudoxanthoma elasticum. J Med Genet, 44, 621–8.Google Scholar
Pfendner, E. G., Uitto, J., Gerard, G. F., and Terry, S. F. 2008. Pseudoxanthoma elasticum: Genetic diagnostic markers. Expert Opin Med Diagn, 2, 6379.Google Scholar
Pierro, L., Brancato, R., Minicucci, M., and Pece, A. 1994. Echographic diagnosis of Drusen of the optic nerve head in patients with angioid streaks. Ophthalmologica, 208, 239–42.Google Scholar
Plomp, A. S., Toonstra, J., Bergen, A. A., van Dijk, M. R., and de Jong, P. T. 2010. Proposal for updating the pseudoxanthoma elasticum classification system and a review of the clinical findings. Am J Med Genet A, 152A, 1049–58.Google Scholar
Prunier, F., Terrien, G., Le Corre, Y., et al. 2013. Pseudoxanthoma elasticum: Cardiac findings in patients and Abcc6-deficient mouse model. PLoS One, 8, e68700.Google Scholar
Rigal, D. 1881. Observation pour servir a l’histoire de la cheloide diffuse xanthelasmique. Arch Derm Syphilol, 2, 491501.Google Scholar
Ringpfeil, F., Lebwohl, M. G., Christiano, A. M., et al. 2000. Pseudoxanthoma elasticum mutations in the gene encoding a transmembrane ATP binding cassette (ABC) transporter. Proc Natl Acad Sci U S A, 97, 6001–6.Google Scholar
Ringpfeil, F., McGuigan, K., Fuchsel, L., et al. 2006. Pseudoxanthoma elasticum is a recessive disease characterized by compound heterozygosity. J Invest Dermatol, 126, 782–6.Google Scholar
Rios-Montenegro, E. N., Behrens, M. M. and Hoyt, W. F. 1972. Pseudoxanthoma elasticum. Association with bilateral carotid rete mirabile and unilateral carotid-cavernous sinus fistula. Arch Neurol, 26, 151–5.Google Scholar
Rosenzweig, B. P., Guarneri, E., and Kronzon, I. 1993. Echocardiographic manifestations in a patient with pseudoxanthoma elasticum. Ann Intern Med, 119, 487–90.Google Scholar
Sawa, M., Ober, M. D., Freund, K. B., and Spaide, R. F. 2006. Fundus autofluorescence in patients with pseudoxanthoma elasticum. Opthalmology, 113, 820.e1–2.Google Scholar
Schievink, W. I., Michels, V. V., and Piepgras, D. G. 1994. Neurovascular manifestations of heritable connective tissue disorders: A review. Stroke, 25, 889903.Google Scholar
Sharma, N. G. K., Beohar, P. C., Ghosh, S. K., and Gupta, P. S. 1974. Subarachnoid hemorrhage in pseudoxanthoma elasticum. Postgrad Med J, 50, 774–6.Google Scholar
Strandberg, J. V. 1929. Pseudoxanthoma elasticum. Zentralbl Haut Und Geschlechtskr, 31, 689–93.Google Scholar
Strole, W. E. and Margolis, R. 1983. Case records of the Massachusetts General Hospital: Case 10–1983. N Engl J Med, 308, 579–85.Google Scholar
Tay, C. H. 1970. Pseudoxanthoma elasticum. Postgrad Med J, 46, 97108.Google Scholar
Viljoen, D. 1993. Pseudoxanthoma elasticum. In McKusick’s Heritable Disorders of Connective Tissue, 5th edn., ed. Beighton, P.. St. Louis, MO: Mosby Co., pp. 335–65.Google Scholar
van den Berg, J. S., Hennekam, R. C., Cruysberg, J. R., et al. 2000. Prevalence of symptomatic intracranial aneurysm and ischaemic stroke in pseudoxanthoma elasticum. Cerebrovasc Dis, 10, 315–19.Google Scholar
Vanakker, O. M., Leroy, B. P., Coucke, P., et al. 2008. Novel clinico-molecular insights in pseudoxanthoma elasticum provide an efficient molecular screening method and a comprehensive diagnostic flowchart. Hum Mutat, 29, 205.Google Scholar
Vasseur, M., Carsin-Nicol, B., Ebran, J. M., et al. 2011. Carotid rete mirabile and pseudoxanthoma elasticum: An accidental association? Eur J Vasc Endovasc Surg, 42, 292–4.Google Scholar
Wiemer, M., Muller, W., Heintzen, M., and Horstkotte, D. 2003. Pseudoxanthoma elasticum. Coronary vascular specimen from atherectomy. Circulation, 108, e1920.Google Scholar
Yasuhara, T., Sugiu, K., Kakishita, M., and Date, I. 2004. Pseudoxanthoma elasticum with carotid rete mirabile. Clin Neurol Neurosurg, 106, 114–17.Google Scholar
Yoo, J. Y., Blum, R. R., Singer, G. K., et al. 2011. A randomized controlled trial of oral phosphate binders in the treatment of pseudoxanthoma elasticum. J Am Acad Dermatol, 65, 341–8.Google Scholar

References

Beighton, P., 1993. The Ehlers–Danlos syndromes. In Beighton, P., ed. Heritable Disorders of Connective Tissue. 5 edn. St Louis: Mosby-Year Book, Inc., pp. 189251.Google Scholar
Bergqvist, D., Bjorck, M., & Wanhainen, A., 2013. Treatment of vascular Ehlers–Danlos syndrome: A systematic review. Annals of Surgery 258, 257–61.Google Scholar
Byers, P. H., 1994. Ehlers–Danlos syndrome: Recent advances and current understanding of the clinical and genetic heterogeneity. Journal of Investigative Dermatology 103S, 4752.Google Scholar
Chuman, H., Trobe, J. D., Petty, E. M., et al., 2002. Spontaneous direct carotid-cavernous fistula in Ehlers–Danlos syndrome type IV: Two case reports and a review of the literature. Journal of Neuroophthalmology 22, 7581.Google Scholar
Cikrit, D. F., Miles, J. H., & Silver, D., 1987. Spontaneous arterial perforation: The Ehlers–Danlos specter. Journal of Vascular Surgery 5, 248–55.Google Scholar
Cikrit, D. F., Glover, J. R., Dalsing, M. C., & Silver, D., 2002. The Ehlers–Danlos specter revisited. Vascular and Endovascular Surgery 36, 213–17.Google Scholar
Debette, S. & Markus, H. S., 2009. The genetics of cervical artery dissection: A systematic review. Stroke 40, e459–e66.Google Scholar
Debette, S., Goeggel, S. B., Schilling, S., et al., 2014. Familial occurrence and heritable connective tissue disorders in cervical artery dissection. Neurology 83, 2023–31.Google Scholar
Debrun, G. M., Aletich, V. A., Miller, N. R., & DeKeiser, R. J. W., 1996. Three cases of spontaneous direct carotid cavernous fistulas associated with Ehlers–Danlos syndrome type IV. Surgical Neurology 46, 247–52.Google Scholar
Desal, H. A., Toulgoat, F., Raoul, S., et al., 2005. Ehlers–Danlos syndrome type IV and recurrent carotid-cavernous fistula: Review of the literature, endovascular approach, technique and difficulties. Neuroradiology 47, 300–4.Google Scholar
Dohle, C. & Baehring, J. M., 2012. Multiple strokes and bilateral carotid dissections: A fulminant case of newly diagnosed Ehlers–Danlos syndrome type IV. Journal of Neurological Science 318, 168–70.Google Scholar
Foulodou, P., de Kersaint-Gilly, A., Pizzanelli, J., Viarouge, M. P., & Auffray-Calvier, E., 1996. Ehlers–Danlos syndrome with a spontaneous caroticocavernous fistula occluded by detachable balloon: Case report and review of literature. Neuroradiology 38, 595–7.Google Scholar
Fox, R., Pope, F. M., Narcisi, P., et al., 1988. Spontaneous carotid cavernous fistula in Ehlers–Danlos syndrome. Journal of Neurology, Neurosurgery and Psychiatry 51, 984–6.Google Scholar
Freeman, R. K., Swegle, J., & Sise, M. J., 1996. The surgical complications of Ehlers–Danlos syndrome. American Surgeon 62, 869–73.Google Scholar
Gilchrist, D., Schwarze, U., Shields, K., et al., 1999. Large kindred with Ehlers–Danlos syndrome type IV due to a point mutation (G571S) in the COLA1 gene of type III procollagen: Low risk of pregnancy complications and unexpected longevity in some affected relatives. American Journal of Medical Genetics 82, 305–11.Google Scholar
Graf, C. J., 1965. Spontaneous carotid-cavernous fistula. Archives of Neurology 13, 662–72.Google Scholar
Grond-Ginsbach, C., Schnippering, H., Hausser, I., et al., 2002. Ultrastructural connective tissue aberrations in patients with intracranial aneurysms. Stroke 33, 2192–6.Google Scholar
Hainsworth, P. J. & Mendelow, A. D., 1991. Giant intracranial aneurysm associated with Marfan’s syndrome: A case report. Journal of Neurology, Neurosurgery and Psychiatry 54, 471–2.Google Scholar
Halbach, V. V., Higashida, R. T., Dowd, C. F., Barnwell, S. L., & Hieshima, G. B., 1990. Treatment of carotid-cavernous fistulas associated with Ehlers–Danlos syndrome. Neurosurgery 26, 1021–7.Google Scholar
Hamano, K., Kuga, T., Takahashi, M., et al., 1998. The lack of type III collagen in a patient with aneurysms and an aortic dissection. Journal of Vascular Surgery 28, 1104–6.Google Scholar
Hammond, R. & Oligbo, N., 2012. Ehlers Danlos syndrome type IV and pregnancy. Archives of Gynecology and Obstetrics 285, 51–4.Google Scholar
Horowitz, M. B., Purdy, P., Valentine, R. J., & Morrill, K., 2000. Remote vascular catastrophes after neurovascular interventional therapy for type 4 Ehlers–Danlos syndrome. American Journal of Neuroradiology 21, 974–6.Google Scholar
Hunter, G. C., Malone, J. M., Moore, W. S., Misiorowski, D. L., & Chvapil, M., 1982. Vascular manifestations in patients with Ehlers–Danlos syndrome. Archives of Surgery 117, 495–8.Google Scholar
Imahori, S., Bannerman, R. M., Graf, C. J., & Brennan, J. C., 1969. Ehlers–Danlos syndrome with multiple arterial lesions. American Journal of Medicine 47, 967–77.Google Scholar
Kanner, A. A., Maimin, S., & Rappaport, Z. H., 2000. Treatment of spontaneous carotid-cavernous fistula in Ehlers–Danlos syndrome by transvenous occlusion with Guglielmi detachable coils. Case report and review of the literature. Journal of Neurosurgery 93, 689–92.Google Scholar
Krog, M., Almgren, B., Eriksson, I., & Nordstrom, S., 1983. Vascular complications in the Ehlers–Danlos syndrome. Acta Chirurigica Scandinavica 149, 279–82.Google Scholar
Kuivaniemi, H., Prokop, D. J., Wu, Y., et al., 1993. Exclusion of mutations in the gene for type III collagen (COL3A1) as a common cause of intracranial aneurysms or cervical artery dissections: Results from sequence analysis of the coding sequences of type III collagen from 55 unrelated patients. Neurology 43, 2652–8.Google Scholar
Lach, B., Nair, S. G., Russell, N. A., & Benoit, B. G., 1987. Spontaneous carotid-cavernous fistula and multiple arterial dissections in type IV Ehlers–Danlos syndrome. Journal of Neurosurgery 66, 462–7.Google Scholar
Linfante, I., Lin, E., Knott, E., Katzen, B., & Dabus, G., 2015. Endovascular repair of direct carotid-cavernous fistula in Ehlers–Danlos type IV. Journal of Neurointerventional Surgery 7, e3.Google Scholar
Lum, Y. W., Brooke, B. S., Arnaoutakis, G. J., Williams, T. K., & Black, J. H., III, 2012. Endovascular procedures in patients with Ehlers–Danlos syndrome: A review of clinical outcomes and iatrogenic complications. Annals of Vascular Surgery 26, 2533.Google Scholar
Makrygiannis, G., Loeys, B., Defraigne, J. O., & Sakalihasan, N., 2015. Cervical artery dissections and type A aortic dissection in a family with a novel missense COL3A1 mutation of vascular type Ehlers–Danlos syndrome. European Journal of Medical Genetics 58, 634–6.Google Scholar
Mirza, F. H., Smith, P. L., & Lim, W. N., 1979. Multiple aneurysms in a patient with Ehlers–Danlos syndrome: Angiography without sequelae. American Journal of Radiology 132, 993–5.Google Scholar
Nakagawa, I., Park, H. S., Wada, T., et al., 2014. A novel approach to the treatment of a direct carotid-cavernous fistula in a patient with Ehlers–Danlos syndrome type IV. Journal of Neurointerventional Surgery, bcr2014011414.Google Scholar
North, K. N., Whiteman, D. A. H., Pepin, M. G., & Byers, P. H., 1995. Cerebrovascular complications in Ehlers–Danlos syndrome type IV. Annals of Neurology 38, 960–4.Google Scholar
Oderich, G. S., Panneton, J. M., Bower, T. C., et al., 2005. The spectrum of management and clinical outcome of Ehlers–Danlos syndrome type IV: A 30-year experience. Journal of Vascular Surgery 42, 98106.Google Scholar
Ohkuchi, A., Matsubara, S., Takahashi, K., et al., 2009. Ehlers–Danlos type IV in pregnancy with a history of myocardial infarction. Journal of Obstetrics and Gynaecology Research 35, 797800.Google Scholar
Pepin, M., Schwartze, U., Superti-Furga, A., & Byers, P. H., 2000. Clinical and genetic features of Ehlers–Danlos syndrome type IV, the vascular type. New England Journal of Medicine 342, 673–80.Google Scholar
Pepin, M. G., Schwarze, U., Rice, K. M., et al., 2014. Survival is affected by mutation type and molecular mechanism in vascular Ehlers–Danlos syndrome (EDS type IV). Genetics in Medicine 16, 881–8.Google Scholar
Pickup, M. J. & Pollanen, M. S., 2011. Traumatic subarachnoid hemorrhage and the COL3A1 gene: Emergence of a potential causal link. Forensic Science, Medicine and Pathology 7, 192–7.Google Scholar
Pollock, J. S., Custer, P. L., Hart, W. M., Smith, M. E., & Fitzpatrick, M. M., 1997. Ocular complications in Ehlers–Danlos syndrome type IV. Archives of Ophthalmology 115, 416–19.Google Scholar
Roach, E. S. 1989. Congenital cutaneovascular syndromes. In Vinken, P. J. et al., eds. Handbook of Clinical Neurology: Vascular Diseases Volume 11. Amsterdam: Elsevier, pp. 443–62.Google Scholar
Rubinstein, M. K. & Cohen, N. H., 1964. Ehlers–Danlos syndrome associated with multiple intracranial aneurysms. Neurology 14, 125–32.Google Scholar
Schievink, W. I., Limburg, M., Oorthuys, J. W., Fleury, P., & Pope, F. M., 1990. Cerebrovascular disease in Ehlers–Danlos syndrome type IV. Stroke 21, 626–32.Google Scholar
Schievink, W. I., Piepgras, D. G., Earnest, F., & Gordon, H., 1991. Spontaneous carotid-cavernous fistulae in Ehlers–Danlos syndrome Type IV. Case report. Journal of Neurosurgery 74, 991–8.Google Scholar
Schoolman, A. & Kepes, J. J., 1967. Bilateral spontaneous carotid-cavernous fistulae in Ehlers–Danlos syndrome. Journal of Neurosurgery 26, 82–6.Google Scholar
Sheiner, N. M., Miller, N., & Lachance, C., 1985. Arterial complications of Ehlers–Danlos syndrome. Journal of Cardiovascular Surgery 26, 291–6.Google Scholar
Sobey, G., 2015. Ehlers–Danlos syndrome: How to diagnose and when to perform genetic tests. Archives of Disease in Childhood 100, 5761.Google Scholar
Stehbens, W. E., Delahunt, B., & Hilless, A. D., 1989. Early berry aneurysm formation in Marfan’s syndrome. Surgical Neurology 31, 200–2.Google Scholar
Zimmerman, C. F., Batjer, H. H., Purdy, P., et al., 1994. Ehlers–Danlos syndrome type IV: Neuro-ophthalmic manifestations and management. Ophthalmology 101S, 133.Google Scholar

