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LOCAL COMPLEMENTS TO THE HAUSDORFF-YOUNG 
THEOREM FOR AMALGAMS 

BY 

MARIA L. TORRES DE SQUIRE 
In memoriam Graciela Salicrup 

ABSTRACT. Let G be a locally compact abelian group. An amalgam 
space (L!',t')(G) (1 ^ p,q ^ °°) is a Banach space of functions which 
belong locally to L'\G) and globally to V. In this paper we present non-
inclusion results related to the Hausdorff-Young theorem for amalgams. 

§1. Introduction. Let G be a locally compact abelian group with dual group G. An 
amalgam space (Lp, (q)(G) (1 ^ p, q ^ °°) is a Banach space of (equivalence classes 
of) functions on G which belong locally to LP and globally to iq (a precise definition 
will be given in §2). For a historical background on these spaces see [8]. 

The Hausdorff-Young theorem for amalgams [10, Theorem 8], [1, Theorem II], 
states that, for 1 ^ p, q ^ 2, the Fourier transform of a function in (/ / , (q)(G) belongs 
to (Lq'Jp)(G). J. J. F. Fournier [5] studied the possibility that for 1 ^ p ^ 2 and a 
measurable subset E of G, LP"\E C Lr(E) for r =t p', where L^\E is the set of Fourier 
transforms of functions in Lp restricted to E. In this paper we deal with the correspond­
ing problem for amalgams, that is, we want to know if (Lp, îq)*\E C (Z/, is){E) for 
r > q' and s < /?', ((// ,€"') C (Z/,€v) whenever q' ^ r and// ^ s). 

Our main Theorems are Theorem 3.2, Theorem 4.3 and Theorem 6.2. These the­
orems are extensions of [5, Theorem 1, Theorem 2, Theorem 3]. We will conclude 
from them the following. 

(i) If G is nondiscrete, E is not locally null, 1 ^ / 7 ^ 2 and 1 < q ^ 2, then for all 
1 ^ s ^°°, (LpJqT\E $ Ur>, {LrJ')(E). 

(ii) If G is noncompact and 1 ̂  p, q ^ 2, then for all 1 ̂  r ^ o°, 

(^,nA(tu,^(^n(G). 
(iii) If G is noncompact, then there exists an open set E of infinite measure such that 

for 1 < p < 2 and 1 < q < 2, (Z/\ €«f |£ C ( / / , €2)(£). 

§2. Definition and properties of (Z/, €*)(G). We denote by Lfoc (1 ^ p ^ oo) the 
space of (equivalence classes of) functions/on G such that/restricted to any compact 
subset of G belongs to LP(G). The following definition of (LpJq)(G) is due to J. 
Stewart [12]; for a definition of amalgams on a locally compact not necessarily abelian 
group see [2] and [4]. 
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DEFINITION 2.1. By the structure theorem [9, Theorem 24.30] G is topologically 
isomorphic to Ra X G\ where a is a nonnegative integer and Gx is a locally compact 
abelian group which contains an open compact subgroup H. Let L = [0, l)a X H and 
J = Za X T, where T is a transversal of H in Gh i.e. G\ — {t + H\t E T} is a coset 
decomposition of Gx. For a G J we define La = a + L, and therefore G is equal to 
the disjoint union of relatively compact sets La. 

The amalgam space (Lp,£q)(G) = (Lp,(q) (1 ^ p,q ^ oo) is the linear space 

f^L 
v̂  r r IV/PV/I I 

s [j L/rj j <4 
endowed with the norm \\'\\p,q. We make the appropriate changes for p,q infinite. For 
a definition of this space on G see [12, pp. 1283]. We define for a subset E of G, the 
space (Z/, (q)(E) to be the space of functions/ E Lp

loc such that 

12 ll/ll U'{LanE) 
>/</ 

< oo. 

The amalgam (C0, €q)(G) = (C0, €</) (1 ^ g ^ oo) is the intersection of the space 
C0, the space of continuous functions which vanish at infinity, and (L"°,£q)(G). 
Note that CC(G) = C 0 the space of continuous functions with compact support, 
is included in all amalgam spaces and that (Lp,(p) = Lp. The Banach spaces 
(Lp,£q) (1 ^ p,q ^ oo) satisfy the following inclusion relations [12, p. 1284]. 

(2.1) (//,€«') C(Z/,€<^) if qx ^q2 

(2.2) (Lp\tq) C (Z/\€«) if p 2 ^ P i 

(2.3) (LpJq) CLP D Lq if /? > q 

(2.4) L« C (L«,€x) H (L\V) if 1 < q < oo. 

