Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-25T11:44:38.408Z Has data issue: false hasContentIssue false

Effect of crocin of Crocus sativus L. on serum inflammatory markers (IL-6 and TNF-α) in chronic obstructive pulmonary disease patients: a randomised, double-blind, placebo-controlled trial

Published online by Cambridge University Press:  11 January 2023

Mohammad Reza Aslani
Affiliation:
Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
Nasim Abdollahi
Affiliation:
Department of Internal Medicine, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
Somaieh Matin
Affiliation:
Department of Internal Medicine, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
Anahita Zakeri
Affiliation:
Department of Internal Medicine, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
Hassan Ghobadi*
Affiliation:
Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran Department of Internal Medicine, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
*
*Corresponding author: Dr H. Ghobadi, fax +984533262140, email [email protected]

Abstract

Different factors, such as inflammation, oxidative stress, extracellular matrix degradation and apoptosis, affect the pathophysiology of chronic obstructive pulmonary disease (COPD), as a progressive disease characterised by permanent airflow limitation. Herbal supplements with anti-inflammatory and antioxidant properties can help treat certain chronic diseases. The current study aimed at investigating the preventive effects of crocin supplementation on the serum concentrations of IL-6, TNF-α, exercise capacity and pulmonary function tests (PFT) in patients with COPD. The present prospective randomised clinical trial equally divided fifty-seven patients with COPD into a placebo and an intervention group, who respectively received a placebo and crocin (15 mg twice day for 12 weeks) as a supplement. ELISA was used to measure serum levels of IL-6 and TNF-α, also PFT and exercise capacity based on 6-min walking distance test (6MWD), which was performed at the beginning and end of the study. Crocin improved the results of PFT (P < 0·05) and 6-MWD (P < 0·001) and exerted preventive effects by increasing the serum levels of IL-6 in patients with COPD compared with those in the placebo group (P < 0·05). Intervention with crocin significantly lowered serum levels of TNF-α at the end of the study (P < 0·01). The present findings suggest crocin supplementation improves exercise capacity and PFT in patients with COPD by reducing serum levels of inflammatory factors.