References

Akawi, N., Ali, B., & Al, G. L., 2013. A progeroid syndrome with neonatal presentation and long survival maps to 19p13.3p13.2. Birth Defects Res A Clin Mol Teratol 97, 456–62.Google Scholar
Atkins, L., 1954. Progeria: Report of a case with post-mortem findings. N Engl J Med 250, 1065–9.Google Scholar
Cao, H. & Hegele, R. A., 2003. LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann–Rautenstrauch progeroid syndrome (MIM 264090). J Hum Genet 48, 271–4.Google Scholar
Chen, L., Lee, L., Kudlow, B. A., et al., 2003. LMNA mutations in atypical Werner’s syndrome. Lancet 362, 440–5.Google Scholar
Csoka, A. B., Cao, H., Sammak, P. J., et al., 2004a. Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J Med Genet 41, 304–8.Google Scholar
Csoka, A. B., English, S. B., Simkevich, C. P., et al., 2004b. Genome-scale expression profiling of Hutchinson–Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell 3, 235–43.Google Scholar
D’Apice, M. R., Tenconi, R., Mammi, I., van den Ende, J., & Novelli, G., 2004. Paternal origin of LMNA mutations in Hutchinson–Gilford progeria. Clin Genet 65, 52–4.Google Scholar
De Sandre-Giovannoli, A., Bernard, R., Cau, P., et al., 2003. Lamin A truncation in Hutchinson–Gilford progeria. Science 300, 2055.Google Scholar
DeBusk, F. L., 1972. The Hutchinson–Gilford progeria syndrome. Report of 4 cases and review of the literature. J Pediatr 80, 697724.Google Scholar
Delgado Luengo, W., Rojas, M. A., Ortiz, L. R., et al., 2002. Del(1)(q23) in a patient with Hutchinson–Gilford progeria. Am J Med Genet 113, 298301.Google Scholar
Dyck, J. D., David, T. E., Burke, B., et al., 1987. Management of coronary artery disease in Hutchinson–Gilford syndrome. J Pediatr 111, 407–10.Google Scholar
Epstein, C. J., Martin, G. M., Schultz, A. L., & Motulsky, A. G., 1966. Werner syndrome. A review of its symptomatology, pathologic features, genetics and relationship to the natural aging process. Medicine 45, 177221.Google Scholar
Eriksson, M., Brown, W. T., Gordon, L. B., et al., 2003. Recurrent de novo point mutations in human lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–8.Google Scholar
Fong, L. G., Frost, D., Meta, M., et al., 2006. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science 311, 1621–3.Google Scholar
Fukuchi, K., Katsuya, T., Sugimoto, K., et al., 2004. LMNA mutation in a 45-year-old Japanese subject with Hutchinson–Gilford progeria syndrome. J Med Genet 41, e67.Google Scholar
Gee, J., Ding, Q., & Keller, J. N., 2002. Analysis of Werner’s expression within the brain and primary neuronal culture. Brain Res 940, 44–8.Google Scholar
Gilford, H., 1904. Progeria: A form of senilism. Practitioner 73, 188217.Google Scholar
Goddard, K. A. B., Yu, C.-E., Oshima, J., Miki, T., et al., 1996. Toward localization of the Werner syndrome gene by linkage disequilibrium and ancestral haplotyping: Lessons learned from analysis of 35 chromosome 8p11.1–21.1 markers. Am J Hum Genet 58, 1286–302.Google Scholar
Goldman, R. D., Shumaker, D. K., Erdos, M. R., et al., 2004. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 101, 8963–8.Google Scholar
Gordon, L. B., Brown, W. T., & Collins, F. S., 1993. Hutchinson–Gilford progeria syndrome. GeneReviews. Initial posting: December 12, 2003; last update: January 8, 2015. Available from https://www.ncbi.nlm.nih.gov/books/NBK1121/.Google Scholar
Gordon, L. B., Kleinman, M. E., Miller, D. T., et al., 2012. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA 109, 16666–71.Google Scholar
Gordon, L. B., Massaro, J., D’Agostino, R. B., Sr., et al., 2014. Impact of farnesylation inhibitors on survival in Hutchinson–Gilford progeria syndrome. Circulation 130, 2734.Google Scholar
Goto, M., 1997. Hierarchical deterioration of body systems in Werner’s syndrome: Implications for normal ageing. Mech Ageing Dev 98, 239–54.Google Scholar
Gray, M. D., Shen, J.-C., Kamath-Loeb, A. S., et al., 1997. The Werner syndrome protein is a DNA helicase. Nature Genet 17, 100–3.Google Scholar
Green, L. N., 1981. Progeria with carotid artery aneurysms: Report of a case. Arch Neurol 38, 659–61.Google Scholar
Hennekam, R. C., 2006. Hutchinson–Gilford progeria syndrome: Review of the phenotype. Am J Med Genet A 140, 2603–24.Google Scholar
Hofer, A. C., Tran, R. T., Aziz, O. Z., et al., 2005. Shared phenotypes among segmental progeroid syndromes suggest underlying pathways of aging. J Gerontol A Biol Sci Med Sci 60, 1020.Google Scholar
Huang, S., Baomin, L., Gray, M. D., et al., 1998. The premature ageing syndrome protein, WRN, is a 3’ -> 5’ exonuclease. Nature Genet 20, 114–16.Google Scholar
Hutchinson, J., 1896. Congenital absence of hair and mammary glands with an atrophic condition of the skin and its appendages in a boy whose mother had been almost wholly bald from alopecia areata from the age of 6. Trans Med Chirurg Soc Edin 69, 473–7.Google Scholar
Ichikawa, K., Yamabe, Y., Imamura, O., et al., 1997. Cloning and characterization of a novel gene, WS-3, in human chromosome 8p11-p12. Gene 189, 277–87.Google Scholar
Kane, M. S., Lindsay, M. E., Judge, D. P., et al., 2013. LMNA-associated cardiocutaneous progeria: An inherited autosomal dominant premature aging syndrome with late onset. Am J Med Genet A 161, 1599–611.Google Scholar
Luo, D. Q., Wang, X. Z., Meng, Y., et al., 2014. Mandibuloacral dysplasia type A-associated progeria caused by homozygous LMNA mutation in a family from southern China. BMC Pediatr 14, 256.Google Scholar
Mahar, L. J., Lie, J. T., Groover, R. V., et al., 1979. Primary cardiac myxosarcoma in a child. Mayo Clinic Proc 54, 261–6.Google Scholar
Miller, V. S. & Roach, E. S. 2000. Neurocutaneous syndromes. In Bradley, W. G. & Daroff, R. B., eds. Neurology in Clinical Practice, 3rd edn. Boston: Butterworth-Heinemann, pp. 1666–700.Google Scholar
Moorthy, N. S., Sousa, S. F., Ramos, M. J., & Fernandes, P. A., 2013. Farnesyltransferase inhibitors: A comprehensive review based on quantitative structural analysis. Curr Med Chem 20, 4888–923.Google Scholar
Naganuma, Y., Konishi, T., Hongou, K., et al., 1990. A case of progeria syndrome with cerebral infarction. Brain Dev 22, 71–6.Google Scholar
Narazaki, R., Makimura, M., Sanefuji, M., et al., 2013. Bilateral stenosis of carotid siphon in Hutchinson–Gilford progeria syndrome. Brain Dev 35, 690–3.Google Scholar
Navarro, C. L., Cau, P., & Levy, N., 2006. Molecular bases of progeroid syndromes. Hum Mol Genet 15, R151–R61.Google Scholar
Novelli, G., Muchir, A., Sangiuolo, F., et al., 2002. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet 71, 426–31.Google Scholar
Ogihara, T., Hata, T., Tanaka, K., et al., 1986. Hutchinson–Gilford progeria syndrome in a 45-year-old man. Am J Med 81, 135–8.Google Scholar
Pallotta, R. & Morgese, G., 1984. Mandibuloacral dysplasia: A rare progerioid syndrome. Two brothers confirm autosomal recessive inheritance. Clin Genet 26, 133–8.Google Scholar
Perloff, J. K. & Phelps, E. T., 1958. A review of Werner’s syndrome with a report of the second autopsied case. Ann Int Med 48, 1205–20.Google Scholar
Plasilova, M., Chattopadhyay, C., Pal, P., et al., 2004. Homozygous missense mutation in the lamin A/C gene causes autosomal recessive Hutchinson–Gilford progeria syndrome. J Med Genet 41, 609–14.Google Scholar
Reunert, J., Wentzell, R., Walter, M., Jakubiczka, S., 2012. Neonatal progeria: Increased ratio of progerin to lamin A leads to progeria of the newborn. Eur J Hum Genet 20, 933–7.Google Scholar
Rork, J. F., Huang, J. T., Gordon, L. B., et al., 2014. Initial cutaneous manifestations of Hutchinson–Gilford progeria syndrome. Pediatr Dermatol 31, 196202.Google Scholar
Rosman, N. P., Anselm, I., & Bhadelia, R. A., 2001. Progressive intracranial vascular disease with strokes and seizures in a boy with progeria. J Child Neurol 16, 212–15.Google Scholar
Sarkar, P. K. & Shinton, R. A., 2001. Hutchinson–Gilford progeria syndrome. Postgrad Med J 77, 312–17.Google Scholar
Silvera, V. M., Gordon, L. B., Orbach, D. B., et al., 2013. Imaging characteristics of cerebrovascular arteriopathy and stroke in Hutchinson–Gilford progeria syndrome. Am J Neuroradiol 34, 1091–7.Google Scholar
Smith, A. S., Wiznitzer, M., Karaman, B. A., Horwitz, S. J., & Lanzieri, C. F., 1993. MRA detection of vascular occlusion in a child with progeria. Am J Neuroradiol 14, 441–3.Google Scholar
Sowmiya, R., Prabhavathy, D., & Jayakumar, S., 2011. Progeria in siblings: A rare case report. Indian J Dermatol 56, 581–2.Google Scholar
Tokunaga, M., Mori, S., Sato, K., Nakamura, K., & Wakamatsu, E., 1976. Postmortem study of a case of Werner’s syndrome. J Am Geriatr Soc 24, 407–11.Google Scholar
Ullrich, N. J. & Gordon, L. B., 2015. Hutchinson–Gilford progeria syndrome. Handb Clin Neurol 132, 249–64.Google Scholar
Ullrich, N. J., Kieran, M. W., Miller, D. T., et al., 2013. Neurologic features of Hutchinson–Gilford progeria syndrome after lonafarnib treatment. Neurology 81, 427–30.Google Scholar
Wagle, W. A., Haller, J. S., & Cousins, J. P., 1992. Cerebral infarction in progeria. Pediatr Neurol 8, 476–7.Google Scholar
Werner, C. W. 1904. Uber Kataraki in Verbindung mit Sklerodermis. Kiel: Schmidt and Klaunig.Google Scholar
Wuyts, W., Biervliet, M., Reyniers, E., et al., 2005. Somatic and gonadal mosaicism in Hutchinson–Gilford progeria. Am J Med Genet A 135, 66–8.Google Scholar
Yang, S. H., Meta, M., Qiao, X., et al., 2006. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson–Gilford progeria syndrome mutation. J Clin Invest 116, 2115–21.Google Scholar
Young, S. G., Jung, H. J., Lee, J. M., & Fong, L. G., 2014. Nuclear lamins and neurobiology. Mol Cell Biol 34, 2776–85.Google Scholar
Zina, A. M., Cravaior, A., & Bundino, S., 1981. Familial mandibuloacral dysplasia. Br J Dermatol 105, 719–23.Google Scholar

References

Al-Hassnan, Z. N., Rashed, M. S., Al-Dirbashi, O. Y., et al. 2008. Hyperornithinemia–hyperammonemia–homocitrullinuria syndrome with stroke-like imaging presentation: Clinical, biochemical and molecular analysis, J Neurol Sci, 264: 187–94.Google Scholar
Bersano, A., Markus, H. S., Quaglini, S., et al. 2016. Clinical pregenetic screening for stroke monogenic diseases: Results from Lombardia GENS Registry, Stroke, 47: 1702–9.Google Scholar
Betts, J., Jaros, E., Perry, R. H., et al. 2006. Molecular neuropathology of MELAS: Level of heteroplasmy in individual neurones and evidence of extensive vascular involvement, Neuropathol Appl Neurobiol, 32: 359–73.Google Scholar
Calfee, C. S. and Matthay, M. A.. 2010. Clinical immunology: Culprits with evolutionary ties, Nature, 464: 41–2.Google Scholar
Chan, D. C. 2006. Mitochondria: Dynamic organelles in disease, aging, and development, Cell, 125: 1241–52.Google Scholar
Chomyn, A., Enriquez, J. A., Micol, V., Fernandez-Silva, P., and Attardi, G.. 2000. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome-associated human mitochondrial tRNALeu(UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes, J Biol Chem, 275: 19198–209.Google Scholar
Deschauer, M., Tennant, S., Rokicka, A., et al. 2007. MELAS associated with mutations in the POLG1 gene, Neurology, 68: 1741–2.Google Scholar
Desquiret-Dumas, V., Gueguen, N., Barth, M. et al. 2012. Metabolically induced heteroplasmy shifting and L-arginine treatment reduce the energetic defect in a neuronal-like model of MELAS, Biochim Biophys Acta, 1822: 1019–29.Google Scholar
DiMauro, S. and Hirano, M.. 1993. MELAS. In Pagon, R. A., Adam, M. P., Ardinger, H. H., et al. (eds.), GeneReviews(R), Seattle, WA: University of Washington.Google Scholar
DiMauro, S., Schon, E. A., Carelli, V., and Hirano, M.. 2013. The clinical maze of mitochondrial neurology, Nat Rev Neurol, 9: 429–44.Google Scholar
El-Hattab, A. W., Hsu, J. W., Emrick, L. T., et al. 2012. Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation, Mol Genet Metab, 105: 607–14.Google Scholar
El-Hattab, A. W., Adesina, A. M., Jones, J., and Scaglia, F.. 2015. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options, Mol Genet Metab, 116: 412.Google Scholar
Finsterer, J. 2009. Management of mitochondrial stroke-like-episodes, Eur J Neurol, 16: 1178–84.Google Scholar
Frederiksen, A. L., Andersen, P. H., Kyvik, K. O., et al. 2006. Tissue specific distribution of the 3243A>G mtDNA mutation, J Med Genet, 43: 671–7.Google Scholar
Giles, R. E., Blanc, H., Cann, H. M., and Wallace, D. C.. 1980. Maternal inheritance of human mitochondrial DNA, Proc Natl Acad Sci U S A, 77: 6715–9.Google Scholar
Gorman, G. S., Schaefer, A. M., Ng, Y., et al. 2015. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease, Ann Neurol, 77: 753–9.Google Scholar
Goto, Y., Nonaka, I., and Horai, S.. 1990. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies, Nature, 348: 651–3.Google Scholar
Goto, Y., Horai, S., Matsuoka, T., et al. 1992. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): A correlative study of the clinical features and mitochondrial DNA mutation, Neurology, 42: 545–50.Google Scholar
Hamalainen, R. H., Manninen, T., Koivumaki, H., et al. 2013. Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model, Proc Natl Acad Sci USA, 110: E362230.Google Scholar
Hasegawa, H., Matsuoka, T., Goto, Y., and Nonaka, I.. 1991. Strongly succinate dehydrogenase-reactive blood vessels in muscles from patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes, Ann Neurol, 29: 601–5.Google Scholar
Hess, J. F., Parisi, M. A., Bennett, J. L., and Clayton, D. A.. 1991. Impairment of mitochondrial transcription termination by a point mutation associated with the MELAS subgroup of mitochondrial encephalomyopathies, Nature, 351: 236–9.Google Scholar
Hirano, M. and Pavlakis, S. G.. 1994. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS): Current concepts, J Child Neurol, 9: 413.Google Scholar
Hirano, M., Ricci, E., Koenigsberger, M. R., et al. 1992. MELAS: An original case and clinical criteria for diagnosis, Neuromuscul Disord, 2: 125–35.Google Scholar
Kaufmann, P., Koga, Y., Shanske, S., et al. 1996. Mitochondrial DNA and RNA processing in MELAS, Ann Neurol, 40: 172–80.Google Scholar
King, M. P., Koga, Y., Davidson, M., and Schon, E. A.. 1992. Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNA(Leu(UUR) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes, Mol Cell Biol, 12: 480–90.Google Scholar
Kobayashi, Y., Momoi, M. Y., Tominaga, K., et al. 1990. A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), Biochem Biophys Res Commun, 173: 816–22.Google Scholar
Koga, Y., Akita, Y., Nishioka, J., et al. 2007. MELAS and L-arginine therapy, Mitochondrion, 7: 133–9.Google Scholar
Koga, Y., Akita, Y., Nishioka, J., et al. 2005. L-arginine improves the symptoms of strokelike episodes in MELAS, Neurology, 64: 710–2.Google Scholar
Koga, Y., Povalko, N., Nishioka, J., et al. 2010. MELAS and L-arginine therapy: Pathophysiology of stroke-like episodes, Ann NY Acad Sci, 1201: 104–10.Google Scholar
Koga, Y., Povalko, N., Nishioka, J., et al. 2012. Molecular pathology of MELAS and L-arginine effects, Biochim Biophys Acta, 1820: 608–14.Google Scholar
Majamaa, K., Moilanen, J. S., Uimonen, S., et al. 1998. Epidemiology of A3243 G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: Prevalence of the mutation in an adult population, Am J Hum Genet, 63: 447–54.Google Scholar
Mancuso, M., Nesti, C., Ienco, E. C., et al. 2014. Novel MTCYB mutation in a young patient with recurrent stroke-like episodes and status epilepticus, Am J Med Genet A, 164: 2922–5.Google Scholar
Nesbitt, V., Pitceathly, R. D., Turnbull, D. M., et al. 2013. The UK MRC Mitochondrial Disease Patient Cohort Study: Clinical phenotypes associated with the m.3243A>G mutation – implications for diagnosis and management, J Neurol Neurosurg Psychiatry, 84: 936–8.Google Scholar
Pavlakis, S. G., Phillips, P. C., DiMauro, S., De Vivo, D. C., and Rowland, L. P.. 1984. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: A distinctive clinical syndrome, Ann Neurol, 16: 481–8.Google Scholar
Rossignol, R., Faustin, B., Rocher, C., et al. 2003. Mitochondrial threshold effects, Biochem J, 370: 751–62.Google Scholar
Saneto, R. P. and Sedensky, M. M.. 2013. Mitochondrial disease in childhood: mtDNA encoded, Neurotherapeutics, 10: 199211.Google Scholar
Saneto, R. P., Friedman, S. D., and Shaw, D. W.. 2008. Neuroimaging of mitochondrial disease, Mitochondrion, 8: 396413.Google Scholar
Schaefer, A. M., McFarland, R., Blakely, E. L., et al. 2008. Prevalence of mitochondrial DNA disease in adults, Ann Neurol, 63: 35–9.Google Scholar
Sproule, D. M. and Kaufmann, P.. 2008. Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: Basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome, Ann NY Acad Sci, 1142: 133–58.Google Scholar
Tatlisumak, T., Putaala, J., Innila, M., et al. 2016. Frequency of MELAS main mutation in a phenotype-targeted young ischemic stroke patient population, J Neurol, 263: 257–62.Google Scholar
Tay, S. H., Nordli, D. R. Jr., Bonilla, E., et al. 2006. Aortic rupture in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes, Arch Neurol, 63: 281–3.Google Scholar
Tzoulis, C. and Bindoff, L. A.. 2009. Serial diffusion imaging in a case of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes, Stroke, 40: e157.Google Scholar
Uusimaa, J., Moilanen, J. S., Vainionpaa, L., et al. 2007. Prevalence, segregation, and phenotype of the mitochondrial DNA 3243A>G mutation in children, Ann Neurol, 62: 278–87.Google Scholar
Yasukawa, T., Suzuki, T., Ueda, T., Ohta, S., and Watanabe, K.. 2000. Modification defect at anticodon wobble nucleotide of mitochondrial tRNA(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes, J Biol Chem, 275: 4251–7.Google Scholar
Yatsuga, S., Povalko, N., Nishioka, J., et al. 2012. MELAS: A nationwide prospective cohort study of 96 patients in Japan, Biochim Biophys Acta, 1820: 619–24.Google Scholar