REMARK 2.2. The inclusions (2.1) and (2.2) are strict if G is noncompact, non-
discrete, respectively, while (2.3) and (2.4) are strict if G is neither compact nor 
discrete. 

REMARK 2.3. If G is compact (discrete), then (Lp, iq) = LP((LP, iq) = €*) for 1 
^ p, q ^ oo. ^ 

As usual ( / ) / will denote the (inverse of) Fourier transform of/. We will denote 
by (Lp, eqy the set of Fourier transforms of functions in (Z/, tq) and ( / / , ZqT\E will 
be the set of functions in (LP', tq)* restricted to the subset E of G. 

§3. The case where G is nondiscrete. Theorem 1 of [5] is as follows. 

THEOREM 3.1. If G is nondiscrete and E is not locally null, then for 1 < q ^ 2, 

(3.1) Lq"\E<$. U Lr(E). 
r>q' 

We generalize this result by proving the next theorem. We observe that for the 
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particular case 1 < q ^ 2, Theorem 3.2 implies Bloom's Theorem 1 in [3]. 

THEOREM 3.2. If G is nondiscrete and E C G is not locally null then for 

1 < q ^ 2, 

(3.2) (LX,€«)A|E(1: U (Z/,r)(£). 

NOTE. If G is discrete, then (3.2) becomes (3.1) by Remark 2.3. Hence (3.2) extends 
(3.1) when G is neither compact nor discrete because in this case (L"°,(q) and U 
(1 ^ q,r < oo) are proper subspaces of Lq and (Z/,€x) respectively (Remark 2.2). 

PROOF. Since E is not locally null, it contains a subset of positive measure. By the 
inner regularity of the Haar measure this subset contains a compact set of positive 
measure. Therefore it is enough to prove the theorem for compact sets E of positive 
measure. Suppose that 

(Lx, eq)"\E C (Z/, €")(£) for some r E (q', oo). 

Take / E L«(G) and let <|> E C,(G) such that <j) = 1 on E and $ E ( Z / ^ ' X G ) 
[12, Theorem 3.1]. By (2.3) we have that ( / / , € ' ) C L1, so <|> is equal to the Fourier 
transform of 4>. By [3, §7 i)] the function/* 4> belongs to (Lx, (q)(G), and hence by 
our assumption (/* 4>)* = /<j> restricted to E belongs to (Z/, €x)(£) = Lr(E) (E is a 
compact set!). So f\E E Z/(£) and this contradicts Theorem 3.1. Thus 

(3.3) (Lx, €*)A|# £ (Lr, €x)(£) for all <?' < r < oo. 

The rest of the proof is similar to [5, Theorem 1]. For q' < r < oo, define the function 
F ron (Lx,€«)(G)by 

(3.4) Fr(f) = \\f\E\\r^ 

The function Fr takes the value infinity by (3.3). Also Fr(af) = aFr(f) and 
Fr(f+ g) ^ Fr(f) + Fr(g) for all nonnegative real a and all/, g in (Lx, €*)(G). These 
properties of Fr imply that the set Va = {/ E (Lx, €*)(G)|Fr(/) > a} is dense in 
(Lx,£q)(G). Moreover Fr is lower semicontinuous because Fr = sup {Fjg E °U}, 
where °U = {g E (L*,€')| ||g|U, ^ 1} (see (2.2)) and Fg is a continuous function 
on (Lx,tq)(G) defined by Fg(f) = | /E / g | . Hence, by the Baire theorem the set 
{/ E (Lx,£q)(G)\Fr(f) = oo} is of type G8. Choose a strictly decreasing sequence 
{r„} converging to q'. Again by Baire's theorem (as in [11, Corollary of Theorem 5.6]) 
the set {/ E (LX,€«)(G)| ||/|^||rn,» = °° for all n E N} is a dense G6 set. Take / 
in this set; since (Ve, lq) C (L1, €9) we have by the Hausdorff-Young Theorem that 
f\E E (Z/ ,€ x ) (£) . If also / | £ E (Z/,€x)(£), then for all sufficiently large n, we 
have that f\EE (L r \ €")(£) by (2.2), and this contradicts the choice of / Hence 
/ \E $ (Z/, €x)(£) for all r > q' and the proof is complete. • 

COROLLARY 3.3. If G is nondiscrete and 1 < q ^ 2, //*en 

(LX,€*)A £ U (Z/,€X)(G). 
r>q' 
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By (2.1), (2.2) and Theorem 3.2 we have the following result. 

