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1. Introduction. Let w = {(z) be holomorphic on the
unit disk D = {z:]|z|<1}, with the additional restrictions that
lf(z)]< 1 and A. lim f(z) = 1, where A. lim f(z) denotes the

z=+1 z—+1
(outer) angular limit of f(z) at z = 1. Let us now define
g(z) = ﬂf—%, and then focus our attention on the behaviour of
g(z) in an arbitrary angular neighbourhood of z = 1. Whenever

A. 1irn1g(z) exists, this limit is commonly referred to as the
z—’
angular derivative of f(z) at z = 1.

We now cite some of the fundamental results, by now
classical, pertaining to the theory of angular derivatives for
functions restricted as above.

(i) A. 1irr11 |g(z)| always exists either as a real number o
z-’

greater than zero or as + .

(ii) ¥ A. lim [g(z)]| = >0, then this same property
z—+1

1-[f(z)

holds for the functions g(z), z! , and f'(z)

1-
respectively. By this we mean that each of these functions
actually possesses an angular limit at z = 4 which in each
case turns out to be o.

(iii) A. lim [g(z)| = @> 0 if and only if lim (1-!f(zH

z=—+>1 z=>1 1‘lzl )=Q:

where lim means limit inferior.
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K, (z),

(iv) If A. lim [g(z)| = >0, then K, (6(z)) >~ K,
21

2 [£(z)
where Ki(z) zil—;!%{? and Ki(f(z)) = 1!1—?(;)[ .

(v) If there exists X >0 such that Ki(f(z)) > )\Ki(z),

VR |

then A. lim |g(z)] < ‘)1\‘ . For details regarding the
z—+1 -

above assertions, the interested reader is referred to
([1], pp. 112-121; [4], pp. 23-32; [5], pp. 236-239;
(6], pp. 15-18).

1- 1
That lim (__Jii_z_u_) =a>0 implies K (f(z)) > =K (z)
z—= 1 1'IZI 1 a 1

is a generalized form of the lemma of Julia. The original Julia
lemma essentially states that if f(z) is holomorphic at z =1

also, then Ki(f(z))z K1(z).

4

£'(1)
The generalized Julia lemma and its converse (assertion

(v)) reduces the question of existence of a finite angular derivative

of f(z) at z =1 to the problem of finding a positive minimal

harmonic function with pole at z =1 (i.e., of the form

)\K1(z), X >0) which can be dominated by Ki(f(z)). Since this

condition gives little or no direct information about the mapping
properties of f(z), we therefore concern ourselves with the
problem of finding some other necessary and sufficiency condition
that will ensure the existence of a finite angular derivative of

f(z) at z =1 and, at the same time, give direct information
about the mapping properties of f(z). Results of this kind have
been established by Carathéodory, Valiron, Warschawski and
others, and have been summed up in Tsuji's book ([9], Chapt. IX,
theorems IX.9, IX.410 and IX.11).

It is the author's opinion that certain aspects of the theory
of angular derivatives can be greatly simplified by making use
of some of the concepts of modern potential theory, especially
the fine topology of Cartan, Brelot and Naim. In fact, we shall
show that the existence of a finite angular derivative of f(z)
at z = 1 1is equivalent to the condition that certain fine neighbour-
hoods of z =1 are preserved by f(z) in a sense to be made
precise.,
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2. Some Definitions and Results that are Fundamental
in Potential Theory. In this section, we introduce some
potential theoretic concepts in a form that is adequate for our

purposes.

Let R be an open connected subset of the complex plane
which tolerates a Green's function G(z, a), with pole at a ¢ R.
A set E CR 1is defined to be polar, or of outer capacity zero
(with relation to the Green's function as kernel), if there exists

a Green potential Up(z) = f G(z,w)dpw,é-f- o on R with
R
respect to the mass distribution p (a non-negative Borel

measure), such that U“(p) =+ for any pe E.

Now let v be a positive (>0) superharmonic function
on R, ECR, and {s} the set of non-negative superharmonic
functions on R such that s >v on R-E for any se{s}. Then

the lower envelope of {s}, denoted by ZE with ordering taken

to be pointwise, is a non-negative superharmonic function on R
quasi-everywhere (except on a polar subset of R). Let us now

E
regularize ZV by defining a new function

z wherever Z is lower semi-continuous,
v

E v

lim Z}i at any p (necessarily in a polar set) where

z--p E . . .
ZIV fails to be lower semi-continuous.