Type
Research Article
Copyright
© Ardabil University of Medical Sciences, 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Szalontai, K, Gémes, N, Furák, J, et al. (2021) Chronic obstructive pulmonary disease: epidemiology, biomarkers, and paving the way to lung cancer. J Clin Med 10, 2889.CrossRefGoogle ScholarPubMed
Bulgakova, O, Kausbekova, A, Kussainova, A, et al. (2021) Involvement of circulating cell-free mitochondrial DNA and proinflammatory cytokines in pathogenesis of chronic obstructive pulmonary disease and lung cancer. Asian Pac J Cancer Prev 22, 1927.CrossRefGoogle ScholarPubMed
Agustí, A, Edwards, LD, Rennard, SI, et al. (2012) Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS ONE 7, e37483.CrossRefGoogle ScholarPubMed
Hlapčić, I, Belamarić, D, Bosnar, M, et al. (2020) Combination of systemic inflammatory biomarkers in assessment of chronic obstructive pulmonary disease: diagnostic performance and identification of networks and clusters. Diagnostics 10, 1029.CrossRefGoogle ScholarPubMed
Argilés, JM & López-Soriano, FJ (1998) Catabolic proinflammatory cytokines. Curr Opin Clin Nutr Metab Care 1, 245251.CrossRefGoogle ScholarPubMed
Khan, NA, Daga, MK, Ahmad, I, et al. (2016) Evaluation of BODE index and its relationship with systemic inflammation mediated by proinflammatory biomarkers in patients with COPD. J Inflamm Res 9, 187198.CrossRefGoogle ScholarPubMed
Bathaie, SZ & Mousavi, SZ (2010) New applications and mechanisms of action of saffron and its important ingredients. Crit Rev Food Sci Nutr 50, 761786.CrossRefGoogle ScholarPubMed
Hosseini, SA, Zilaee, M & Shoushtari, MH (2018) An evaluation of the effect of saffron supplementation on the antibody titer to heat-shock protein (HSP) 70, hsCRP and spirometry test in patients with mild and moderate persistent allergic asthma: a triple-blind, randomized placebo-controlled trial. Respir Med 145, 2834.CrossRefGoogle ScholarPubMed
Bukhari, SI, Pattnaik, B, Rayees, S, et al. (2015) Safranal of Crocus sativus L. inhibits inducible nitric oxide synthase and attenuates asthma in a mouse model of asthma. Phytother Res 29, 617627.CrossRefGoogle Scholar
Rahimi, G, Shams, S & Aslani, MR (2022) Effects of crocin supplementation on inflammatory markers, lipid profiles, insulin and cardioprotective indices in women with PCOS: a randomized, double-blind, placebo-controlled trial. Phytother Res 36, 26052615.CrossRefGoogle ScholarPubMed
Hashemzaei, M, Mamoulakis, C, Tsarouhas, K, et al. (2020) Crocin: a fighter against inflammation and pain. Food Chem Toxicol 143, 111521.CrossRefGoogle ScholarPubMed
Saadat, S, Yasavoli, M, Gholamnezhad, Z, et al. (2019) The relaxant effect of crocin on rat tracheal smooth muscle and its possible mechanisms. Iran J Pharm Sci 18, 13581370.Google Scholar
Poursamimi, J, Shariati-Sarabi, Z, Tavakkol-Afshari, J, et al. (2020) Immunoregulatory effects of Krocina™, a herbal medicine made of crocin, on osteoarthritis patients: a successful clinical trial in Iran. Iran J Allergy Asthma Immunol 19, 253263.Google ScholarPubMed
Shahbazian, H, Aleali, AM, Amani, R, et al. (2019) Effects of saffron on homocysteine, and antioxidant and inflammatory biomarkers levels in patients with type 2 diabetes mellitus: a randomized double-blind clinical trial. Avicenna J Phytomed 9, 436445.Google ScholarPubMed
Amani, M, Ghadimi, N, Aslani, MR, et al. (2017) Correlation of serum vascular adhesion protein-1 with airflow limitation and quality of life in stable chronic obstructive pulmonary disease. Respir Med 132, 149153.CrossRefGoogle ScholarPubMed
Ghobadi, H, Aslani, MR, Hosseinian, A, et al. (2017) The correlation of serum brain natriuretic peptide and interleukin-6 with quality of life using the chronic obstructive pulmonary disease assessment test. Med Princ Pract 26, 509515.CrossRefGoogle ScholarPubMed
Petersen, A, Penkowa, M, Iversen, M, et al. (2007) Elevated levels of IL-18 in plasma and skeletal muscle in chronic obstructive pulmonary disease. Lung 185, 161171.CrossRefGoogle ScholarPubMed
Koehler, F, Doehner, W, Hoernig, S, et al. (2007) Anorexia in chronic obstructive pulmonary disease – association to cachexia and hormonal derangement. Int J Cardiol 119, 8389.CrossRefGoogle ScholarPubMed
Margretardottir, OB, Thorleifsson, SJ, Gudmundsson, G, et al. (2009) Hypertension, systemic inflammation and body weight in relation to lung function impairment – an epidemiological study. COPD 6, 250255.CrossRefGoogle ScholarPubMed
Brüünsgaard, H & Pedersen, BK (2003) Age-related inflammatory cytokines and disease. Immunol Allergy Clin North Am 23, 1539.CrossRefGoogle ScholarPubMed
Kolsum, U, Roy, K, Starkey, C, et al. (2009) The repeatability of interleukin-6, tumor necrosis factor-α, and C-reactive protein in COPD patients over 1 year. Int J Chron Obstruct Pulmon Dis 4, 149156.CrossRefGoogle Scholar
Khazdair, MR, Saadat, S, Aslani, MR, et al. (2021) Experimental and clinical studies on the effects of Portulaca oleracea L. and its constituents on respiratory, allergic, and immunologic disorders, a review. Phytother Res 35, 68136842.CrossRefGoogle ScholarPubMed
Collins, PF, Elia, M & Stratton, RJ (2013) Nutritional support and functional capacity in chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respirology 18, 616629.CrossRefGoogle ScholarPubMed
Clini, E & Ambrosino, N (2008) Nonpharmacological treatment and relief of symptoms in COPD. Eur Respir J 32, 218228.CrossRefGoogle ScholarPubMed