References

Aicardi, J. & Arzimanoglou, A., 1991. Sturge–Weber syndrome. Int Pediatr 6, 129–34.Google Scholar
Akpinar, E., 2004. The tram-track sign: Cortical calcifications. Radiology 231, 515–16.Google Scholar
Alexander, G. L. & Norman, R. M. 1960. Sturge–Weber Syndrome. Bristol: John Wright & Sons Ltd.Google Scholar
Anderson, F. H. & Duncan, G. W., 1974. Sturge–Weber disease with subarachnoid hemorrhage. Stroke 5, 509–11.Google Scholar
Bay, M. J., Kossoff, E. H., Lehmann, C. U., Zabel, T. A., & Comi, A. M., 2011. Survey of aspirin use in Sturge–Weber syndrome. J Child Neurol 26, 692702.Google Scholar
Bebin, E. M. & Gomez, M. R., 1988. Prognosis in Sturge–Weber disease: Comparison of unihemispheric and bihemispheric involvement. J Child Neurol 3, 181–4.Google Scholar
Benedikt, R. A., Brown, D. C., Walker, R., et al. 1993. Sturge–Weber syndrome: Cranial MR imaging with Gd-DTPA. Am J Neuroradiol 14, 409–15.Google Scholar
Bentson, J. R., Wilson, G. H., & Newton, T. H., 1971. Cerebral venous drainage pattern of the Sturge–Weber syndrome. Radiology 101, 111–18.Google Scholar
Boltshauser, E., Wilson, J., & Hoare, R. D., 1976. Sturge–Weber syndrome with bilateral intracranial calcification. J Neurol Neurosurg Psychiatry 39, 429–35.Google Scholar
Bourgeois, M., Crimmins, D. W., de Oliveira, R. S., et al. 2007. Surgical treatment of epilepsy in Sturge–Weber syndrome in children. J Neurosurg 106 (1 Suppl), 20–8.Google Scholar
Bye, A. M., Matheson, J. M., & Mackenzie, R. A., 1989. Epilepsy surgery in Sturge–Weber syndrome. Aust New Zealand J Ophthalmol 25, 103–5.Google Scholar
Cambon, H., Truelle, J. L., Baron, J. C., et al., 1987. Focal chronic ischemia and concomitant migraine: An atypical form of Sturge–Weber angiomatosis? Rev Neurol (Paris) 143, 588–94.Google Scholar
Chamberlain, M. C., Press, G. A., & Hesselink, J. R., 1989. MR imaging and CT in three cases of Sturge–Weber syndrome: Prospective comparison. Am J Roentgenol 10, 491–6.Google Scholar
Chen, T. C. & Young, L. H., 2005. Sturge–Weber syndrome (choroidal hemangioma and glaucoma). J Pediatr Ophthalmol Strabismus 42, 320.Google Scholar
Cheng, K. P. 1999. Ophthalmologic manifestations of Sturge–Weber syndrome. In Bodensteiner, J. B. & Roach, E. S., eds. Sturge–Weber Syndrome. Mt Freedom, NJ: Sturge-Weber Foundation, pp. 1726.Google Scholar
Chevrie, J. J., Specola, N., & Aicardi, J., 1988. Secondary bilateral synchrony in unilateral pial angiomatosis: Successful surgical management. J Neurol Neurosurg Psychiatry 15, 95–8.Google Scholar
Chiron, C., Raynaud, C., Tzourio, N., et al., 1989. Regional cerebral blood flow by SPECT imaging in Sturge–Weber disease: An aid for diagnosis. J Neurol Neurosurg Psychiatry 52, 1402–9.Google Scholar
Chugani, H. T., Mazziotta, J. C., & Phelps, M. E., 1989. Sturge–Weber syndrome: A study of cerebral glucose utilization with positron emission tomography. J Pediatr 114, 244–53.Google Scholar
Cibis, G. W., Tripathi, R. C., & Tripathi, B. J., 1984. Glaucoma in Sturge–Weber syndrome. Ophthalmology 91, 1061–71.Google Scholar
Comati, A., Beck, H., Halliday, W., et al., 2007. Upregulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha in leptomeningeal vascular malformations of Sturge–Weber syndrome. J Neuropathol Exp Neurol 66, 8697.Google Scholar
Comi, A., 2015. Current therapeutic options in Sturge–Weber syndrome. Semin Pediatr Neurol 22, 295301.Google Scholar
Couto, J. A., Huang, L., Vivero, M. P., et al., 2016. Endothelial cells from capillary malformations are enriched for somatic GNAQ mutations. Plast Reconstr Surg 137, 77e82e.Google Scholar
Crosley, C. J. & Binet, E. F., 1978. Sturge–Weber syndrome: Presentation as a focal seizure disorder without nevus flammeus. Clin Pediatr 17, 606–9.Google Scholar
Cushing, H., 1906. Cases of spontaneous intracranial hemorrhage associated with trigeminal nevi. JAMA 47, 178–83.Google Scholar
Di Trapani, G., Di Rocco, C., Abbamondi, A. L., Caldarelli, M., & Pocchiari, M., 1982. Light microscopy and ultrastructural studies of Sturge–Weber disease. Brain 9, 2336.Google Scholar
Duncan, D. B., Herholz, K., Pietrzyk, U., & Heiss, W. D., 1995. Regional cerebral blood flow and metabolism in Sturge–Weber disease. Clin Nucl Med 20, 522523.Google Scholar
Dutkiewicz, A. S., Ezzedine, K., Mazereeuw-Hautier, J., et al., 2015. A prospective study of risk for Sturge–Weber syndrome in children with upper facial port-wine stain. J Am Acad Dermatol 72, 473–80.Google Scholar
Enjolras, O., Riche, M. C., & Merland, J. J., 1985. Facial port-wine stains and Sturge–Weber syndrome. Pediatrics 76, 4851.Google Scholar
Farrell, M. A., DeRosa, M. J., Curran, J. G., et al., 1992. Neuropathologic findings in cortical resections (including hemispherectomies) performed for the treatment of intractable childhood epilepsy. Acta Neuropathol 83, 246–59.Google Scholar
Garcia, J. C., Roach, E. S., & McLean, W. T., 1981. Recurrent thrombotic deterioration in the Sturge–Weber syndrome. Childs Brain 8, 427–33.Google Scholar
Griffiths, P. D., Boodram, M. B., Blaser, S., et al., 1997. 99mTechnetium HMPAO imaging in children with the Sturge–Weber syndrome: A study of nine cases with CT and MRI correlation. Neuroradiology 39, 219–24.Google Scholar
Hussain, R. N., Jmor, F., Damato, B., & Heimann, H., 2016. Verteporfin photodynamic therapy for the treatment of choroidal haemangioma associated with Sturge–Weber syndrome. Photodiagnosis Photodyn Ther 15, 143–6.Google Scholar
Jacoby, C. G., Yuh, W. T., Afifi, A. K., et al., 1987. Accelerated myelination in early Sturge–Weber syndrome demonstrated by MR imaging. J Comput Assist Tomogr 11, 226–31.Google Scholar
Jansen, F. E., van der Worp, H. B., van Huffelen, A. C., & van Nieuwenhuizen, O., 2004. Sturge–Weber syndrome and paroxysmal hemiparesis: Epilepsy or ischaemia? Dev Med Child Neurol 46, 783–6.Google Scholar
Juhasz, C. & Chugani, H. T., 2007. An almost missed leptomeningeal angioma in Sturge–Weber syndrome. Neurology 68, 243.Google Scholar
Kavanaugh, B., Sreenivasan, A., Bachur, C., et al., 2015. Intellectual and adaptive functioning in Sturge–Weber Syndrome. Child Neuropsychol, May 8, 114.Google Scholar
Kossoff, E. H., Buck, C., & Freeman, J. M., 2002. Outcomes of 32 hemispherectomies for Sturge–Weber syndrome worldwide. Neurology 59, 1735–8.Google Scholar
Kossoff, E. H., Hatfield, L. A., Ball, K. L., & Comi, A. M., 2005. Comorbidity of epilepsy and headache in patients with Sturge–Weber syndrome. J Child Neurol 20, 678–82.Google Scholar
Kossoff, E. H., Ferenc, L., & Comi, A. M., 2009. An infantile-onset, severe, yet sporadic seizure pattern is common in Sturge–Weber syndrome. Epilepsia 50, 2154–7.Google Scholar
Lance, E. I., Sreenivasan, A. K., Zabel, T. A., Kossoff, E. H., & Comi, A. M., 2013. Aspirin use in Sturge–Weber syndrome: Side effects and clinical outcomes. J Child Neurol 28, 213–18.Google Scholar
Lin, D. D., Barker, P. B., Hatfield, L. A., & Comi, A. M., 2006. Dynamic MR perfusion and proton MR spectroscopic imaging in Sturge–Weber syndrome: Correlation with neurological symptoms. J Magn Reson Imaging 24, 274–81.Google Scholar
Maria, B. L., Neufeld, J. A., Rosainz, L. C., et al., 1998a. High prevalence of bihemispheric structural and functional defects in Sturge–Weber syndrome. J Child Neurol 13, 595605.Google Scholar
Maria, B. L., Neufeld, J. A., Rosainz, L. C., et al., 1998b. Central nervous system structure and function in Sturge–Weber syndrome: Evidence of neurologic and radiographic progression. J Child Neurol 13, 606–18.Google Scholar
Maria, B. L., Hoang, K. N., Robertson, R. L., et al., 1999. Imaging brain structure and function in Sturge–Weber syndrome. In Bodensteiner, J. B. & Roach, E. S., eds. Sturge–Weber Syndrome. Mt Freedom, NJ: Sturge–Weber Foundation, pp. 4369.Google Scholar
Marques, L., Nunez-Cordoba, J. M., Aguado, L., et al., 2015. Topical rapamycin combined with pulsed dye laser in the treatment of capillary vascular malformations in Sturge-Weber syndrome: Phase II, randomized, double-blind, intraindividual placebo-controlled clinical trial. J Am Acad Dermatol 72, 151–8.Google Scholar
McCaughan, R. A., Ouvrier, R. A., De Silva, K., & McLaughlin, A., 1975. The value of the brain scan and cerebral arteriogram in the Sturge–Weber syndrome. Proc Aust Assoc Neurol 12, 185–90.Google Scholar
Miyama, S. & Goto, T., 2004. Leptomeningeal angiomatosis with infantile spasms. Pediatr Neurol 31, pp. 353–6.Google Scholar
Muller, R. A., Chugani, H. T., Muzik, O., Rothermel, R. D., & Chakraborty, P. K., 1997. Language and motor functions activate calcified hemisphere in patients with Sturge–Weber syndrome: A positron emission tomography study. J Child Neurol 12, 431–7.Google Scholar
Namer, I. J., Battaglia, F., Hirsch, E., Constantinesco, A., & Marescaux, C., 2005. Subtraction ictal SPECT co-registered to MRI (SISCOM) in Sturge–Weber syndrome. Clin Nucl Med 30, 3940.Google Scholar
Nguyen, C. M., Yohn, J. J., Huff, C., Weston, W. L., & Morelli, J. G., 1998. Facial port wine stains in childhood: Prediction of the rate of improvement as a function of the age of the patient, size and location of the port wine stain and the number of treatments with the pulsed dye (585 nm) laser. Br J Dermatol 138, 821–5.Google Scholar
Norman, M. G. & Schoene, W. C., 1977. The ultrastructure of Sturge–Weber disease. Acta Neuropathol 37, 199205.Google Scholar
Oakes, W. J., 1992. The natural history of patients with the Sturge–Weber syndrome. Pediatr Neurosurg 18, 287–90.Google Scholar
Ogunmekan, A. O., Hwang, P. A., & Hoffman, H. J., 1989. Sturge–Weber–Dimitri disease: Role of hemispherectomy in prognosis. Can J Neurol Sc 16, 7880.Google Scholar
Pinto, A. L., Chen, L., Friedman, R., et al., 2016. Sturge–Weber syndrome: Brain magnetic resonance imaging and neuropathology findings. Pediatr Neurol 58, 2530.Google Scholar
Poser, C. M. & Taveras, J. M., 1957. Cerebral angiography in encephalo-trigeminal angiomatosis. Radiology 68, 327–36.Google Scholar
Probst, F. P., 1980. Vascular morphology and angiographic flow patterns in Sturge–Weber angiomatosis. Neuroradiology 20, 73–8.Google Scholar
Rappaport, Z. H., 1988. Corpus callosum section in the treatment of intractable seizures in the Sturge–Weber syndrome. Childs Nerv Syst 4, 231–2.Google Scholar
Roach, E. S. & Bodensteiner, J. B. 1999. Neurologic manifestations of Sturge–Weber syndrome. In Bodensteiner, J. B. & Roach, E. S., eds. Sturge–Weber Syndrome. Mt Freedom, NJ: Sturge-Weber Foundation, pp. 2738.Google Scholar
Roach, E. S. & Riela, A. R. 1995. Pediatric Cerebrovascular Disorders, 2nd edn. New York, NY: Futura Publishing Company.Google Scholar
Roach, E. S., Riela, A. R., Chugani, H. T., et al., 1994. Sturge–Weber syndrome: Recommendations for surgery. J Child Neurol 9, 190–3.Google Scholar
Sen, Y., Dilber, E., Odemis, E., Ahmetoglu, A., & Aynaci, F. M., 2002. Sturge–Weber syndrome in a 14-year-old girl without facial naevus. Eur J Pediatr 161, 505–6.Google Scholar
Shirley, M. D., Tang, H., Gallione, C. J., et al., 2013. Sturge–Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 368, 1971–9.Google Scholar
Slasky, S. E., Shinnar, S., & Bello, J. A., 2006. Sturge–Weber syndrome: Deep venous occlusion and the radiologic spectrum. Pediatr Neurol 35, 343–7.Google Scholar
Stevenson, R. F., Thomson, H. G., & Morin, L. D., 1974. Unrecognized ocular problems associated with port-wine stain of the face in children. Can Med Assoc J 111, 953–4.Google Scholar
Sujansky, E. & Conradi, S., 1995a. Outcome of Sturge–Weber syndrome in 52 adults. Am J Med Genet 57, 3545.Google Scholar
Sujansky, E. & Conradi, S., 1995b. Sturge–Weber syndrome: Age of onset of seizures and glaucoma and the prognosis for affected children. J Child Neurol 10, 4958.Google Scholar
Sullivan, T. J., Clarke, M. P., & Morin, J. D., 1992. The ocular manifestations of the Sturge–Weber syndrome. J Pediatr Ophthal Strabismus 29, 349–56.Google Scholar
Tallman, B., Tan, O. T., Morelli, J. G., et al., 1991. Location of port-wine stains and the likelihood of ophthalmic and/or central nervous system complications. Pediatrics 87, 323–7.Google Scholar
Tuxhorn, I. E. & Pannek, H. W., 2002. Epilepsy surgery in bilateral Sturge–Weber syndrome. Pediatr Neurol 26, 394–7.Google Scholar
Uram, M. & Zubillaga, C., 1982. The cutaneous manifestations of Sturge–Weber syndrome. J Clin Neuro Ophthalmol 2, 245–8.Google Scholar
Ville, D., Enjolras, O., Chiron, C., & Dulac, O., 2002. Prophylactic antiepileptic treatment in Sturge–Weber disease. Seizure 11, 145–50.Google Scholar
Wohlwill, F. J. & Yakovlev, P. I., 1957. Histopathology of meningo-facial angiomatosis (Sturge–Weber’s disease). J Neuropathol Exp Neurol 16, 341–64.Google Scholar
Yeakley, J. W., Woodside, M., & Fenstermacher, M. J., 1992. Bilateral neonatal Sturge–Weber–Dimitri disease: CT and MR findings. Am J Neuroradiol 13, 1179–82.Google Scholar
Yu, F. X., Luo, J., Mo, J. S., et al., 2014. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25, 822–30.Google Scholar