Then € is a non-negative superharmonic function on R; we
v

shall refer to this function as the (outer) extremalized function
of v on E, and to € as the extremalization operator of
Brelot (see [8], pp. 127-131 for details). In the particular case
where E 1is open, then

E v quasi-everywhere on R-E,
M HE on E.
Vi
The function Hf; is defined to be the generalized solution of

the Dirichlet problem on E with boundary function
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v = v on 9 EMNR,
* 0 at o (the Alexandroff compactification point of R).

The fine topology of Cartan-Brelot on R is defined to be
the least topology on R making continuous the superharmonic
functions on R, or equivalently the least topology making
continuous the Green potentials on R. A fundamental notion
associated with the filter of fine neighbourhoods at a point ac¢R
is the concept of a thin set introduced by Brelot. A set ECR
is defined to be thin at a¢ R if and only if either

(i) a is an isolated point of E (J {a} 1in the usual
topology on R,
or -
(ii) § a positive superharmonic function v on R such
that

v(a) < lim v(z).
z—a
ze E

A set NCR is a fine neighbourhood of a if and only if
aeN and R-N is thin at a.

Let us now choose a ¢ R as a reference point, and hold it

fixed throughout the remainder of this section. The set R-{a}
shall be denoted by R , and the function =2 on R x R

a G(z, a) a a
shall be designated by K(z, w). We shall refer to K(z,w) as
the Martin kernel function, although the term normalized
Green's function is often used, and note that there exists a_
compact metric space R = RU A, where R 1is dense in R;
such that

lim K(z, w) =K2(w) or K(z,w)
z=> 7z
ze R
ze A

is a positive harmonic function on R where limit is taken with
respect to the topology of R. A is called the Martin boundary
of R, and if K, (w) is minimal (i.e., dominates only non-
negative harmonic functions of the form )\Kz(w) where

0< A< 1) then we say that Z is a minimal Martin boundary
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point and denote the set of these points by A1. In general

A1 CA, and Martin showed that for each positive harmonic

function h in R there exists a unique mass distribution u on

A1 such that h(w) = f K(2, w)dn. . The measure p 1is often
z

24

referred to as the canonical measure on Ai associated with h.

The function K(z, w) originally defined on Ra X Ra , and then
extended continuously onto R x Ra , shall be called the Martin
a

kernel function on ﬁax Ra

Let p be a mass distribution on Ra and Zc« ﬁa . Then
the function VP(E) = f K(z, w)dpw, (# + o), shall be referred
R

a
to as the Martin potential of u ([7], p. 21). If ZeR_, then
uH(2) y
G(z, a)

VF('z‘) = where U (Z) is the Green potential of p. In
her thesis, Naim ([7], p.23) introduced a definition of thinness
for a set ECR relative to any point 2eR.a .

a

According to Naim's definition, E is thin at Z if and
only if either:

(i) z is an isolated point of EU{Z} in the Martin
topology

or
(ii) there exists a Martin potential v" on Ra such that

vF (2)< lim V¥ (2).
z=Z
ze E
Naim showed that Ra is thin at Ze A-A1 ([7], p. 25) and that
for any ECR_, it follows that E is thin at Ze A, if and only
R -E
if 6 a # K (w) ([7], p. 27, theorem 5). By making use of
K(w) — °

a kernel function which she designated by 6, Naim was able
to define potentials for mass distributions on R'a rather than

just on Ra . The function
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G(z, w)

= X
8(z, w) Clr.a) Gw a) ©°" R Ra
N K(Z, w) ~
= X
0(z, w) Glw, 2) on Ra Ra
8(z,%) = lim 6(zZ,w) on AXA1
W W
we R
a

8(z, W) = f 8(z, x?/')dp\?/ on AX(A—Ai) where p is

the canonical measure (on Ai) associated with K‘?j.

The fine topology of Naim on f{a is defined to be the least
topology on ﬁa which makes the 6-potentials continuous ([7],
p. 40). Under this topology the boundary of Ra turns out to be
the minimal Martin boundary Ai . The fine topology of Naim

on R relativized to R coincides with the fine topology of
a

a

Cartan and Brelot. It is also worth noting that if zeR then
. M _ B ~ . V(Z)

any 6-potential U (z) = j,\ 6(z, vv)dp‘,:V is of the form _—_—‘G(z, ")

a
where v{z) is a non-negative superharmonic function on R _, and
a

Glz, )

~
z> Z

ze R
a

that if Ze Ai then UH('z‘) = lim <v(z) \>0or +w, ([7], p. 48,

theorem 7!'-16).