Ghobadi, H, Abdollahi, N, Madani, H, et al. (2022) Effect of crocin from saffron (Crocus sativus L.) supplementation on oxidant/antioxidant markers, exercise capacity, and pulmonary function tests in COPD patients: a randomized, double-blind, placebo-controlled trial. Front Pharmacol 13, 884710.CrossRefGoogle ScholarPubMed
Assimopoulou, A, Sinakos, Z & Papageorgiou, V (2005) Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res 19, 9971000.CrossRefGoogle ScholarPubMed
Amin, B, Abnous, K, Motamedshariaty, V, et al. (2014) Attenuation of oxidative stress, inflammation and apoptosis by ethanolic and aqueous extracts of Crocus sativus L. stigma after chronic constriction injury of rats. An Acad Bras Cienc 86, 18211832.CrossRefGoogle ScholarPubMed
Akbari-Fakhrabadi, M, Najafi, M, Mortazavian, S, et al. (2019) Effect of saffron (Crocus sativus L.) and endurance training on mitochondrial biogenesis, endurance capacity, inflammation, antioxidant, and metabolic biomarkers in Wistar rats. J Food Biochem 43, e12946.CrossRefGoogle ScholarPubMed
Xie, Y, He, Q, Chen, H, et al. (2019) Crocin ameliorates chronic obstructive pulmonary disease-induced depression via PI3K/Akt mediated suppression of inflammation. Eur J Pharmacol 862, 172640.CrossRefGoogle ScholarPubMed
Du, J, Chi, Y, Song, Z, et al. (2018) Crocin reduces Aspergillus fumigatus-induced airway inflammation and NF-κB signal activation. J Cell Biochem 119, 17461754.CrossRefGoogle ScholarPubMed
Zhu, K, Yang, C, Dai, H, et al. (2019) Crocin inhibits titanium particle-induced inflammation and promotes osteogenesis by regulating macrophage polarization. Int Immunopharmacol 76, 105865.CrossRefGoogle ScholarPubMed
Yosri, H, Elkashef, WF, Said, E, et al. (2017) Crocin modulates IL-4/IL-13 signaling and ameliorates experimentally induced allergic airway asthma in a murine model. Int Immunopharmacol 50, 305312.CrossRefGoogle ScholarPubMed
Mohamadpour, AH, Ayati, Z, Parizadeh, MR, et al. (2013) Safety evaluation of crocin (a constituent of saffron) tablets in healthy volunteers. Iran J Basic Med Sci 16, 3944.Google ScholarPubMed
Behrouz, V, Sohrab, G, Hedayati, M, et al. (2021) Inflammatory markers response to crocin supplementation in patients with type 2 diabetes mellitus: a randomized controlled trial. Phytother Res 35, 40224031.CrossRefGoogle ScholarPubMed
Azimi, P, Ghiasvand, R, Feizi, A, et al. (2014) Effects of cinnamon, cardamom, saffron, and ginger consumption on markers of glycemic control, lipid profile, oxidative stress, and inflammation in type 2 diabetes patients. Rev Diabet Stud 11, 258266.CrossRefGoogle ScholarPubMed
Mousavi, B, Bathaie, SZ, Fadai, F, et al. (2015) Safety evaluation of saffron stigma (Crocus sativus L.) aqueous extract and crocin in patients with schizophrenia. Avicenna J Phytomed 5, 413419.Google ScholarPubMed
Kermani, T, Zebarjadi, M, Mehrad-Majd, H, et al. (2017) Anti-inflammatory effect of Crocus sativus on serum cytokine levels in subjects with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Curr Clin Pharmacol 12, 122126.CrossRefGoogle ScholarPubMed
Ebrahimi, F, Sahebkar, A, Aryaeian, N, et al. (2019) Effects of saffron supplementation on inflammation and metabolic responses in type 2 diabetic patients: a randomized, double-blind, placebo-controlled trial. Diabetes Metab Syndr Obes 12, 21072115.CrossRefGoogle ScholarPubMed
Ghiasian, M, Khamisabadi, F, Kheiripour, N, et al. (2019) Effects of crocin in reducing DNA damage, inflammation, and oxidative stress in multiple sclerosis patients: a double-blind, randomized, and placebo-controlled trial. J Biochem Mol Toxicol 33, e22410.CrossRefGoogle ScholarPubMed
Boskabady, MH & Aslani, MR (2006) Relaxant effect of Crocus sativus (saffron) on guinea-pig tracheal chains and its possible mechanisms. J Pharm Pharmacol 58, 13851390.CrossRefGoogle ScholarPubMed
Aslani, MR, Amani, M, Masrori, N, et al. (2022) Crocin attenuates inflammation of lung tissue in ovalbumin-sensitized mice by altering the expression of endoplasmic reticulum stress markers. Biofactors 48, 204215.CrossRefGoogle ScholarPubMed
McCarthy, B, Casey, D, Devane, D, et al. (2015) Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 23, CD003793.Google Scholar
Puhan, MA, Mador, M, Held, U, et al. (2008) Interpretation of treatment changes in 6-min walk distance in patients with COPD. Eur Respir J 32, 637643.CrossRefGoogle ScholarPubMed
Dianat, M, Radan, M, Badavi, M, et al. (2018) Crocin attenuates cigarette smoke-induced lung injury and cardiac dysfunction by anti-oxidative effects: the role of Nrf2 antioxidant system in preventing oxidative stress. Respir Res 19, 120.CrossRefGoogle ScholarPubMed
Kim, J-H, Park, G-Y, Bang, SY, et al. (2014) Crocin suppresses LPS-stimulated expression of inducible nitric oxide synthase by upregulation of heme oxygenase-1 via calcium/calmodulin-dependent protein kinase 4. Mediators Inflamm 2014, 728709.CrossRefGoogle ScholarPubMed
Xiong, Y, Wang, J, Yu, H, et al. (2015) Anti-asthma potential of crocin and its effect on MAPK signaling pathway in a murine model of allergic airway disease. Immunopharmacol Immunotoxicol 37, 236243.CrossRefGoogle Scholar
Zhang, D, Qi, B-Y, Zhu, W-W, et al. (2020) Crocin alleviates lipopolysaccharide-induced acute respiratory distress syndrome by protecting against glycocalyx damage and suppressing inflammatory signaling pathways. Inflamm Res 69, 267278.CrossRefGoogle ScholarPubMed