References

Adegbite, A. B., Rozdilsky, B., and Varughese, G. 1983. Supratentorial capillary hemangioblastoma presenting with fatal spontaneous intracerebral hemorrhage. Neurosurgery, 12, 327–30.Google Scholar
Ammerman, J. A., Lonser, L. L., Dambrosia, J., Butman, J. A., and Oldfield, E. H. 2006. Long-term natural history of hemangioblastomas in patients with von Hippel–Lindau disease: Implications for treatment. J Neurosurg, 105, 248–55.Google Scholar
Ang, S. O., Chen, H., Hirota, K., et al. 2002. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet, 32, 614–21.Google Scholar
Ashok, R., Gautam, A., Leor, U. M., et al. 2010. Prospective evaluation of radiosurgery for hemangioblastomas in von Hippel–Lindau disease. Neuro-Oncology, 12, 80–6.Google Scholar
Asthagiri, A. R., Mehta, G. U., Zach, L., et al. 2010. Prospective evaluation of radiosurgery for hemangioblastomas in von Hippel–Lindau disease. Neuro Oncol, 12, 80–6.Google Scholar
Bamps, S., Van Calenbergh, F., De Vleeschouwer, S., et al. 2013. What the neurosurgeon should know about hemangioblastoma, both sporadic and in von Hippel–Lindau disease: A review. Surg Neurol Int, 4, 145.Google Scholar
Berlis, A., Schumacher, M., Spreer, J., Neumann, H. P., and van Velthoven, V. 2003. Subarachnoid haemorrhage due to cervical spinal cord haemangioblastomas in a patient with von Hippel–Lindau disease. Acta Neurochir (Wien), 145, 1009–13; discussion 1013.Google Scholar
Cerejo, A., Vaz, R., Feyo, P. B., and Cruz, C. 1990. Spinal cord hemangioblastoma with subarachnoid hemorrhage. Neurosurgery, 27, 991–3.Google Scholar
Cervoni, L., Franco, C., Celli, P., and Fortuna, A. 1995. Spinal tumors and subarachnoid hemorrhage: pathogenetic and diagnostic aspects in 5 cases. Neurosurg Rev, 18, 159–62.Google Scholar
Couch, V., Lindor, N. M., Karnes, P. S., and Michels, V.V. 2000. Von Hippel–Lindau disease. Mayo Clin Proc, 75, 265–72.Google Scholar
Di Chiro, G., Rieth, K. G., Oldfield, E. H., et al. 1982. Digital subtraction angiography and dynamic computed tomography in the evaluation of arteriovenous malformations and hemangioblastomas of the spinal cord. J Comput Assist Tomogr, 6, 655–70.Google Scholar
Dijindjian, M., Djindjian, R., Houdart, R., and Hurth, M. 1978. Subarachnoid hemorrhage due to intraspinal tumors. Surg Neurol, 9, 223–9.Google Scholar
Ene, C., Morton, R. P., Ferreira, M., Sekhar, L. N., Kim, L. J. 2015. Spontaneous hemorrhage from central nervous system hemangioblastomas. World Neurosurg, 83, 1180, e137.Google Scholar
Eskridge, J. M., McAuliffe, W., Harris, B., et al. 1996. Preoperative endovascular embolization of craniospinal hemangioblastomas. Am J Neuroradiol, 17, 525–31.Google Scholar
Filling-Katz, M. R., Choyke, P. L., Oldfield, E., et al. 1991. Central nervous system involvement in von Hippel–Lindau disease. Neurology, 41, 41–6.Google Scholar
Glasker, S. and van Velthoven, V. 2005. Risk of hemorrhage in hemangioblastomas of the central nervous system. Neurosurgery, 57, 71–6.Google Scholar
Heiserman, J. E., Dean, B. L., Hodak, J. A., et al. 1994. Neurologic complications of cerebral angiography. Am J Neuroradiol, 15, 1401–7.Google Scholar
Hes, F. J., McKee, S., Taphoorn, M. J., et al. 2000. Cryptic von Hippel–Lindau disease: Germline mutations in patients with haemangioblastoma only. J Med Genet, 37, 939–43.Google Scholar
Humphrey, J. S., Klausner, R. D., and Linehan, W. M. 1996. Von Hippel–Lindau syndrome: Hereditary cancer arising from inherited mutations of the VHL tumor suppressor gene. Cancer Treat Res, 88, 1339.Google Scholar
Huntoon, K., Wu, T., Elder, J. B., et al. 2015. Biological and clinical impact of hemangioblastoma-associated peritumoral cysts in von Hippel–Lindau disease. J Neurosurg, 30, 16.Google Scholar
Irie, K., Kuyama, H., and Nagao, S. 1998. Spinal cord hemangioblastoma presenting with subarachnoid hemorrhage. Neurol Med Chir (Tokyo), 38, 355–8.Google Scholar
Kaelin, W. G. Jr. 2002. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer, 2, 673–82.Google Scholar
Kaelin, W. G. Jr., Iliopoulos, O., Lonergan, K. M., and Ohh, M. 1998. Functions of the von Hippel–Lindau tumour suppressor protein. J Intern Med, 243, 535–9.Google Scholar
Kano, H., Shuto, T., Iwai, Y., et al. 2015. Stereotactic radiosurgery for intracranial hemangioblastomas: A retrospective international outcome study. J Neurosurg, 122, 1469–78.Google Scholar
Kikuchi, K., Kowada, M., Sasaki, J., and Yanagida, N. 1994. Cerebellar hemangioblastoma associated with fatal intratumoral hemorrhage: Report of an autopsied case. No Shinkei Geka, 22, 593–7.Google Scholar
Kitaoka, K., Ito, T., Tashiro, K., et al. 1981. Vertebral angiography of cerebellar hemangioblastoma: Tumor stain, tumor circulation, CT and angiography in diagnosis (author’s transl). No Shinkei Geka, 9, 3749.Google Scholar
Klingler, J. H., Kruger, M. T., Lernke, J. R., et al. 2013. Sequence variations in the von Hippel–Lindau tumor suppressor gene in patients with intracranial aneurysms. J Stroke Cerebrovasc Dis, 22, 437443.Google Scholar
Kormos, R. L., Tucker, W. S., Bilbao, J. M., Gladstone, R. M., and Bass, A. G. 1980. Subarachnoid hemorrhage due to a spinal cord hemangioblastoma: Case report. Neurosurgery, 6, 657–60.Google Scholar
Kurban, G., Hudon, V., Duplan, E., Ohh, M., and Pause, A. 2006. Characterization of a von Hippel Lindau pathway involved in extracellular matrix remodeling, cell invasion, and angiogenesis. Cancer Research, 66, 1313–9.Google Scholar
Lamiell, J. M., Salazar, F. G., and Hsia, Y. E. 1989. Von Hippel–Lindau disease affecting 43 members of a single kindred. Medicine (Baltimore), 68, 129.Google Scholar
Latif, F., Tory, K., Gnarra, J., et al. 1993. Identification of the von Hippel–Lindau disease tumor suppressor gene. Science, 260, 1317–20.Google Scholar
Levine, E., Collins, D. L., and Horton, W. A. 1982. CT scanning of the abdomen in von-Hippel Lindau disease. Am J Radiol, 139, 505–10.Google Scholar
Linehan, W. M., Lerman, M., and Zbar, B. 1995. Identification of the von Hippel–Lindau (VHL) gene: Its role in renal cancer. JAMA, 273, 564–70.Google Scholar
Lonser, R. R., Butman, J. A., Huntoon, K., et al. 2014. Prospective natural history study of central nervous system hemangioblastomas in von Hippel–Lindau disease. J Neurosurg, 120, 1055–62.Google Scholar
Maddock, I. R., Moran, A., Maher, E. R., et al. 1996. A genetic register for von Hippel–Lindau disease. J Med Genet, 33, 120–7.Google Scholar
Maher, E. R., Yates, J. R., Harries, R., et al. 1990. Clinical features and natural history of von Hippel–Lindau disease. QJ Med, 77, 1151–63.Google Scholar
Maher, E. R., Neumann, H. P. H., and Richard, S. 2011. von Hippel–Lindau disease: A clinical and scientific review. Eur J Hum Genet, 19, 617–23.Google Scholar
Minami, M., Hanakita, J., Suwa, H., et al. 1998. Cervical hemangioblastoma with a past history of subarachnoid hemorrhage. Surg Neurol, 49, 278–81.Google Scholar
Miyagami, M. and Katayama, Y. 2004. Long term prognosis of hemangioblastoma of the central nervous system: Clinical and immunohistochemical study in relation to recurrence. Brain Tumor Pathol, 21, 7582.Google Scholar
Neumann, H. P., Eggert, H. R., Weigel, K., et al. 1989. Hemangioblastomas of the central nervous system. A 10-year study with special reference to von Hippel–Lindau syndrome. J Neurosurg, 70, 2430.Google Scholar
Ohh, M. and Kaelin, W. G. Jr. 1999. The von Hippel–Lindau tumor suppressor protein: New perspectives. Mol Med Today, 5, 257–63.Google Scholar
Resche, F., Moisan, J. P., Mantoura, J., et al. 1993. Haemangioblastoma, haemangioblastomatosis, and von Hippel–Lindau disease. Adv Tech Stand Neurosurg, 20, 197304.Google Scholar
Richard, S., Beigelman, C., Gerber, S., et al. 1994. Does hemangioblastoma exist outside von Hippel–Lindau disease? Neurochirurgie, 40, 145–54.Google Scholar
Richard, S., Campello, C., Taillandier, L., Parker, F., and Resche, F. 1998. Haemangioblastoma of the central nervous system in von Hippel–Lindau disease. French VHL Study Group. J Intern Med, 243, 547–53.Google Scholar
Richard, S., David, P., Marsot-Dupuch, K., et al. 2000. Central nervous system hemangioblastomas, endolymphatic sac tumors, and von Hippel–Lindau disease. Neurosurg Rev, 23, 122; discussion 23–4.Google Scholar
Sgambati, M. T., Stolle, C., Choyke, P. L., et al. 2000. Mosaicism in von Hippel–Lindau disease: Lessons from kindreds with germline mutations identified in offspring with mosaic parents. Am J Hum Genet, 66, 8491.Google Scholar
Sharma, M. S. and Jha, A. N. 2006. Ruptured intracranial aneurysm associated with von Hippel Lindau syndrome: A molecular link? J Neurosurg (2 Suppl Pediatrics), 104, 90–3.Google Scholar
Shuin, T., Yamasaki, I., Tamura, K., et al. 2006. Von Hippel–Lindau disease: Molecular pathological basis, clinical criteria, genetic testing, clinical features of tumors and treatment. Jpn J Clin Oncol, 36, 337–43.Google Scholar
Smalley, S. R., Schomberg, P. J., Earle, J. D., et al. 1990. Radiotherapeutic considerations in the treatment of hemangioblastomas of the central nervous system. Int J Radiat Oncol Biol Phys, 18, 1165–71.Google Scholar
Sora, S., Ueki, K., Saito, N., et al. 2001. Incidence of von Hippel–Lindau disease in hemangioblastoma patients: The University of Tokyo Hospital experience from 1954–1998. Acta Neurochir (Wien), 143, 893–6.Google Scholar
Stolle, C., Glenn, G., Zbar, B., et al. 1998. Improved detection of germline mutations in the von Hippel–Lindau disease tumor suppressor gene. Hum Mutat, 12, 417–23.Google Scholar
Suzuki, M., Umeoka, K., Kominami, S., and Morita, A. 2014. Successful treatment of a ruptured flow-related aneurysm in a patient with hemangioblastoma: Case report and review of literature. Surg Neurol Int, 26: 5(Suppl. 9): S4303.Google Scholar
Tampieri, D., Leblanc, R., and TerBrugge, K. 1993. Preoperative embolization of brain and spinal hemangioblastomas. Neurosurgery, 33, 502–5.Google Scholar
Vazquez-Anon, V., Botella, C., Beltran, A., Solera, M., and Piquer, J. 1997. Preoperative embolization of solid cervicomedullary junction hemangioblastomas: Report of two cases. Neuroradiology, 39, 86–9.Google Scholar
Vernet, O. and de Tribolet, N. 1999. Posterior fossa hemangioblastoma. In Operative Neurosurgery, 1st edn., eds. Kaye, A. and Black, P. M.. Oxford: WB Saunders, pp. 635–40.Google Scholar
Wakai, S., Inoh, S., Ueda, Y., and Nagai, M. 1984. Hemangioblastoma presenting with intraparenchymatous hemorrhage. J Neurosurg, 61, 956–60.Google Scholar
Wanebo, J. E., Lonser, R. R., Glenn, G. M., and Oldfield, E. H. 2003. The natural history of hemangioblastomas of the CNS in patients with VHL disease. J Neurosurg, 98, 8294.Google Scholar
Weil, R. J., Lonser, R. R., Devroom, H. L, Wanebo, J. E., and Oldfield, E. H. 2003. Surgical management of brainstem hemangioblastomas in patients with von Hippel–Lindau disease. J Neurosurg, 98, 95105.Google Scholar
Willinsky, R. A., Taylor, S. M., TerBrugge, K., et al. 2003. Neurologic complications of cerebral angiography: Prospective analysis of 2899 procedures and review of the literature. Radiology, 227, 522–8.Google Scholar
Wizigmann-Voos, S., Breier, G., Risau, W., and Plate, K. H. 1995. Up-regulation of vascular endothelial growth factor and its receptors in von Hippel–Lindau disease-associated and sporadic hemangioblastomas. Cancer Res, 55, 1358–64.Google Scholar
Yu, J. S., Short, M. P., Schumacher, J., Chapman, P. H., and Harsh, G. R. 1994. Intramedullary hemorrhage in spinal cord hemangioblastoma. Report of two cases. J Neurosurg, 81, 937–40.Google Scholar
Zbar, B., Kishida, T., Chen, F., et al. 1996. Germline mutations in the von Hippel–Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum Mutat, 8, 348–57.Google Scholar
Zhuang, Z., Frerich, J. M., Huntoon, K., et al. 2014. Tumor derived vasculogenesis in von Hippel–Lindau disease-associated tumors. Scientific Reports, 4, 16.Google Scholar
Zimmerman, R. A. and Bilaniuk, L. T. 1980. Computed tomography of acute intratumoral hemorrhage. Radiology, 135, 355–9.Google Scholar