We close this section with a remark on the reference point
a. As Parreau ([8], p. 151) has remarked, the Martin boundary
A of R (as well as Ai) has only an apparent dependence on the

point a . If a were replaced by b ¢ R, then the spaces R

' a
and Rb would be equivalent both as topological spaces and
uniform spaces.

3. A Theorem on Angular Derivatives. We shall now
state and prove our main theorem.
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THEOREM. Let f(z) be defined as above, and let
NcCD={z: |z] < 1} be an open subset relative to the usual
topology and at the same time a deleted fine neighbourhood of
z = 1 relative to the space D= {z: |[z| <1} endowed with the
Naim topology. Then f(z) possesses a finite angular derivative
at z =1 if and only if the image of N under f (i.e., f(N)) is
a deleted fine neighbourhood of w = 1 relative to the space
D' = {w: [w| <1} endowed also with the fine topology of Naim.

Proof. Necessity Part. Suppose that f(N) fails to be

f(N)
Ki(w) = Ki(w)

a deleted fine neighbourhood of w =14. Then &

([7], p. 27, theorem 5) on £(N), where € is the extremalisation
operator of Brelot.
Since K1 (w) is a solution of a generalized Dirichlet

problem on f(N), or quasi-bounded according to Parreau's
terminology ([8], p. 164), therefore Ki(f(z)) is quasi-bounded

on N. This follows immediately from the fact that any quasi-
bounded harmonic function on f(N) can be expressed as the

limit of a monotone non-decreasing sequence of bounded harmeonic
functions on f(N).

We now define KN (z)= K (z) -EN on N, and note that
1 1 Ki(Z)

N
K1 (z) is a positive minimal harmonic function on N ([7], p. 42,
theorem 12). Since Ki(f(z)) is quasi-bounded on N, therefore

Ki(f(z)) cannot dominate any minimal function of the form

LKN (z), A>0. This is a consequence of the fact that

1
Ki(f(z))
F. lim ——— =0 ([7], p. 49, theorem 8'-17), where F. lim
N
zeN K (z)
1
z->1

denotes the fine limit or pseudo limit of Naim, combined with the
result that z = 1 may be regarded as a minimal Martin boundary
point of both N and D ([7], p. 46, theorem 15).

Since KT (z) < Ki(z), it is not possible to choose A>0
such that Kif(z) > )\Ki(z) on N, and hence on D. Combining

this result with the generalized lemma of Julia, it follows that
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lim  (1- [i(z)])
z—1 1- |z|

= +0 . The necessity of our theorem follows.

- Sufficiency Part. We let N = {z: K1(z) > 1} and suppose
tthat f(N) is a deleted fine neighbourhood of w =1. Then

H(w) = Ki(w) - ef(N) is a positive minimal harmonic function

Ki(W)
on f(N) ([7], p. 42, theorem 12). Furthermore, lim H(w) = 0
W,
wef(N)

where w_ is a boundary point of f(N) in D', keeping in mind
)

that any such point must be a regular boundary point of f(N)
([8], pp. 111-113). Now let z_ be any boundary point of N in

D. Since f(zo) is either a regular boundary point of f(N) in Df,

or possibly an interior point of f(N), therefore lim S(z) =0
zZ=>z
Ze No

where S(z) # 0 in the singular part of H(f(z)).

Since the principle of positive singularities of Bouligand
and Brelot is applicable to N, S(z) is a positive minimal
harmonic function with pole at z =1 ([2], p. 120, theorem 4),

and therefore of the form )\OKIZI (z), )\O > 0, where

N
K1 (z) = K1(z) - 4 on N. Since Ki(f(z))_>_ S(z) on N and hence

Ki(f(Z))

N .
K . .
Ki(f(z)) > xo ) (z) on N, it follows that F. lim '———Ki(z)

KN(z) z=>1

because F. lim =1, Thus the canonical measure of
K (z)

z—>1 1
K1(f(z)) associated with {1} is greater than or equal to

)‘o ({7], p. 49, theorem 8'-17), and therefore

>\ >0,
- o

K1f(z) > )\OK1(z) on D. Combining this result with the converse

of the generalized Julia lemma, it follows that f(z) possesses a
finite angular derivative at z = 1. This proves the sufficiency.

Since the concept of fine neighbourhood is conformally
invariant, our theorem holds true if phrased in terms of the half
plane, taking into account the minor modifications which must
be made. For holomorphic functions on D, with less restrictive
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conditions than those just considered, the theory of angular
derivatives can, in certain instances, be associated with the
Phragmén- Lindeldf principle. It is the writer's intention to
consider this principle in a future work.
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