References

Aoki, T, Kataoka, H, Shimamura, M, et al. (2007) NF-κB is a key mediator of cerebral aneurysm formation. Circulation 116:2830–40.Google Scholar
Baldauf, J, Kiwit, J, Synowitz, M (2005) Cerebral aneurysms associated with von Recklinghausen’s neurofibromatosis: report of a case and review of the literature. Neurol India 53:213–15.Google Scholar
Bor, ASE, Rinkel, GJE, Adami, J, et al. (2008) Risk of subarachnoid haemorrhage according to number of affected relatives: A population based case–control study. Brain 131:2662–5.Google Scholar
Bor, ASE, Rinkel, GJE, van Norden, J, Wermer, MJH (2014) Long-term, serial screening for intracranial aneurysms in individuals with a family history of aneurysmal subarachnoid haemorrhage: A cohort study. Lancet Neurol 13:385–92.Google Scholar
Bor, ASE, Tiel Groenestege, AT, terBrugge, KG, et al. (2015) Clinical, radiological, and flow-related risk factors for growth of untreated, unruptured intracranial aneurysms. Stroke 46:42–8.Google Scholar
Broderick, JP, Brown, RD, Sauerbeck, L, et al. (2009) Greater rupture risk for familial as compared to sporadic unruptured intracranial aneurysms. Stroke 40:1952–7.Google Scholar
Bromberg, JE, Rinkel, GJ, Algra, A, et al. (1995a) Subarachnoid haemorrhage in first and second degree relatives of patients with subarachnoid haemorrhage. BMJ 311:288–9.Google Scholar
Bromberg, JE, Rinkel, GJ, Algra, A, et al. (1995b) Familial subarachnoid hemorrhage: Distinctive features and patterns of inheritance. Ann Neurol 38:929–34.Google Scholar
Brown, BM, Soldevilla, F (1999) MR angiography and surgery for unruptured familial intracranial aneurysms in persons with a family history of cerebral aneurysms. AJR Am J Roentgenol 173:133–8.Google Scholar
Brown, RD, Huston, J, Hornung, R (2008) Screening for brain aneurysm in the Familial Intracranial Aneurysm study: Frequency and predictors of lesion detection. Journal of Neurosurgery 108:1132–8.Google Scholar
Brown, RD, Broderick, JP (2014) Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol 13:393404.Google Scholar
Butler, WE, Barker, FG, Crowell, RM (1996) Patients with polycystic kidney disease would benefit from routine magnetic resonance angiographic screening for intracerebral aneurysms: A decision analysis. Neurosurgery 38:506–15.Google Scholar
Chalouhi, N, Ali, MS, Starke, RM, et al. (2012) Cigarette smoke and inflammation: Role in cerebral aneurysm formation and rupture. Mediators Inflamm 2012:271582.Google Scholar
Chambers, WR, Harper, BF, Simpson, JR (1954) Familial incidence of congenital aneurysms of cerebral arteries: Report of cases of ruptured aneurysms in father and son. J Am Med Assoc 155:358–9.Google Scholar
Chyatte, D, Bruno, G, Desai, S, Todor, DR (1999) Inflammation and intracranial aneurysms. Neurosurgery 45:1137–46.Google Scholar
Connolly, ES, Choudhri, TF, Mack, WJ, et al. (2001) Influence of smoking, hypertension, and sex on the phenotypic expression of familial intracranial aneurysms in siblings. Neurosurgery 48:64–8.Google Scholar
Conway, JE, Hutchins, GM, Tamargo, RJ (1999) Marfan syndrome is not associated with intracranial aneurysms. Stroke 30:1632–6.Google Scholar
Conway, JE, Hutchins, GM, Tamargo, RJ (2001) Lack of evidence for an association between neurofibromatosis type I and intracranial aneurysms: Autopsy study and review of the literature. Stroke 32:2481–5.Google Scholar
De Braekeleer, M, Pérusse, L, Cantin, L, Bouchard, JM, Mathieu, J (1996) A study of inbreeding and kinship in intracranial aneurysms in the Saguenay Lac-Saint-Jean region (Quebec, Canada). Ann Hum Genet 60:99104.Google Scholar
Deka, R et al. (2010) The relationship between smoking and replicated sequence variants on chromosomes 8 and 9 with familial intracranial aneurysm. Stroke 41:11321137.Google Scholar
Dolan, JM, Sim, FJ, Meng, H, Kolega, J (2012) Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling. Am J Physiol, Cell Physiol 302:C110918.Google Scholar
Foroud, T, Sauerbeck, L, Brown, R, et al. (2008) Genome screen to detect linkage to intracranial aneurysm susceptibility genes: The Familial Intracranial Aneurysm (FIA) study. Stroke 39:1434–40.Google Scholar
Frank, M, Albuisson, J, Ranque, B, et al. (2015) The type of variants at the COL3A1 gene associates with the phenotype and severity of vascular Ehlers–Danlos syndrome. Eur J Hum Genet 23:1657–64.Google Scholar
Friedman, JM, Arbiser, J, Epstein, JA, et al. (2002) Cardiovascular disease in neurofibromatosis 1: Report of the NF1 Cardiovascular Task Force. Genet Med 4:105–11.Google Scholar
Frösen, J, Piippo, A, Paetau, A, et al. (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: Histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35:2287–93.Google Scholar
Fuentes, RM, Notkola, I-L, Shemeikka, S, Tuomilehto, J, Nissinen, A (2000) Familial aggregation of blood pressure: A population-based family study in eastern Finland. J Hum Hypertens 14:441–5.Google Scholar
Gaist, D, Vaeth, M, Tsiropoulos, I, et al. (2000) Risk of subarachnoid haemorrhage in first degree relatives of patients with subarachnoid haemorrhage: Follow up study based on national registries in Denmark. BMJ 320:141–5.Google Scholar
Germain, DP, Herrera-Guzman, Y (2004) Vascular Ehlers–Danlos syndrome. Annales de Génétique 47:19.Google Scholar
Gerzanich, V, Zhang, F, West, GA, Simard, JM (2001) Chronic nicotine alters NO signaling of Ca(2+) channels in cerebral arterioles. Circ Res 88:359–65.Google Scholar
Goksu, E, Akyuz, M, Tuncer, R (2012) The results of radiological screening in asymptomatic at-risk members of intracranial aneurysm families from the Turkish population. Turk Neurosurg 22:5561.Google Scholar
Grantham, JJ (2008) Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med 359:1477–85.Google Scholar
Henkemeyer, M, Rossi, DJ, Holmyard, DP, et al. (1995) Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377:695701.Google Scholar
Hill, KG, Hawkins, JD, Catalano, RF, Abbott, RD, Guo, J (2005) Family influences on the risk of daily smoking initiation. J Adolesc Health 37:202–10.Google Scholar
Hirbe, AC, Gutmann, DH (2014) Neurofibromatosis type 1: A multidisciplinary approach to care. Lancet Neurol 13:834–43.Google Scholar
Huttunen, T, zu Fraunberg von, M, Koivisto, T, et al. (2011) Long-term excess mortality of 244 familial and 1502 sporadic one-year survivors of aneurysmal subarachnoid hemorrhage compared with a matched eastern Finnish catchment population. Neurosurgery 68:20–7.Google Scholar
Ishibashi, T, Murayama, Y, Urashima, M, et al. (2009) Unruptured intracranial aneurysms: Incidence of rupture and risk factors. Stroke 40:313–16.Google Scholar
Jayaraman, T, Paget, A, Shin, YS, et al. (2008) TNF-alpha-mediated inflammation in cerebral aneurysms: A potential link to growth and rupture. Vasc Health Risk Manag 4:805–17.Google Scholar
Jou, LD, Lee, DH, Morsi, H, Mawad, ME (2008) Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. Am J Neuroradiol 29:1761–67.Google Scholar
Kadirvel, R, Ding, Y-H, Dai, D, et al. (2007) The influence of hemodynamic forces on biomarkers in the walls of elastase-induced aneurysms in rabbits. Neuroradiology 49:1041–53.Google Scholar
Keane, MG, Pyeritz, RE (2008) Medical management of Marfan syndrome. Circulation 117:2802–13.Google Scholar
Kim, DH, Van Ginhoven, G, Milewicz, DM (2003) Incidence of familial intracranial aneurysms in 200 patients: Comparison among Caucasian, African-American, and Hispanic populations. Neurosurgery 53:302–8.Google Scholar
Kim, ST, Brinjikji, W, Kallmes, DF (2016) Prevalence of intracranial aneurysms in patients with connective tissue diseases: A retrospective study. Am J Neuroradiol 37:1422–6.Google Scholar
Kojima, M, Nagasawa, S, Lee, YE, et al. (1998) Asymptomatic familial cerebral aneurysms. Neurosurgery 43:776–81.Google Scholar
Korja, M, Silventoinen, K, McCarron, P, et al. (2010) Genetic epidemiology of spontaneous subarachnoid hemorrhage: Nordic Twin Study. Stroke 41:2458–62.Google Scholar
Korja, M, Silventoinen, K, Laatikainen, T, et al. (2013) Risk factors and their combined effects on the incidence rate of subarachnoid hemorrhage: a population-based cohort study. PLoS One 8:e73760.Google Scholar
Korja, M, Lehto, H, Juvela, S (2014) Lifelong rupture risk of intracranial aneurysms depends on risk factors: A prospective Finnish cohort study. Stroke 45:1958–63.Google Scholar
Krischek, B, Inoue, I (2006) The genetics of intracranial aneurysms. J Hum Genet 51:587–94.Google Scholar
Kuivaniemi, H, Prockop, DJ, Wu, Y, et al. (1993) Exclusion of mutations in the gene for type III collagen (COL3A1) as a common cause of intracranial aneurysms or cervical artery dissections: Results from sequence analysis of the coding sequences of type III collagen from 55 unrelated patients. Neurology 43:2652–8.Google Scholar
Kulcsár, Z, Ugron, A, Marosfoi, M, et al. (2011) Hemodynamics of cerebral aneurysm initiation: The role of wall shear stress and spatial wall shear stress gradient. Am J Neuroradiol 32:587–94.Google Scholar
Levitt, MR, Morton, RP, Mai, JC, Ghodke, B, Hallam, DK (2012) Endovascular treatment of intracranial aneurysms in Loeys–Dietz syndrome. J Neurointerv Surg 4:e37.Google Scholar
Loeys, BL et al. (2006) Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 355:788–98.Google Scholar
Mackey, J, Brown, RD, Moomaw, CJ, et al. (2012) Unruptured intracranial aneurysms in the Familial Intracranial Aneurysm and International Study of Unruptured Intracranial Aneurysms cohorts: Differences in multiplicity and location. Journal of Neurosurgery 117:60–4.Google Scholar
Mackey, J, Brown, RD, Sauerbeck, L, et al. (2015) Affected twins in the Familial Intracranial Aneurysm study. Cerebrovasc Dis 39:82–6.Google Scholar
Magnetic Resonance Angiography in Relatives of Patients with Subarachnoid Hemorrhage Study Group (1999) Risks and benefits of screening for intracranial aneurysms in first-degree relatives of patients with sporadic subarachnoid hemorrhage. N Engl J Med 341:1344–50.Google Scholar
McColgan, P, Thant, KZ, Sharma, P (2010) The genetics of sporadic ruptured and unruptured intracranial aneurysms: A genetic meta-analysis of 8 genes and 13 polymorphisms in approximately 20,000 individuals. J Neurosurg 112:714–21.Google Scholar
Meng, H, Wang, Z, Hoi, Y, et al. (2007) Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38:1924–31.Google Scholar
Mineharu, Y, Inoue, K, Inoue, S, et al. (2007) Model-based linkage analyses confirm chromosome 19q13.3 as a susceptibility locus for intracranial aneurysm. Stroke 38:1174–8.Google Scholar
Mitchell, P, Gholkar, A, Vindlacheruvu, RR, Mendelow, AD (2004) Unruptured intracranial aneurysms: Benign curiosity or ticking bomb? Lancet Neurol 3:8592.Google Scholar
Moriwaki, T, Takagi, Y, Sadamasa, N, et al. (2006) Impaired progression of cerebral aneurysms in interleukin-1 beta-deficient mice. Stroke 37:900–5.Google Scholar
Nakagawa, T, Hashi, K (1994) The incidence and treatment of asymptomatic, unruptured cerebral aneurysms. J Neurosurg 80:217–23.Google Scholar
Nakagawa, T, Hashi, K, Kurokawa, Y, Yamamura, A (1999) Family history of subarachnoid hemorrhage and the incidence of asymptomatic, unruptured cerebral aneurysms. J Neurosurg 91:391–5.Google Scholar
Norrgård, O, Angquist, KA, Fodstad, H, Forsell, A, Lindberg, M (1987) Intracranial aneurysms and heredity. Neurosurgery 20:236–9.Google Scholar
Okamoto, K, Horisawa, R, Kawamura, T, et al. (2003) Family history and risk of subarachnoid hemorrhage: A case–control study in Nagoya, Japan. Stroke 34:422–6.Google Scholar
Pepin, M, Schwarze, U, Superti-Furga, A, Byers, PH (2000) Clinical and genetic features of Ehlers–Danlos syndrome type IV, the vascular type. N Engl J Med 342:673–80.Google Scholar
Pepin, MG, Schwarze, U, Rice, KM, Liu, M, Leistritz, D, Byers, PH (2014) Survival is affected by mutation type and molecular mechanism in vascular Ehlers–Danlos syndrome (EDS type IV). Genet Med 16:881–8.Google Scholar
Pyysalo, MJ, Pyysalo, LM, Pessi, T, et al. (2016) Bacterial DNA findings in ruptured and unruptured intracranial aneurysms. Acta Odontol Scand 74:315–20.Google Scholar
Raaymakers, TW, Rinkel, GJ, Ramos, LM (1998) Initial and follow-up screening for aneurysms in families with familial subarachnoid hemorrhage. Neurology 51:1125–30.Google Scholar
Raaymakers, TW (1999) Aneurysms in relatives of patients with subarachnoid hemorrhage: Frequency and risk factors. MARS Study Group. Magnetic Resonance Angiography in Relatives of patients with Subarachnoid hemorrhage. Neurology 53:982–8.Google Scholar
Rahme, RJ, Adel, JG, Bendok, BR, et al. (2011) Association of intracranial aneurysm and Loeys–Dietz syndrome: Case illustration, management, and literature review. Neurosurgery 69:E48892.Google Scholar
Rasing, I, Nieuwkamp, DJ, Algra, A, Rinkel, GJE (2012) Additional risk of hypertension and smoking for aneurysms in people with a family history of subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 83:541–2.Google Scholar
Rasing, I, Ruigrok, YM, Greebe, P, et al. (2015) Long-term risk of aneurysmal subarachnoid hemorrhage after a negative aneurysm screen. Neurology 84:912–17.Google Scholar
Regalado, E, Medrek, S, Tran-Fadulu, V, et al. (2011) Autosomal dominant inheritance of a predisposition to thoracic aortic aneurysms and dissections and intracranial saccular aneurysms. Am J Med Genet A 155A:2125–30.Google Scholar
Rinkel, GJ, Djibuti, M, Algra, A, van Gijn, J (1998) Prevalence and risk of rupture of intracranial aneurysms: A systematic review. Stroke 29:251–6.Google Scholar
Ronkainen, A, Hernesniemi, J, Ryynänen, M (1993) Familial subarachnoid hemorrhage in east Finland, 1977–1990. Neurosurgery 33:787–96.Google Scholar
Ronkainen, A, Hernesniemi, J, Tromp, G (1995) Special features of familial intracranial aneurysms: Report of 215 familial aneurysms. Neurosurgery 37:43–6.Google Scholar
Ronkainen, A, Hernesniemi, J, Puranen, M, et al. (1997) Familial intracranial aneurysms. Lancet 349:380–4.Google Scholar
Rose, BS, Pretorius, DL (1991) Dissecting basilar artery aneurysm in Marfan syndrome: Case report. AJNR Am J Neuroradiol 12:503–4.Google Scholar
Rossetti, S, Chauveau, D, Kubly, V, et al. (2003) Association of mutation position in polycystic kidney disease 1 (PKD1) gene and development of a vascular phenotype. Lancet 361:2196–201.Google Scholar
Ruigrok, YM, Rinkel, GJE, Algra, A, Raaymakers, TWM, van Gijn, J (2004a) Characteristics of intracranial aneurysms in patients with familial subarachnoid hemorrhage. Neurology 62:891–4.Google Scholar
Ruigrok, YM, Rinkel, GJE, Wijmenga, C, van Gijn, J (2004b) Anticipation and phenotype in familial intracranial aneurysms. J Neurol Neurosurg Psychiatry 75:14361442.Google Scholar
Ruigrok, YM, Rinkel, GJE (2008) Genetics of intracranial aneurysms. Stroke 39:1049–55.Google Scholar
Ruigrok, YM, Rinkel, GJ (2010) From GWAS to the clinic: Risk factors for intracranial aneurysms. Genome Med 2:61.Google Scholar
Sadamasa, N, Nozaki, K, Hashimoto, N (2003) Disruption of gene for inducible nitric oxide synthase reduces progression of cerebral aneurysms. Stroke 34:2980–4.Google Scholar
Sawyer, DM, Pace, LA, Pascale, CL, et al. (2016) Lymphocytes influence intracranial aneurysm formation and rupture: Role of extracellular matrix remodeling and phenotypic modulation of vascular smooth muscle cells. J Neuroinflammation 13:185.Google Scholar
Schievink, WI, Torres, VE, Piepgras, DG, Wiebers, DO (1992) Saccular intracranial aneurysms in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 3:8895.Google Scholar
Schievink, WI, Michels, VV, Piepgras, DG (1994a) Neurovascular manifestations of heritable connective tissue disorders. A review. Stroke 25:889903.Google Scholar
Schievink, WI, Schaid, DJ, Rogers, HM, Piepgras, DG, Michels, VV (1994b) On the inheritance of intracranial aneurysms. Stroke 25:2028–37.Google Scholar
Schievink, WI, Schaid, DJ, Michels, VV, Piepgras, DG (1995) Familial aneurysmal subarachnoid hemorrhage: A community-based study. J Neurosurg 83:426–9.Google Scholar
Schievink, WI, Parisi, JE, Piepgras, DG (1997a) Familial intracranial aneurysms: An autopsy study. Neurosurgery 41:1247–51.Google Scholar
Schievink, WI, Parisi, JE, Piepgras, DG, Michels, VV (1997b) Intracranial aneurysms in Marfan’s syndrome: An autopsy study. Neurosurgery 41:866–70.Google Scholar
Schievink, WI, Link, MJ, Piepgras, DG, Spetzler, RF (2002) Intracranial aneurysm surgery in Ehlers–Danlos syndrome type IV. Neurosurgery 51:607–11.CrossRefGoogle ScholarPubMed
Schievink, WI, Riedinger, M, Maya, MM (2005) Frequency of incidental intracranial aneurysms in neurofibromatosis type 1. Am J Med Genet A 134:45–8.Google Scholar
Starke, RM, Raper, DMS, Ding, D, et al. (2014) Tumor necrosis factor-α modulates cerebral aneurysm formation and rupture. Transl Stroke Res 5:269–77.CrossRefGoogle ScholarPubMed
Struycken, PM, Pals, G, Limburg, M, et al. (2003) Anticipation in familial intracranial aneurysms in consecutive generations. Eur J Hum Genet 11:737–43.Google Scholar
Sundquist, J, Li, X, Sundquist, K, Hemminki, K (2007) Risks of subarachnoid hemorrhage in siblings: A nationwide epidemiological study from Sweden. Neuroepidemiology 29:178–84.CrossRefGoogle ScholarPubMed
Tada, Y, Yagi, K, Kitazato, KT, et al. (2010) Reduction of endothelial tight junction proteins is related to cerebral aneurysm formation in rats. J Hypertension 28:1883–91.Google Scholar
Teasdale, GM, Wardlaw, JM, White, PM, et al. Davie Cooper Scottish Aneurysm Study Group (2005): The familial risk of subarachnoid haemorrhage. Brain 128:1677–85.Google Scholar
Todor, DR, Lewis, I, Bruno, G, Chyatte, D (1998) Identification of a serum gelatinase associated with the occurrence of cerebral aneurysms as pro-matrix metalloproteinase-2. Stroke 29:1580–3.Google Scholar
UCAS Japan Investigators, Morita, A, Kirino, T, et al. (2012) The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med 366:2474–82.Google Scholar
van ‘t Hof, FNG, Kurki, MI, Kleinloog, R, et al. (2014) Genetic risk load according to the site of intracranial aneurysms. Neurology 83:34–9.Google Scholar
van den Berg, JS, Limburg, M, Hennekam, RC (1996) Is Marfan syndrome associated with symptomatic intracranial aneurysms? Stroke 27:1012.Google Scholar
Vlak, MH, Algra, A, Brandenburg, R, Rinkel, GJ (2011) Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: A systematic review and meta-analysis. Lancet Neurol 10:626–36.Google Scholar
Wang, MC, Rubinstein, D, Kindt, GW, Breeze, RE (2002) Prevalence of intracranial aneurysms in first-degree relatives of patients with aneurysms. Neurosurg Focus 13:e2.Google Scholar
Wang, PS, Longstreth, WT, Koepsell, TD (1995) Subarachnoid hemorrhage and family history. A population-based case-control study. Arch Neurol 52:202–4.CrossRefGoogle ScholarPubMed
Wang, Z, Kolega, J, Hoi, Y, et al. (2009) Molecular alterations associated with aneurysmal remodeling are localized in the high hemodynamic stress region of a created carotid bifurcation. Neurosurgery 65:169–77.Google Scholar
Wermer, MJH, Rinkel, GJE, van Gijn, J (2003) Repeated screening for intracranial aneurysms in familial subarachnoid hemorrhage. Stroke 34:2788–91.Google Scholar
Wiebers, DO (2003) Unruptured intracranial aneurysms: Natural history, clinical outcome, and risks of surgical and endovascular treatment. The Lancet 362:103–10.Google Scholar
Wills, S, Ronkainen, A, van der Voet, M, et al. (2003) Familial intracranial aneurysms: An analysis of 346 multiplex Finnish families. Stroke 34:1370–4.Google Scholar
Woo, D, Khoury, J, Haverbusch, MM, et al. (2009) Smoking and family history and risk of aneurysmal subarachnoid hemorrhage. Neurology 72:6972.Google Scholar
Xu, HW, Yu, SQ, Mei, CL, Li, MH (2011) Screening for intracranial aneurysm in 355 patients with autosomal-dominant polycystic kidney disease. Stroke 42:204–6.Google Scholar
Zhang, J-Y, Cao, Y-X, Xu, C-B, Edvinsson, L (2006) Lipid-soluble smoke particles damage endothelial cells and reduce endothelium-dependent dilatation in rat and man. BMC Cardiovasc Disord 6:3.Google Scholar

References

Abdulrauf, S., Kaynar, M., et al. (1999). A comparison of the clinical profile of cavernous malformations with and without associated venous malformations. Neurosurgery 44: 41–7.Google Scholar
Abe, M., Asfora, W., et al. (1990). Cerebellar venous angioma associated with angiographically occult brain stem vascular malformation: Report of two cases. Surg Neurol 33: 400–3.Google Scholar
Abe, M., Kjellberg, R., et al. (1989). Clinical presentations of vascular malformations of the brain stem: Comparison of angiographically positive and negative types. J Neurol Neurosurg Psychiatry 52: 167–75.Google Scholar
Aboian, M. S., Daniels, D. J., et al. (2009). The putative role of the venous system in the genesis of vascular malformations. Neurosurg Focus 27: e9.Google Scholar
Aiba, T., Tanaka, R., et al. (1995). Natural history of intracranial cavernous malformations. J Neurosurg 83: 56–9.Google Scholar
Akers, A., Al-Shahi Salman, R., et al. (2017). Synopsis of guidelines for the clinical management of cerebral cavernous malformations: Consensus recommendations based on systematic literature review by the Angioma Alliance Scientific Advisory Board Clinical Experts Panel. Neurosurgery 80: 665–80.Google Scholar
Al-Shahi, R., Bhattacharya, J. J., et al. (2003). Prospective, population-based detection of intracranial vascular malformations in adults: The Scottish Intracranial Vascular Malformation Study (SIVMS). Stroke 34: 1163–9.Google ScholarPubMed
Al-Shahi Salman, R., Hall, J. M., et al. (2012). Untreated clinical course of cerebral cavernous malformations: A prospective, population-based cohort study. Lancet Neurol 11: 217–24.Google Scholar
Avman, N. and Dincer, C. (1980). Venous malformation of the aqueduct of Sylvius treated by interventriculostomy: 15 years follow-up. Acta Neurochir (Wien) 52: 219–24.Google Scholar
Awad, I. and Jabbour, P. (2006). Cerebral cavernous malformations and epilepsy. Neurosurg Focus 21: e7.CrossRefGoogle ScholarPubMed
Awad, I. and Robinson, J. (1993). Cavernous malformation and epilepsy. In Cavernous Malformations, eds. Awad, I. and Barrow, D.. Park Ridge: AANS, pp. 4963.Google Scholar
Awad, I., Robinson, J. J., et al. (1993). Mixed vascular malformations of the brain: Clinical and pathogenetic considerations. Neurosurgery 33: 179–88.Google Scholar
Awada, A., Watson, T., et al. (1997). Cavernous angioma presenting as pregnancy-related seizures. Epilepsia 38: 844–6.Google Scholar
Barker, F., Amin-Hanjani, S., et al. (2001). Temporal clustering of hemorrhages from untreated cavernous malformations of the central nervous system. Neurosurgery 49: 1525.Google Scholar
Barrow, D. and Krisht, A. (1993). Cavernous malformations and hemorrhage. In Cavernous Malformations, eds. Awad, I. and Barrow, D.. Park Ridge: AANS, pp. 6580.Google Scholar
Berry, R., Alpers, B., et al. (1966). The site, structure and frequency of intracranial aneurysms, angiomas and arteriovenous abnormalities. Res Publ Assoc Res Nerv Ment Dis 41 : 40–72.Google Scholar
Bien, S., Friedburg, H., et al. (1986). Intracerebral cavernous angiomas in magnetic resonance imaging. Acta Radiol Suppl (Stockh) 369: 7981.Google Scholar
Biller, J., Toffol, G., et al. (1985). Cerebellar venous angiomas. Arch Neurol 42: 367–70.Google Scholar
Brown, R. W., Wiebers, D. O, et al. (1996). Incidence and prevalence of intracranial vascular malformations in Olmsted County, Minnesota, 1965–1992. Neurology 46: 949–52.Google Scholar
Cantu, C., Murillo-Bonilla, L., et al. (2005). Predictive factors for intracerebral hemorrhage in patients with cavernous angiomas. Neurol Res 27: 314–18.Google Scholar
Chiaramonte, R., Bonfiglio, M., et al. (2013). Developmental venous anomaly responsible for hemifacial spasm. Neuroradiol J 26: 201–7.Google Scholar
Ciricillo, S., Dillon, W., et al. (1994). Progression of multiple cryptic vascular malformations associated with anomalous venous drainage. Case report. J Neurosurg 81: 477–81.Google Scholar
Clatterbuck, R., Eberhart, C., et al. (2001). Ultrastructural and immunocytochemical evidence that an incompetent blood–brain barrier is related to the pathophysiology of cavernous malformations. J Neurol Neurosurg Psychiatry 71: 188–92.Google Scholar
Comey, C., Kondziolka, D., et al. (1997). Regional parenchymal enhancement with mixed cavernous/venous malformations of the brain. Case report. J Neurosurg 86: 155–8.Google Scholar
Cutsforth-Gregory, J. K., Lanzino, G., et al. (2015). Characterization of radiation-induced cavernous malformations and comparison with a nonradiation cavernous malformation cohort. J Neurosurg 122: 1214–22.Google Scholar
D’Angelo, V., Bonis, C. D., et al. (2006). Supratentorial cerebral cavernous malformations: Clinical, surgical, and genetic involvement. Neurosurg Focus 21: e9.Google Scholar
Dammann, P., Wrede, K. H., et al. (2013). The venous angioarchitecture of sporadic cerebral cavernous malformations: A susceptibility weighted imaging study at 7 T MRI. J Neurol Neurosurg Psychiatry 84: 194200.Google Scholar
Dashti, S., Hoffer, A., et al. (2006). Molecular genetics of familial cerebral cavernous malformations. Neurosurg Focus 21: e2.Google Scholar
DelCurling, O., D. L. Kelly, et al. (1991). An analysis of the natural history of cavernous angiomas. J Neurosurg 75: 702–8.Google Scholar
Detwiler, P., Porter, R., et al. (1997). De novo formation of a central nervous system cavernous malformation: Implications for predicting risk of hemorrhage. Case report and review of the literature. J Neurosurg 87: 629–32.Google Scholar
Dubovsky, J., Zabramski, J., et al. (1995). A gene responsible for cavernous malformations of the brain maps to chromosome 7q. Hum Mol Genet 4: 453–8.Google Scholar
Duffau, H., Capelle, L., et al. (1997). Early radiologically proven rebleeding from intracranial cavernous angiomas: Report of 6 cases and review of the literature. Acta Neurochir (Wien) 139: 914–22.CrossRefGoogle ScholarPubMed
Fierstien, S., Pribram, H., et al. (1979). Angiography and computed tomography in the evaluation of cerebral venous malformations. Neuroradiology 17: 137–48.Google Scholar
Fischer, A., Zalvide, J., et al. (2013). Cerebral cavernous malformations: From CCM genes to endothelial homeostasis. Trends in Molecular Medicine 19: 302–8.Google Scholar
Flemming, K. D. (2012). Predicting the clinical behaviour of cavernous malformations. Lancet Neurol 11: 202–3.CrossRefGoogle ScholarPubMed
Flemming, K., Goodman, B., et al. (2003). Successful brainstem cavernous malformation resection after repeated hemorrhages during pregnancy. Surg Neurol 60: 545–7.Google Scholar
Flemming, K. D., Bovis, G. K., et al. (2011). Aggressive course of multiple de novo cavernous malformations. J Neurosurg 115: 1175–8.Google Scholar
Flemming, K., Link, M., et al. (2012). The prospective hemorrhage risk of intracerebral cavernous malformations. Neurology 78: 632–6.Google Scholar
Flemming, K., Link, M., et al. (2013). Use of antithrombotic agents in patients with intracerebral cavernous malformations. J Neurosurg 118: 4346.Google Scholar
Flemming, K. D., Brown, R. D., et al. (2015). Seasonal variation in hemorrhage and focal neurologic deficit due to intracerebral cavernous malformations. J Clin Neurosci 22: 969–71.Google Scholar
Fritschi, J., Reulen, H., et al. (1994). Cavernous malformations of the brain stem. A review of 139 cases. Acta Neurochir (Wien) 130: 3546.Google Scholar
Gangemi, M., Maiuri, F., et al. (1990). Familial cerebral cavernous angiomas. Neurol Res 12: 131–6.Google Scholar
Garner, T., Curling, O. J. D., et al. (1991). The natural history of intracranial venous angiomas. J Neurosurg 75: 715–22.Google Scholar
Gibson, C. C., Zhu, W., et al. (2015). Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation 131: 289–99.Google Scholar
Giombini, S. and Morello, G. (1978). Cavernous angiomas of the brain. Account of fourteen personal cases and review of the literature. Acta Neurochir (Wien) 40: 6182.Google Scholar
Goulao, A., Alvarez, H., et al. (1990). Venous anomalies and abnormalities of the posterior fossa. Neuroradiology 31: 476–82.CrossRefGoogle ScholarPubMed
Griffiths, D., Newey, A., et al. (2013). Thrombosis of a developmental venous anomaly causing venous infarction and pontine hemorrhage. J Stroke Cerebrovasc Dis 22: e6535.Google Scholar
Gross, B. A. and Du, R. (2013). Natural history of cerebral arteriovenous malformations: A meta-analysis. J Neurosurg 118: 437–43.Google Scholar
Gross, B. A., Lin, N., et al. (2011). The natural history of intracranial cavernous malformations. Neurosurg Focus 30: e24.Google Scholar
Gümüs, A., Yildirim, S., et al. (2007). Case report: Seizures in a child caused by a large venous angioma. J Child Neurol 22: 787–9.Google Scholar
Gunel, M., Awad, I., et al. (1996). A founder mutation as a cause of cerebral cavernous malformation in Hispanic Americans. N Engl J Med 334: 946–51.Google Scholar
Handa, J., Suda, K., et al. (1984). Cerebral venous angioma associated with varix. Surg Neurol 21: 436–40.Google Scholar
Hayman, L., Evans, R., et al. (1982). Familial cavernous angiomas: Natural history and genetic study over a 5-year period. Am J Med Genet 11: 147–60.Google Scholar
Hirata, Y., Matsukado, Y., et al. (1986). Intracerebral venous angioma with arterial blood supply: A mixed angioma. Surg Neurol 25: 227–32.Google Scholar
Hoeldtke, N., Floyd, D., et al. (1998). Intracranial cavernous angioma initially presenting in pregnancy with new-onset seizures. Am J Obstet Gynecol 178: 612–13.Google Scholar
Hong, Y. J., Chung, T. S., et al. (2010). The angioarchitectural factors of the cerebral developmental venous anomaly; can they be the causes of concurrent sporadic cavernous malformation? Neuroradiology 52: 883–91.Google Scholar
Horne, M. A., Su, F. K., et al. (2016). Clinical course of untreated cerebral cavernous malformations: a meta-analysis of individual patient data. Lancet Neurol 15: 166–73.Google Scholar
Iv, M., Fischbein, N. J., et al. (2015). Association of developmental venous anomalies with perfusion abnormalities on arterial spin labeling and bolus perfusion-weighted imaging. J Neuroimaging 25: 243–50.Google Scholar
Jellinger, K. (1986). Vascular malformations of the central nervous system: a morphological overview. Neurosurg Rev 9: 177216.Google Scholar
Jeon, J. S., Kim, J. E., et al. (2014). A risk factor analysis of prospective symptomatic haemorrhage in adult patients with cerebral cavernous malformation. J Neurol Neurosurg Psychiatry 85: 1366–70.Google Scholar
Josephson, C. B., Leach, J. P., et al. (2011). Seizure risk from cavernous or arteriovenous malformations: Prospective population-based study. Neurology 76: 1548–54.Google Scholar
Jung, H. N., Kim, S. T., et al. (2014). Diffusion and perfusion MRI findings of the signal-intensity abnormalities of brain associated with developmental venous anomaly. AJNR Am J Neuroradiol 35: 1539–42.Google Scholar
Kalani, M. Y. and Zabramski, J. M. (2013). Risk for symptomatic hemorrhage of cerebral cavernous malformations during pregnancy. J Neurosurg 118: 50–5.Google Scholar
Kalimo, H., Kase, M., et al. (1997). Vascular Diseases. Greenfield’s Neuropathology, eds. Graham, D. and Lantos, P.. New York: Oxford University Press, pp. 345–7.Google Scholar
Kim, P., Castellani, R., et al. (1996). Cerebral venous malformation complicated by spontaneous thrombosis. Child Nerv Syst 12: 172–5.Google Scholar
Kim, D., Park, Y., et al. (1997). An analysis of the natural history of cavernous malformations. Surg Neurol 48: 918.Google Scholar
Kiroglu, Y., Oran, I., et al. (2011). Thrombosis of a drainage vein in developmental venous anomaly (DVA) leading to venous infarction: A case report and review of the literature. J Neuroimaging 21: 197201.Google Scholar
Koc, K., Anik, I., et al. (2007). Massive intracerebral haemorrage due to developmental venous anomaly. Br J Neurosurg 21: 403–5.Google Scholar
Komiyama, M., Yamanaka, K., et al. (1999). Venous angiomas with arteriovenous shunts: Report of three cases and review of the literature. Neurosurgery 44: 1328–35.Google Scholar
Konan, A., Raymond, J., et al. (1999). Cerebellar infarct caused by spontaneous thrombosis of a developmental venous anomaly of the posterior fossa. AJNR Am J Neuroradiol 20: 256–8.Google Scholar
Kondziolka, D., Dempsey, P., et al. (1991). The case for conservative management of venous angiomas. Can J Neurol Sci 18: 295–9.Google Scholar
Kondziolka, D., Lunsford, L., et al. (1995). The natural history of cerebral cavernous malformations. J Neurosurg 83: 820–4.Google Scholar
Kondziolka, D., Monaco, E. A., 3rd, et al. (2013). Cavernous malformations and hemorrhage risk. Prog Neurol Surg 27: 141–6.Google Scholar
Kupersmith, M., Kalish, H., et al. (2001). Natural history of brainstem cavernous malformations. Neurosurgery 48: 4754.Google Scholar
Labauge, P., Brunereau, L., et al. (2000). The natural history of familial cerebral cavernomas: A retrospective MRI study of 40 patients. Neuroradiology 42: 327–32.Google Scholar
Lai, P., Chen, P., et al. (1999). Venous infarction from a venous angioma occurring after thrombosis of a drainage vein. AJR Am J Roentgenol 172: 1698–9.Google Scholar
Larson, J., Ball, W., et al. (1998). Formation of intracerebral cavernous malformations after radiation treatment for central nervous system neoplasia in children. J Neurosurg 88: 51–6.Google Scholar
Lasjaunias, P., Burrows, P., et al. (1986). Developmental venous anomalies (DVA): The so-called venous angioma. Neurosurg Rev 9: 233–42.Google Scholar
Lasjaunias, P., Burrows, P., et al. (1994). Developmental venous anomalies (DVA): The so-called venous angioma. Neurosurg Rev 9: 232–42.Google Scholar
Lee, C., Pennington, M., et al. (1996). MR evaluation of developmental venous anomalies: Medullary venous anatomy of venous angiomas. AJNR Am J Neuroradiol 17: 6170.Google Scholar
Lee, M. and Kim, M. S. (2012). Image findings in brain developmental venous anomalies. J Cerebrovasc Endovasc Neurosurg 14: 3743.Google Scholar
Lehnhardt, F., Smekal, U. V., et al. (2005). Value of gradient-echo magnetic resonance imaging in the diagnosis of familial cerebral cavernous malformation. Arch Neurol 62: 653–8.Google Scholar
Li, D., Hao, S. Y., et al. (2014). Hemorrhage risks and functional outcomes of untreated brainstem cavernous malformations. J Neurosurg 121: 3241.CrossRefGoogle ScholarPubMed
Lobato, R., Perez, C., et al. (1988). Clinical, radiological, and pathological spectrum of angiographically occult intracranial vascular malformations. Analysis of 21 cases and review of the literature. J Neurosurg 68: 518–31.Google Scholar
Lonjon, M., Roche, J., et al. (1993). Intracranial cavernoma. 30 cases. Presse Med 22: 990–4.Google Scholar
Lopez-Fraile, I. P., Sanjuan, M. T., et al. (1995). Cerebral cavernous angiomas in pregnancy. Two cases and a review of literature. Neurologia 10: 242–5.Google Scholar
Maeder, P., Gudinchet, F., et al. (1998). Development of a cavernous malformation of the brain. AJNR Am J Neuroradiol 19: 1141–3.Google Scholar
Malik, G., Morgan, J., et al. (1988). Venous angiomas: An underestimated cause of intracranial hemorrhage. Surg Neurol 30: 350–8.Google Scholar
Maraire, J. and Awad, I. (1995). Intracranial cavernous malformations: Lesion behavior and management strategies. Neurosurgery 37: 591605.Google Scholar
Mathiesen, T., Edner, G., et al. (2003). Deep and brainstem cavernomas: A consecutive 8-year series. J Neurosurg 99: 31–7.Google Scholar
McCormick, W. (1966). The pathology of vascular malformations. J Neurosurg 24: 807–16.Google Scholar
McCormick, W. (1984). Pathology of vascular malformations of the brain. In Intracranial Arteriovenous malformations, eds. Wilson, C. and Stein, B.. Baltimore: Williams and Wilkins, pp. 4463.Google Scholar
McCormick, W., Hardman, J., et al. (1968). Vascular malformations (angiomas) of the brain with special reference to those occuring in the posterior fossa. J Neurosurg 28: 241–51.Google Scholar
McDonald, D. A., Shi, C., et al. (2012). Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease. Stroke 43: 571–4.Google Scholar
McLaughlin, M., Kondziolka, D., et al. (1998). The prospective natural history of cerebral venous malformations. Neurosurgery 43: 195201.Google Scholar
Meng, G., Bai, C., et al. (2014). The association between cerebral developmental venous anomaly and concomitant cavernous malformation: An observational study using magnetic resonance imaging. BMC Neurol 14: 50.Google Scholar
Merten, C., Knitelius, H., et al. (1998). Intracerebral haemorrhage from a venous angioma following thrombosis of a draining vein. Neuroradiology 40: 1518.Google Scholar
Meyer, B., Stangl, A., et al. (1995). Association of venous and true arteriovenous malformation: A rare entity among mixed vascular malformations of the brain. J Neurosurg 83: 141–4.Google Scholar
Mikati, A. G., Tan, H., et al. (2014). Dynamic permeability and quantitative susceptibility: Related imaging biomarkers in cerebral cavernous malformations. Stroke 45: 598601.Google Scholar
Mindea, S., Yang, B., et al. (2006). Cerebral cavernous malformations: Clinical insights from genetic studies. Neurosurg Focus 21: e1.Google Scholar
Moriarity, J., Clatterbuck, R., et al. (1999). The natural history of cavernous malformations. Neurosurg Clin N Am 10: 411–17.Google Scholar
Moritake, K., Handa, H., et al. (1980). Venous angiomas of the brain. Surg Neurol 14: 95105.Google Scholar
Mullan, S., Mojtahedi, S., et al. (1996). Embryological basis of some aspects of cerebral vascular fistulas and malformations. J Neurosurg 85: 18.Google Scholar
Mullan, S., Oojtahedi, S., et al. (1996). Cerebral venous malformation–arteriovenous malformation transition forms. J Neurosurg 85: 913.Google Scholar
Naff, N., Wemmer, J., et al. (1998). A longitudinal study of patients with venous malformations. Neurology 50: 1709–14.Google Scholar
Nemoto, H., Nakazora, H., et al. (2006). Venous angioma with epilepsy. Intern Med 45: 345346.Google Scholar
Numaguchi, Y., Kitamura, K., et al. (1982). Intracranial venous angiomas. Surg Neurol 18: 193202.Google Scholar
Ogilvy, C., Moayeri, N., et al. (1993). Appearance of a cavernous hemangioma in the cerebral cortex after a biopsy of a deeper lesion. Neurosurgery 33: 307–9.Google Scholar
Otten, P., Pizzolato, G., et al. (1989). 131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24,535 autopsies. Neurochirurgie 35: 128131.Google Scholar
Pasqualin, A., Vivenza, C., et al. (1993). Spontaneous regression of intracranial arteriovenous malformation. Surg Neurol 39: 385–91.Google Scholar
Peltier, J., Toussaint, P., et al. (2004). Cerebral venous angioma of the pons complicated by nonhemorrhagic infarction. Case report. J Neurosurg 101: 690–3.Google Scholar
Perrini, P. and Lanzion, G. (2006). The association of venous developmental anomalies and cavernous malformations: Pathophysiological, diagnostic, and surgical considerations. Neurosurg Focus 21: e5.Google Scholar
Poorthuis, M., Samarasekera, N., et al. (2013). Comparative studies of the diagnosis and treatment of cerebral cavernous malformations in adults: Systematic review. Acta Neurochir (Wien) 155: 643–9.Google Scholar
Porter, P., Willinsky, R., et al. (1997). Cerebral cavernous malformations: Natural history and prognosis after clinical deterioration with or without hemorrhage. J Neurosurg 87: 190–7.Google Scholar
Rammos, S. K., Maina, R., et al. (2009). Developmental venous anomalies: Current concepts and implications for management. Neurosurgery 65: 20–9.Google Scholar
Rapacki, T., Brantley, M., et al. (1990). Heterogeneity of cerebral cavernous hemangiomas diagnosed by MR imaging. J Comput Assist Tomogr 14: 1825.Google Scholar
Requena, I., Arias, M., et al. (1991). Cavernomas of the central nervous system: Clinical and neuroimaging manifestations in 47 patients. J Neurol Neurosurg Psychiatry 54: 590–4.Google Scholar
Revencu, N. and Vikkula, M. (2006). Cerebral cavernous malformation: New molecular and clinical insights. J Med Genet 43: 716–21.Google Scholar
Rigamonti, D., Drayer, B., et al. (1987). The MRI appearance of cavernous malformations (angiomas). J Neurosurg 67: 518–24.Google Scholar
Rigamonti, D. and Spetzler, R. (1988). The association of venous and cavernous malformations. Report of four cases and discussion of the pathophysiological, diagnostic, and therapeutic implications. Acta Neurochir (Wien) 92: 100–5.Google Scholar
Rigamonti, D., Hadley, M., et al. (1988). Cerebral cavernous malformations. Incidence and familial occurrence. N Engl J Med 319: 343–7.Google Scholar
Rigamonti, D., Spetzler, R., et al. (1990). Cerebral venous malformations. J Neurosurg 73: 560–4.Google Scholar
Wityk, R. C., Hoffberger, J., et al. (2014). Risk of bleeding from antithrombotic agents in patients with cerebral cavernous malformations. American Academy of Neurology Poster Presentation. Phildelphia, PA, Johns Hopkins.Google Scholar
Robinson, J., Awad, I., et al. (1991). Natural history of the cavernous angioma. J Neurosurg 75: 709–14.Google Scholar
Robinson, J. J., Awad, I., et al. (1993a). Factors predisposing to clinical disability in patients with cavernous malformations of the brain. Neurosurgery 32: 730–6.Google Scholar
Robinson, J. J., Awad, I., et al. (1993b). Pathological heterogeneity of angiographically occult vascular malformations of the brain. Neurosurgery 33: 547–55.Google Scholar
Robinson, J. J., Brown, A., et al. (1995). Occult malformation with anomalous venous drainage. J Neurol 82: 311–12.Google Scholar
Rosenow, F, Alonso-Vanegas, M. A., et al. (2013). Cavernoma-related epilepsy: Review and recommendations for mangement – Report of the Surgical Task Force of the ILAE Commission on therapeutic strategies. Epilepsia 54: 2025–35.Google Scholar
Rothfus, W., Albright, A., et al. (1984).Cerebellar venous angioma: Benign entity? AJNR Am J Neuroradiol 5: 61–6.Google Scholar
Sage, M., Brophy, B., et al. (1993). Cavernous haemangiomas (angiomas) of the brain: Clinically significant lesions. Australas Radiol 37: 147–55.Google Scholar
Saito, Y. and Kobayashi, N. (1981). Cerebral venous angiomas: Clinical evaluation and possible etiology. Radiology 139: 8794.Google Scholar
Salman, R. A.-S., Berg, M., et al. (2008). Hemorrhage from cavernous malformations of the brain: Definition and reporting standards. Angioma Alliance Scientific Advisory Board. Stroke 39: 3129–30.Google Scholar
Sarwar, M. and McCormick, W. (1978). Intracerebral venous angioma. Case report and review. Arch Neurol 35: 323–5.Google Scholar
Schneble, H., Soumare, A., et al. (2012). Antithrombotic therapy and bleeding risk in a prospective cohort of patients with cerebral cavernous malformation. Stroke 43: 3196–9.Google Scholar
Senegor, M., Dohrmann, G., et al. (1983). Venous angiomas of the posterior fossa should be considered as anomalous venous drainage. Surg Neurol 19: 2632.Google Scholar
Servo, A., Porras, M., et al. (1984). Diagnosis of cavernous haemangiomas by computed tomography and angiography. Acta Neurochir (Wien) 71: 273–82.Google Scholar
Shenkar, R., Shi, C., et al. (2015). Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genet Med 17: 188–96.Google Scholar
Simard, J., Garcia-Bengochea, F., et al. (1986). Cavernous angioma: A review of 126 collected and 12 new clinical cases. Neurosurgery 18: 162–72.Google Scholar
Steinberg, G. and Marks, M. (1993). Lesions mimicking cavernous malformations. In Cavernous Malformations, eds. Awad, I. and Barrow, D.. Park Ridge: AANS, pp. 151–62.Google Scholar
Stockton, R. A., Shenkar, R., et al. (2010). Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 207: 881–96.Google Scholar
Sze, G., Krol, G., et al. (1987). Hemorrhagic neoplasms: MR mimics of occult vascular malformations. AJR Am J Roentgenol 149: 1223–30.Google Scholar
Tekkok, I. and Ventureyra, E. (1996). De novo familial cavernous malformation presenting with hemorrhage 12.5 years after the initial hemorrhagic ictus: Natural history of an infantile form. Pediatric Neurosurgery 25: 151–5.Google Scholar
Topper, R., Jurgens, E., et al. (1999). Clinical significance of intracranial developmental venous anomalies. J Neurol Neurosurg Psychiatry 67: 234–8.Google Scholar
Truwit, C. (1992). Venous angioma of the brain: History, significance, and imaging findings. AJR Am J Roentgenol 159: 1299–307.Google Scholar
Tung, H., Giannotta, S., et al. (1990). Recurrent intraparenchymal hemorrhages from angiographically occult vascular malformations. J Neurosurg 73: 174–80.Google Scholar
Ueda, S., Saito, A., et al. (1987). Cavernous angioma of the cauda equina producing subarachnoid hemorrhage. Case report. J Neurosurg 66: 134–6.Google Scholar
Valavanis, A., Wellauer, J., et al. (1983). The radiological diagnosis of cerebral venous angioma: Cerebral angiography and computed tomography. Neuroradiology 24: 193–9.Google Scholar
Vaquero, J., Leunda, G., et al. (1983). Cavernomas of the brain. Neurosurgery 12: 208–10.Google Scholar
Voigt, K. and Yasargil, M. (1976). Cerebral cavernous haemangiomas or cavernomas. Incidence, pathology, localization, diagnosis, clinical features and treatment. Review of the literature and report of an unusual case. Neurochirurgia (Stuttg) 19: 5968.Google Scholar
Walsh, M., Parmar, H., et al. (2008). Developmental venous anomaly with symptomatic thrombosis of the draining vein. J Neurosurg 109: 1119–22.Google Scholar
Wang, W., Liu, A., et al. (2003). Surgical management of brainstem cavernous malformations: Report of 137 cases. Surg Neurol 59: 444–54.Google Scholar
Wilms, G., Bleus, E., et al. (1994). Simultaneous occurrence of developmental venous anomalies and cavernous angiomas. AJNR Am J Neuroradiol 15: 1247–54.Google Scholar
Wilson, C. (1992). Cryptic vascular malformations. Clin Neurosurg 38: 4984.Google Scholar
Witiw, C. D., Abou-Hamden, A., et al. (2012). Cerebral cavernous malformations and pregnancy: Hemorrhage risk and influence on obstetrical management. Neurosurgery 71: 626–30.Google Scholar
Wolf, A. and Brock, S. (1935). The pathology of cerebral angiomas. A study of nine cases. Bull Neurol Institut NY 4: 144–76.Google Scholar
Worrell, G., Sencakova, D., et al. (2002). Rapidly progressive hippocampal atrophy: Evidence for a seizure-induced mechanism. Neurology 58: 1553–6.Google Scholar
Yamasaki, T., Handa, H., et al. (1986). Intracranial and orbital cavernous angiomas. A review of 30 cases. J Neurosurg 64: 197208.Google Scholar
Yi, K. S., Cha, S. H., et al. (2013). Multimodal imaging follow-up of a thrombosed developmental venous anomaly: CT, CT angiography and digital subtraction angiography. Neurointervention 8: 120–4.Google Scholar
Zabramski, J., Wascher, T., et al. (1994). The natural history of familial cavernous malformations: Results of an ongoing study. J Neurosurg 80: 422–32.Google Scholar
Zauberman, H. and Feinsod, M. (1970). Orbital hemangioma growth during pregnancy. Acta Ophthalmol (Copenh) 48: 929–33.Google Scholar

References

Allanson, J. E., Hall, J. G., and Van Allen, M. I. 1985. Noonan phenotype associated with neurofibromatosis. Am J Med Genet, 21, 457–62.Google Scholar
Ars, E., Kruyer, H., Gaona, A., et al. 1998. A clinical variant of neurofibromatosis type 1: Familial spinal neurofibromatosis with a frameshift mutation in the NF1 gene. Am J Hum Genet, 62, 834–41.Google Scholar
Barral, J. L. and Summers, C. G. 1996. Ocular ischemic syndrome in a child with moyamoya disease and neurofibromatosis. Surv Ophthalmol, 40, 500–4.Google Scholar
Bergouignan, M. and Arne, L. 1951. A propos des anévrysmes des artéres cérébrales associés à d’autres malformations. Acta Neurol et Psychiat Belgica, 51, 529–35.Google Scholar
Coleman, S. D., Williams, C. A., and Wallace, M. R. 1995. Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions on NF1 gene. Nat Genet, 11, 90–2.Google Scholar
Creange, A., Zeller, J., Rostaing-Rigattieri, S., et al. 1999. Neurological complications of neurofibromatosis type 1 in adulthood. Brain, 122, 473–81.Google Scholar
Daston, M. M., Scrable, H., Nordlund, M., et al. 1992. Protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells and oligodendrocytes. Neuron, 8, 415–28.Google Scholar
de Kersaint-Gilly, A., Zenthe, L., Dabouis, G., et al. 1980. Abnormalities of the intracerebral vasculature in a case of neurofibromatosis. J Neuroradiol, 7, 193–8.Google Scholar
Erickson, R. P., Woolliscroft, J., and Allen, R. J. 1980. Familial occurrence of intracranial arterial occlusive disease (moyamoya) in neurofibromatosis. Clin Genet, 18, 191–6.Google Scholar
Gebarski, S. S., Gabrielsern, T. O., Knake, J. E., and Latack, J. T. 1983. Posterior circulation intracranial arterial occlusive disease in neurofibromatosis. Am J Neuroradiol, 4, 1245–6.Google Scholar
Gilly, R., Elbaz, N., Langue, J., and Raveau, J. 1982. Sténoses artérielles cérébrales multiples et progressives, sténose d l’artère rénale et maladie de Recklinghausen. Pédiatrie, 38, 523–30.Google Scholar
Griffiths, D. F. R., Williams, G. T., and Williams, E. D. 1983. Multiple endocrine neoplasia associated with von Recklinghausen’s disease. Brit Med J, 287, 1341–3.Google Scholar
Hall, J. G. 2000. Review and hypotheses: Somatic mosaicism – observations related to clinical genetics. Am J Hum Genet, 43, 355–63.Google Scholar
Hamilton, S. J. and Friedman, J. M. 2000. Insights into the pathogenesis of neurofibromatosis 1 vasculopathy. Clin Genet, 58, 341–4.Google Scholar
Hashemian, H. 1952. Familial fibromatosis of small intestine. Brit J Surg, 40, 346–50.Google Scholar
Hoffmann, K. T., Hosten, N., Liebig, T., Schwarz, K., and Felix, R. 1998. Giant aneurysm of the vertebral artery in neurofibromatosis type 1: Report of a case and review of the literature. Neuroradiology, 40, 245–8.Google Scholar
Huson, S. M., Compston, D. A., Clark, P., and Harper, P. S. 1989. A genetic study of von Recklinghausen neurofibromatosis in south east Wales. I. Prevalence, fitness, mutation rate, and effect of parental transmission on severity. J Med Genet, 26, 704–11.Google Scholar
Koss, M., Scott, R. M., Irons, M. B., Smith, E. R., and Ullrich, N. J. 2013. Moyamoya syndrome associated with neurofibromatosis Type 1: perioperative and long-term outcome after surgical revascularization. J Neurosurg Pediatr, 11, 417–25.Google Scholar
Latchaw, R. E., Harris, R. D., Chou, S. N., and Gold, L. H. A. 1980. Combined embolization and operation in the treatment of cervical arteriovenous malformations. Neurosurgery, 6, 131–7.Google Scholar
Lehrnbecher, T., Gassel, A. M., Rauh, V., Kirchner, T., and Huppertz, H. I. 1994. Neurofibromatosis presenting as a severe systemic vasculopathy. Eur J Pediatr, 153, 107–9.Google Scholar
Leone, R. G., Schatzki, S. C., and Wolpow, E. R. 1982. Neurofibromatosis with extensive intracranial arterial occlusive disease. Am J Neuroradiol, 3, 572–6.Google Scholar
Lesley, W. S., Thomas, M. R., and Abdulrauf, S. I. 2004. N-butylcyanoacrylate embolization of a middle meningeal artery aneurysm in a patient with neurofibromatosis type 2. Am J Neuroradiol, 25, 1414–6.Google Scholar
Levisohn, P. M., Mikhael, M. A., and Rothman, S. M. 1978. Cerebrovascular changes in neurofibromatosis. Dev Med Child Neurol, 20, 789–93.Google Scholar
Littler, M. and Morton, N. E. 1990. Segregation analysis of peripheral neurofibromatosis. J Med Genet, 27, 307–10.Google Scholar
Marchuk, D. A. and Collins, F. S. 1994. Molecular genetics of neurofibromatosis 1. In The Neurofibromatoses. A Pathogenetic and Clinical Overview, eds, Huson, S. M., and Hughes, R. A. C.. London: Chapman and Hall, pp. 2349.Google Scholar
Negoro, M., Nakaya, T., Terashima, K., and Sugita, K. 1990. Extracranial vertebral artery aneurysm with neurofibromatosis. Endovascular treatment by detachable balloon. Neuroradiology, 31, 533–6.Google Scholar
Pellock, J. M., Kleinman, P. K., McDonald, B. M., and Wixson, D. 1980. Hypertensive stroke with neurofibromatosis. Neurology, 30, 656–9.Google Scholar
Reubi, F. 1944. Les vaisseaux et les glandes endocrines dans la neurofibromatose. Z Pathu Bakt, 7, 168.Google Scholar
Riccardi, V. M. 2000. The vasculopathy of NF1 and histogenesis control genes. Clin Genet, 58, 345–7.Google Scholar
Rodriguez, H. A. and Berthrong, M. 1966. Multiple primary intracranial tumors in von Recklinghausen’s neurofibromatosis. Arch Neurol, 14, 467–75.Google Scholar
Ryan, A. M., Hurley, M., Brennan, P., and Moroney, J. T. 2005. Vascular dysplasia in neurofibromatosis type 2. Neurology, 65, 163–4.Google Scholar
Salyer, W. R., and Salyer, D. C. 1974. The vascular lesions of neurofibromatosis. Angiology, 25, 510–9.Google Scholar
Sasaki, J., Miura, S., Ohishi, H., and Kikuchi, K. 1995. Neurofibromatosis associated with multiple intracranial vascular lesions: Stenosis of the internal carotid artery and peripheral aneurysm of the Heubner’s artery; report of a case. No Shinkei Geka, 23, 813–7.Google Scholar
Schievink, W. I. and Piepgras, D. G. 1991. Cervical vertebral artery aneurysms and arteriovenous fistulae in neurofibromatosis type 1: Case reports. Neurosurgery, 29, 760–5.Google Scholar
Schievink, W. I., Riedinger, M., Maya, M. M. 2005. Frequency of incidental intracranial aneurysms in neurofibromatosis type 1. Am J Med Genet, 134A, 4548.Google Scholar
Scott, R. M., Smith, J. L., Robertson, R. L., et al. 2004. Long-term outcome in children with moyamoya syndrome after cranial revascularization by pial synangiosis. J Neurosurg, 100(2 Suppl Pediatrics), 142–9.Google Scholar
Siddhartha, W., Chavhan, G. B., Shrivastava, M., and Limaye, U. S. 2003. Endovascular treatment for bilateral vertebral arteriovenous fistulas in neurofibromatosis 1. Australas Radiol, 47, 457–61.Google Scholar
Stanley, J. C. and Fry, W. J. 1981. Pediatric renal artery occlusive disease and renovascular hypertension: Etiology, diagnosis, and operative treatment. Arch Surg, 116, 669–76.Google Scholar
Steel, T. R., Bentivoglio, P. B., and Garrick, R. 1994. Vascular neurofibromatosis affecting the internal carotid artery: A case report. Brit J Neurosurg, 8, 233–7.Google Scholar
Terry, A. R., Jordan, J. T., Schwamm, L. Plotkin, S. R. 2016. Increased risk of cerebrovascular disease among patients with neurofibromatosis type 1: Population-based approach. Stroke, 47, 60–5.Google Scholar
Tholen, A., Messmer, A. P., and Landau, K. 1998. Peripheral retinal vascular occlusive disorder in a young patient with neurofibromatosis 1. Retina, 18, 184–6.Google Scholar
Tomsick, T. A., Lukin, R. R., Chambers, A. A., and Benton, C. 1976. Neurofibromatosis and intracranial arterial occlusive disease. Neuroradiology, 11, 229–34.Google Scholar
Tong, J., Hannan, F., Zhu, Y., Bernards, A., and Zhong, Y. 2002. Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci, 5, 95–6.Google Scholar
Viskochil, D. H. 1998. Gene structure and expression. In Neurofibromatosis Type 1: From Genotype to Phenotype, eds. Upadhyaya, M., and Cooper, D. N.. Oxford: Bios Scientific Publishers, pp. 3953.Google Scholar
Xu, G., O’Connell, P., Viskochil, D. H., et al. 1990. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell, 62, 599608.Google Scholar
Zochodne, D. 1984. Von Recklinghausen’s vasculopathy. Am J Med Sci, 287, 64–5.Google Scholar

References

Adaletli, I., Omeroglu, A., Kurugoglu, S., et al., 2005, Lumbar and iliac artery aneurysms in Menkes’ disease: Endovascular cover stent treatment of the lumbar artery aneurysm: Pediatr.Radiol., 35, 1006–9.Google Scholar
Bacopoulou, F., Henderson, L., and Philip, S. G., 2006, Menkes disease mimicking non-accidental injury: Arch.Dis.Child, 91, 919.Google Scholar
Bucknall, W. E., Haslam, R. H., and Holtzman, N. A., 1973, Kinky hair syndrome: Response to copper therapy: Pediatrics, 52, 653–7.Google Scholar
Cobbold, C., Coventry, J., Ponnambalam, S., and Monaco, A. P., 2003, The Menkes disease ATPase (ATP7A) is internalized via a Rac1-regulated, clathrin- and caveolae-independent pathway: Hum.Mol.Genet., 12, 1523–3.Google Scholar
Danks, D. M., 1988, The mild form of Menkes disease: Progress report on the original case: Am.J.Med.Genet., 30, 859–4.Google Scholar
Danks, D. M., Campbell, P. E., Stevens, B. J., Mayne, V., and Cartwright, E., 1972, Menkes’s kinky hair syndrome. An inherited defect in copper absorption with widespread effects: Pediatrics, 50, 188201.Google Scholar
Donsante, A. et al., 2011, ATP7A gene addition to the choroid plexus results in long-term rescue of the lethal copper transport defect in a Menkes disease mouse model: Mol.Ther., 19, 2114–23.Google Scholar
El Maskini, R., Crabtree, K. L., Cline, L. B., et al., 2007, ATP7A (Menkes protein) functions in axonal targeting and synaptogenesis: Mol.Cell Neurosci., 34, 409–21.Google Scholar
Godwin, S. C., Shawker, T., Chang, B., and Kaler, S. G., 2006, Brachial artery aneurysms in Menkes disease: J.Pediatr., 149, 412–15.Google Scholar
Goodyer, I. D., Jones, E. E., Monaco, A. P., and Francis, M. J., 1999, Characterization of the Menkes protein copper-binding domains and their role in copper-induced protein relocalization: Hum.Mol.Genet., 8, 1473–8.Google Scholar
Grange, D. K., Kaler, S. G., Albers, G. M., et al. 2005, Severe bilateral panlobular emphysema and pulmonary arterial hypoplasia: Unusual manifestations of Menkes disease: Am.J.Med.Genet., 139A, 151–5.Google Scholar
Gu, Y. H., Kodama, H., Shiga, K., et al., 2005, A survey of Japanese patients with Menkes disease from 1990 to 2003: Incidence and early signs before typical symptomatic onset, pointing the way to earlier diagnosis: J.Inherit.Metab Dis., 28, 473–8.Google Scholar
Haddad, M. R., Donsante, A., Zerfas, P., and Kaler, S. G., 2013, Fetal brain-directed AAV gene therapy results in rapid, robust, and persistent transduction of mouse choroid plexus epithelia: Mol.Ther.Nucleic Acids, 2, e101.Google Scholar
Hsich, G. E., Robertson, R. L., Irons, M., Soul, J. S., and du Plessis, A. J., 2000, Cerebral infarction in Menkes’ disease: Pediatr.Neurol., 23, 425–8.Google Scholar
Jayawant, S., Halpin, S., and Wallace, S., 2000, Menkes kinky hair disease: An unusual case: Eur.J.Paediatr.Neurol., 4, 131–4.Google Scholar
Kaler, S. G., 2014, Neurodevelopment and brain growth in classic Menkes disease is influenced by age and symptomatology at initiation of copper treatment: J.Trace Elem.Med.Biol., 28, 427–30.Google Scholar
Kaler, S. G., Gallo, L. K., Proud, V. K., et al. 1994, Occipital horn syndrome and a mild Menkes phenotype associated with splice site mutations at the MNK locus: Nat.Genet., 8, 195202.Google Scholar
Kaler, S. G., Holmes, C. S., Goldstein, D. S., et al., 2008a, Neonatal diagnosis and treatment of Menkes disease: N.Engl.J.Med., 358, 605–14.Google Scholar
Kaler, S. G., Liew, C. J., Donsante, A., et al., 2010, Molecular correlates of epilepsy in early diagnosed and treated Menkes disease: J.Inherit.Metab Dis., 33, 583–9.Google Scholar
Kennerson, M. L., Nicholson, G. A., Kaler, S. G, et al., 2010, Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy: Am.J.Hum.Genet., 86, 343–52.Google Scholar
Kim, O. H. and Suh, J. H., 1997, Intracranial and extracranial MR angiography in Menkes disease: Pediatr.Radiol., 27, 782–4.Google Scholar
Menkes, J. H., 2001, Subdural haematoma, non-accidental head injury or …?: Eur.J.Paediatr.Neurol., 5, 175–6.Google Scholar
Menkes, J. H., Alter, M., Steigleder, G. K., Weakley, D. R., and Sung, J. H., 1962, A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration: Pediatrics, 29, 764–79.Google Scholar
Moller, J. V., Juul, B., and Le, M. M., 1996, Structural organization, ion transport, and energy transduction of P-type ATPases: Biochim.Biophys.Acta, 1286, 151.Google Scholar
Pasquali-Ronchetti, I., Baccarani-Contri, M., Young, R. D., et al., 1994, Ultrastructural analysis of skin and aorta from a patient with Menkes disease: Exp.Mol.Pathol., 61, 3657.Google Scholar
Paulsen, M., Lund, C., Akram, Z., et al., 2006, Evidence that translation reinitiation leads to a partially functional Menkes protein containing two copper-binding sites: Am.J.Hum.Genet., 79, 214–29.Google Scholar
Procopis, P., Camakaris, J., and Danks, D. M., 1981, A mild form of Menkes steely hair syndrome: J.Pediatr., 98, 97–9.Google Scholar
Seay, A. R., Bray, P. F., Wing, S. D., et al. 1979, CT scans in Menkes disease: Neurology, 29, 304–12.Google Scholar
Seelenfreund, M. H., Gartner, S., and Vinger, P. F., 1968, The ocular pathology of Menkes’ disease (Kinky hair disease): Arch.Ophthalmol., 80, 718–20.Google Scholar
Tonnesen, T., Kleijer, W. J., and Horn, N., 1991, Incidence of Menkes disease: Hum.Genet., 86, 408–10.Google Scholar
Ubhi, T., Reece, A., and Craig, A., 2000, Congenital skull fracture as a presentation of Menkes disease: Dev.Med.Child Neurol., 42, 347–8.Google Scholar
Wesenberg, R. L., Gwinn, J. L., and Barnes, G. R. Jr., 1969, Radiological findings in the kinky-hair syndrome: Radiology, 92, 500–6.Google Scholar
Wheeler, E. M. and Roberts, P. F., 1976, Menkes’s steely hair syndrome: Arch.Dis.Child, 51, 269–74.Google Scholar

References

Ausburger, J. T., Goldberg, R. E., Shields, J. A., et al. 1980. Changing appearance of retinal arteriovenous malformation. Albrecht Von Graefes Arch Klin Exp Ophthalmol, 215, 6570.Google Scholar
Bonnet, P., Dechaume, J., and Blanc, E. 1937. L’anévrysme cirsöıde de la rétine (anévrysme recémeux): Ses relations avec l’anéurysme cirsöıde de la face et avec l’anévrysme cirsöıde du cerveau. J Med Lyon, 18, 165–78.Google Scholar
Brodsky, M. C. and Hoyt, W. F. 2002. Spontaneous involution of retinal and intracranial arteriovenous malformation in Bonnet–Dechaume–Blanc syndrome. Br J Ophthalmol, 86, 360–1.Google Scholar
Brodsky, M. C., Hoyt, W. F., Higashida, R. T., et al. 1987. Bonnet–Dechaume–Blanc syndrome with large facial angioma. Arch Ophthalmol, 105, 854–5.Google Scholar
Brown, D. G., Hilal, S. K., and Tenner, M. S. 1973. Wyburn–Mason syndrome. Report of two cases without retinal involvement. Arch Neurol, 28, 67–9.Google Scholar
Brown, G. C. 1999. Congenital retinal arteriovenous communications (racemose hemangiomas). In Retina-Vitreous-Macula, eds. Guyer, D. R., Yannuzzi, L. A., Chang, S., et al. Philadelphia: WB Saunders Co., pp. 1172–4.Google Scholar
Brown, R. D. Jr., Wiebers, D. O., Forbes, G., et al. 1988. The natural history of unruptured intracranial arteriovenous malformations. J Neurosurg, 68, 352–7.Google Scholar
Cameron, M. E. and Greer, C. H. 1968. Congenital arterio-venous aneurysm of the retina. A post mortem report. Br J Ophthalmol, 52, 768–72.Google Scholar
Chakravarty, A. and Chatterjee, S. 1990. Retino-cephalic vascular malformation. J Assoc Physicians India, 38, 941–3.Google Scholar
Chan, W. M., Yip, N. K., and Lam, D. S. 2004. Wyburn–Mason syndrome. Neurology, 62, 99.Google Scholar
Danis, R. and Appen, R. E. 1984. Optic atrophy and the Wyburn–Mason syndrome. J Clin Neuroophthalmol, 4, 91–5.Google Scholar
Dayani, P. N. and Sadun, A. A. 2007. A case report of Wyburn–Mason syndrome and review of the literature. Neuroradiology, 49, 445–56.Google Scholar
de Keizer, R. J. and van Dalen, J. T. 1981. Wyburn–Mason syndrome subcutaneous angioma extirpation after preliminary embolisation. Doc Ophthalmol, 50, 263–73.Google Scholar
Effron, L., Zakov, Z. N., and Tomsak, R. L. 1985. Neovascular glaucoma as a complication of the Wyburn–Mason syndrome. J Clin Neuroophthalmol, 5, 95–8.Google Scholar
Gibo, H., Watanabe, N., Kobayashi, S., et al. 1989. Removal of an arteriovenous malformation in the optic chiasm. A case of Bonnet–Dechaume–Blanc syndrome without retinal involvement. Surg Neurol, 31, 142–8.Google Scholar
Gulick, A. W. and Taylor, W. B. 1978. A case of basal-cell carcinoma in a patient with the Wyburn–Mason syndrome. J Dermatol Surg Oncol, 4, 85–6.Google Scholar
Kim, J., Kim, O. H., Suh, J. H., et al. 1998. Wyburn–Mason syndrome: An unusual presentation of bilateral orbital and unilateral brain arteriovenous malformation. Pediatr Radiol, 28, 161.Google Scholar
Krug, E. F. and Samuels, B. 1932. Venous angioma of the retina, optic nerve, chiasm, and brain. A case report with postmortem observations. Arch Ophthalmol 8, 871879.Google Scholar
Lalonde, G., Duquette, P., Laflamme, P., et al. 1979. Bonnet–Dechaume–Blanc syndrome. Can J Ophthalmol, 14, 4750.Google Scholar
Lee, A. G. 1998. Tumors and hamartomas of blood vessels. In Walsh and Hoyt Clinical Neuro-Ophthalmology, 5th edn, eds. Miller, N. R., and Newman, N. J.. Baltimore: Williams & Wilkins, pp. 2266–8.Google Scholar
Mansour, A. M., Wells, C. G., Jampol, L. M., and Kalina, R. E. 1989. Ocular complications of arteriovenous communications of the retina. Arch Ophthalmol, 107, 232–6.Google Scholar
Morgan, M. K., Johnston, I. H., and de Silva, M. 1985. Treatment of ophthalmofacial-hypothalamic arteriovenous malformation (Bonnet–Dechaume–Blanc syndrome). Case report. J Neurosurg, 63, 794–6.Google Scholar
Muthukumar, N., and Sundaralingam, M. 1998. Retinocephalic vascular malformation: Case report. Br J Neurosurg, 12, 458–60.Google Scholar
Ponce, F. A., Han, P. P., Spetzler, R. F., et al. 2001. Associated arteriovenous malformation of the orbit and brain: A case of Wyburn–Mason syndrome without retinal involvement. Case report. J Neurosurg, 95, 34–9.Google Scholar
Rao, P., Thomas, B. J., Yonekawa, Y., Robinson, J., and Capone, A Jr. 2015. Peripheral retinal ischemia, neovascularization, and choroidal infarction in Wyburn–Mason syndrome. JAMA Ophthalmol, 133, 852–4.Google Scholar
Reck, S. D., Zacks, D. N., and Eibschitz-Tsimhoni, M. 2005. Retinal and intracranial arteriovenous malformations: Wyburn–Mason syndrome. J Neuro Ophthalmol, 25, 205–8.Google Scholar
Schmidt, D., Pache, M., and Schumacher, M. 2008. The congenital unilateral retinocephalic vascular malformation syndrome (Bonnet–Dechaume–Blanc syndrome or Wyburn–Mason syndrome): Review of the literature. Surv Ophthalmol, 53, 227–49.Google Scholar
Selhorst, J. B. 1998. Phacomatoses. In Walsh and Hoyt Clinical Neuro Ophthalmology, 5th edn., eds. Miller, N. R., and Newman, N.J.. Baltimore: Williams and Wilkins, pp. 2725–9.Google Scholar
Théron, J., Newton, T. H., and Hoyt, W. F. 1974. Unilateral retinocephalic vascular malformations. Neuroradiology, 7, 185–96.Google Scholar
Wyburn-Mason, R. 1943. Arteriovenous aneurysm of midbrain and retina, facial naevi, and mental changes. Brain, 66, 163203.Google Scholar

References

Baleva, M, Chauchev, A, Dikova, C, et al. (1995) Sneddon’s syndrome: Echocardiographic, neurological, and immunologic findings. Stroke 26:1303–4.Google Scholar
Bersano, A, Morbin, M, Ciceri, E, et al. (2016) The diagnostic challenge of Divry van Bogaert and Sneddon syndrome: Report of three cases and literature review. J Neurol Sci 364:7783.Google Scholar
Bussone, G, Parati, EA, Boiardi, A, et al. (1984) Divry van Bogaert syndrome. Clinical and ultrastructural findings. Arch Neurol 41:560–2.Google Scholar
Divry, P, Van Bogaert, L. (1946) Une maladie familiale caractérisée par une angiomatose diffuse cortico-méningée non calcifiante et une démyélinisation progressive de la substance blanche. J Neurol Neurosurg Psychiatry 9:4154.Google Scholar
Ellie, E, Julien, J, Henry, P, Vital, C, Ferrer, X. (1987) Divry–van Bogaert cortico-meningeal angiomatosis and Sneddon’s syndrome. Nosological study. Apropos of 4 cases. Rev Neurol (Paris) 143:798805.Google Scholar
Ferrer, I. (2010) Cognitive impairment of vascular origin: Neuropathology of cognitive impairment of vascular origin. J Neurol Sci 299:139–49.Google Scholar
Francès, C, Papo, T, Wechsler, B, et al. (1999) Sneddon syndrome with or without antiphospholipid antibodies. A comparative study in 46 patients. Medicine (Baltimore) 78:209–19.Google Scholar
Francès, C, Piette, JC. (2000) The mystery of Sneddon syndrome: Relationship with antiphospholipid syndrome and systemic lupus erythematosus. J Autoimmun 15:139–43.Google Scholar
Guillot, D, Salamand, P, Tomasini, P, Briant, JF, Brosset, C (1994). Ischemic cerebral vascular accidents in young subjects and livedo reticularis. Apropos of a case of Sneddon’s syndrome or Divry van Bogaert’s syndrome. Ann Radiol (Paris) 37:281–5.Google Scholar
Kraemer, M, Linden, D, Berlit, P. (2005) The spectrum of differential diagnosis in neurological patients with livedo reticularis and livedo racemosa. A literature review. J Neurol 252:1155–66.Google Scholar
Martin, JJ, Navarro, C, Roussel, JM, Michielssen, P. (1973) Familial capillaro-venous leptomeningeal angiomatosis. Eur Neurol 9:202–15.Google Scholar
Niclot, P, Hernette, D, Brosset, C, Dano, P. (1995) Divry–van Bogaert cortico-meningeal angiomatosis: A rare cause of cerebral ischemic complication in young patients. Relations with Sneddon syndrome. Ann Med Interne (Paris) 146:280–3.Google Scholar
Ruscalleda, J, Coscojuela, P, Guardia, E, DeJuan, M. (1991) General case of the day. Cerebromeningeal angiomatosis (Sneddon syndrome). Radiographic 11:929–31.Google Scholar
Sneddon, IB (1965). Cerebro-vascular lesions and livedo reticularis. Br J Dermatol 77:180–5.Google Scholar
Stone, J, Bhattacharya, J, Walls, TJ. (2001) Divry–van Bogaert syndrome in a female: Relationship to Sneddon’s syndrome and radiographic appearances. Neuroradiology 43:562–4.Google Scholar
Tamm, E, Jungkunz, W, Wolter, M, Marsch, WC. (1994) Immunohistochemical characterization of the ‘intimal proliferation’ phenomenon in Sneddon’s syndrome and essential thrombocythaemia. Br J Dermatol 131:814–21.Google Scholar
Vonsattel, JPG, Hedley-Whyte, ET (1989). In Handbook of Clinical Neurology. Vascular Disease Part III. Vinken, PJ, Bruyn, GW, Klawans, HL, Toole, JF, editors. Elsevier, Amsterdam, vol. 55, pp. 317–332.Google Scholar

References

Aihara, M., Konuma, Y., Okawa, K., et al. (1991) Blue rubber bleb nevus syndrome with disseminated intravascular coagulation and thrombocytopenia: Successful treatment with high-dose intravenous gammaglobulin. Tohoku J Exp Med, 163, 111–17.Google Scholar
Apak, H., Celkan, T., Ozkan, A., et al. (2004) Blue rubber bleb nevus syndrome associated with consumption coagulopathy: Treatment with interferon. Dermatology, 208, 345–8.Google Scholar
Bahl, A., Raghavan, A., & Sinha, S. (2013) Blue rubber bleb naevus syndrome and Chiari malformation: High risk of peroperative haemorrhage. Turk Neurosurg, 23, 818–20.Google Scholar
Ballieux, F., Boon, L. M., & Vikkula, M. (2015) Blue bleb rubber nevus syndrome. Handb Clin Neurol, 132, 223–30.Google Scholar
Bean, W. B. (1958) Blue Rubber-Bleb Nevi of the Skin and Gastrointestinal Tract. Thomas, Charles C, Springfield, IL.Google Scholar
Boente, M. D., Cordisco, M. R., Frontini, M. D., & Asial, R. A. (1999) Blue rubber bleb nevus (Bean syndrome): Evolution of four cases and clinical response to pharmacologic agents. Pediatr Dermatol, 16, 222–7.Google Scholar
Boon, L. M., Mulliken, J. B., Vikkula, M., et al. (1994) Assignment of a locus for dominantly inherited venous malformations to chromosome 9p. Hum Mol Genet, 3, 1583–7.Google Scholar
Boscolo, E., Limaye, N., Huang, L., et al. (2015) Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. J Clin Invest, 125, 3491–504.Google Scholar
Burrows, P. E., Mitri, R. K., Alomari, A., et al. (2008) Percutaneous sclerotherapy of lymphatic malformations with doxycycline. Lymphat Res Biol, 6, 209–16.Google Scholar
Carvalho, S., Barbosa, V., Santos, N., & Machado, E. (2003) Blue rubber-bleb nevus syndrome: Report of a familial case with a dural arteriovenous fistula. AJNR Am J Neuroradiol, 24, 1916–18.Google Scholar
Chung, J. I., Alvarez, H., & Lasjaunias, P. (2003) Multifocal cerebral venous malformations and associated developmental venous anomalies in a case of blue rubber bleb nevus syndrome. Interv Neuroradiol, 9, 169–76.Google Scholar
Dobru, D., Seuchea, N., Dorin, M., & Careianu, V. (2004) Blue rubber bleb nevus syndrome: Case report and literature review. Rom J Gastroenterol, 13, 237–40.Google Scholar
Eirís-Puñal, J., Picón-Cotos, M., Viso-Lorenzo, A., & Castro-Gago, M. (2002) Epileptic disorder as the first neurologic manifestation of blue rubber bleb nevus syndrome. J Child Neurol, 17, 219–22.Google Scholar
Elsayes, K. M., Menias, C. O., Dillman, J. R., et al. (2008) Vascular malformation and hemangiomatosis syndromes: Spectrum of imaging manifestations. AJR Am J Roentgenol, 190, 1291–9.Google Scholar
Ferrés-Ramis, L., Knöpfel, N., Salinas-Sanz, J. A., & Martín-Santiago, A. (2015) Rapamycin in the treatment of blue rubber bleb nevus syndrome. Actas Dermosifiliogr, 106, 137–8.Google Scholar
Fishman, S. J., Smithers, C. J., Folkman, J., et al. (2005) Blue rubber bleb nevus syndrome: Surgical eradication of gastrointestinal bleeding. Ann Surg, 241, 523–8.Google Scholar
Gallione, C. J., Pasyk, K. A., Boon, L. M., et al. (1995) A gene for familial venous malformations maps to chromosome 9p in a second large kindred. J Med Genet, 32, 197–9.Google Scholar
Gallo, S. H. & McClave, S. A. (1992) Blue rubber bleb nevus syndrome: Gastrointestinal involvement and its endoscopic presentation. Gastrointest Endosc, 38, 72–6.Google Scholar
Gascoyen, M. (1860) Case of naevus involving the parotid gland, and causing death from suffocation. Naevi of the viscera. Trans Pathol Soc (Lond), 11, 267.Google Scholar
Gonzalez, D., Elizondo, B. J., Haslag, S., et al. (2001) Chronic subcutaneous octreotide decreases gastrointestinal blood loss in blue rubber-bleb nevus syndrome. J Pediatr Gastroenterol Nutr, 33, 183–8.Google Scholar
Jin, X. L., Wang, Z. H., Xiao, X. B., Huang, L. S., Zhao, X. Y. (2014) Blue rubber bleb nevus syndrome: A case report and literature review. World J Gastroenterol, 20, 17254–9.Google Scholar
Karar, J. & Maity, A. (2011) PI3 K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci, 4, 51.Google Scholar
Kassarjian, A., Fishman, S. J., Fox, V. L., & Burrows, P. E. (2003) Imaging characteristics of blue rubber bleb nevus syndrome. AJR Am J Roentgenol, 181, 1041–8.Google Scholar
Kondziella, D., Nordanstig, A., Mölne, L., & Axelsson, M. (2010) Neurological picture: Cranial neuropathy in the blue rubber bleb nevus syndrome. J Neurol Neurosurg Psychiatry, 81, 1207–8.Google Scholar
Korekawa, A., Nakajima, K., Aizu, T, et al. (2015) Blue rubber bleb nevus syndrome showing vascular skin lesions predominantly on the face. Rep Dermatol, 7. The final, published version of this article is available at http://www.karger.com/?doi=10.1159/000438664.Google Scholar
Kunishige, M., Azuma, H., Masuda, K., Shigekiyo, T., Arii, Y., Kawai, H. & Saito, S. (1997) Interferon alpha-2a therapy for disseminated intravascular coagulation in a patient with blue rubber bleb nevus syndrome. A case report. Angiology, 48, 273–7.Google Scholar
Moodley, M. & Ramdial, P. (1993) Blue rubber bleb nevus syndrome: Case report and review of the literature. Pediatrics, 92, 160–2.Google Scholar
Nobuhara, Y., Onoda, N., Fukai, K., et al. (2006) TIE2 gain-of-function mutation in a patient with pancreatic lymphangioma associated with blue rubber-bleb nevus syndrome: Report of a case. Surg Today, 36, 283–6.Google Scholar
Ocampo-Garza, J., Salas-Alanís, J. C., Ponce-Camacho, M. A., et al. (2016) Fatal outcome from brain vascular lesions in a neonate with blue rubber bleb nevus syndrome. Pediatr Dermatol, 33, e2931.Google Scholar
Rajah, G., To, C. Y., Sood, S., et al. (2014) Epidural spinal cord compression in a patient with blue rubber bleb nevus syndrome. J Neurosurg Pediatr, 14, 486–9.Google Scholar
Rice, J. S. & Fischer, D. S. (1962) Blue rubber-bleb nevus syndrome. Generalized cavernous hemangiomatosis or venous hamartoma with medulloblastoma of the cerebellum: Case report and review of the literature. Arch Dermatol, 86, 503–11.Google Scholar
Salloum, R., Fox, C. E., Alvarez-Allende, C. R., et al. (2016) Response of blue rubber bleb nevus syndrome to sirolimus treatment. Pediatr Blood Cancer, 63, 1911–14.Google Scholar
Satya-Murti, S., Navada, S., & Eames, F. (1986) Central nervous system involvement in blue-rubber-bleb-nevus syndrome. Arch Neurol, 43, 1184–6.Google Scholar
Soblet, J., Kangas, J., Nätynki, M., et al. (2017) Blue rubber bleb nevus (BRBN) syndrome is caused by somatic TEK (TIE2) mutations. J Invest Dermatol, 137, 207–16.Google Scholar
Tomelleri, G., Cappellari, M., Di Matteo, A., et al. (2010) Blue rubber bleb nevus syndrome with late onset of central nervous system symptomatic involvement. Neurol Sci, 31, 501–4.Google Scholar
Tzoufi, M. S., Sixlimiri, P., Nakou, I., et al. (2008) Blue rubber bleb nevus syndrome with simultaneous neurological and skeletal involvement. Eur J Pediatr, 167, 897901.Google Scholar
Waybright, E. A., Selhorst, J. B., Rosenblum, W. I., & Suter, C. G. (1978) Blue rubber bleb nevus syndrome with CNS involvement and thrombosis of a vein of galen malformation. Ann Neurol, 3, 464–7.Google Scholar
Yuksekkaya, H., Ozbek, O., Keser, M., & Toy, H. (2012) Blue rubber bleb nevus syndrome: Successful treatment with sirolimus. Pediatrics, 129, e10804.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×