COROLLARY 3.4. If G is nondiscrete, E is not locally null, 1 ^ p ta 2 and 
1 < q ^ 2, then for all \ ^ s ^ ™, 

(LpJ*y\E £ U (Z/,€v)(£). 
r>q' 

Hence 

OA€«)A (f U (Z/,r)(G). 

§4. The case where G is noncompact. Theorem 2, b) of [5] is as follows: 

THEOREM 4.1. If G is noncompact and 1 ^ p ^ 2, then 

(4.1) L'A (f U LS(G). 
s<p' 

We prove that under the same conditions 

(4.2) U/\€T Cf U (LJ,€0(G). 
s<p' 

NOTE. If G is compact, then (4.2) becomes (4.1) by Remark 2.3, hence (4.2) extends 
(4.1) when G is neither compact nor discrete because in this case (Lp, £') and Ls are 
proper subspaces of Lp and (L',€v) for 1 < p,s < ^ (Remark 2.2). 

Theorem 4.3 is fully proved in [13, Theorem 10.2]. We present a short version of 
this proof which uses the following result [2, Theorem IV]. 

PROPOSITION 4.2. Let O(G) - {cj> G Cr(G)|4> G (C0,€')(G)}, endowed with the 
norm § —> ||^||^,^, 1 = /?, g = °°. 7/"|JL G MX(G) and there exists a constant C such that 
for all (f) G 4>, 

(|>(x)<ifxU) c||4>IL, 

fAe/i |1 G (Z/,€*')(G). 

THEOREM 4.3. If G is noncompact and 1 ^ /? ^ 2, r/zen (4.2) /îo/ds. 

PROOF. Case 1) p - 2. Let £ be a compact subset of G of positive measure with 
interior fî, and 1 ^ s < 2. By [3, Theorem 1] there exists/ G (L00, €2)(G) such 
that f - g does not vanish identically on ft for all g in (L1, €V)(G). Take § G C((G) 
such that 4> = 1 on £. Since / E: L2 by (2.3) and c() G (L00,^2) we have that 
/<|> G (L2, €')(G) by [3, §7 h)], so/<|> G L1 H L2 and this implies that the inverse of 
the Fourier transform of (/(b)" is equal to /cb. Therefore (/d>)" is not in (L1, €V)(G) 

V V V 

because/ — /4> does vanish on ft. Hence there exists a function f§ G (L2, €y)(G) such 
that Cf$f $ (L ,,€V)(G). This means that 

(4.3) (L2J!y £ (L',€V)(G) for all 1 ^ s < 2. 

A simple modification of the argument just given shows that 
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(4.4) (L 2 ,€ , ) (£)A ( t (L , ,€ 2 ) (G.) 

(Take <f) = 1 on some open subset ft0 of ^ s u c n that lî0 E 11 with support in E). 
Case 2) p < 2. Similarly to (4.3) we want to prove that 

(4.5) (LPJ T £ (L',fv)(G) for all 1 ^ *</> ' . 

If 1 ^ s < 2, we know by (4.3) that (4.5) holds because p < 2 and then (L2, €') C 
(Lp,€]) by (2.2). So we consider the case when 2 ta s < p' and assume the contrary. 
By the Closed Graph Theorem the map T:(LP,(])-+ (L1, t)(G) given by T(f) = f 
is bounded. Indeed, let {/„} be a sequence in (Lp,€7) such that limll/J^ = O.We 
assume that lim||/w - g||,,, = 0 and take <|> G CC(G). Since c|) E (L00, V) H (L1, €p) 
and (L00, V) is the dual of (L \ T) [2, §7 g)] we have by the Holder and Hausdorff-
Young inequalities [8, Theorem 2.2] that jg<\> = 0. This implies that g = 0 by a 
standard measure theory argument. 

Now, let g G (L°°,r')(G) and <|> G $(G) . Then 

|/g(Jc)4>(Jc)rfi| = |Jg(*)r($)(*)rfJc| ^ ll^lk^HTC^)!!,,, ^ ll^||-.,.||7'||||^|U1. 

By Proposition 4.2, g G ( / / , r ) ( G ) , and therefore (L00, €5')(G)V C ( / / , €G0)(G) (this 
last inclusion can also be proved using Fournier's argument in [5, p. 1691). 

On the other hand by Corollary 3.3 we have that (L00, €5')(G)V $ (Z/, €x) because 
G is nondiscrete, 5' ^ 2, and/?' > 5 = ($')'. This contradiction shows (4.5). 

From cases 1) and 2) we conclude that for 1 ^ p ta 2, 

(4.6) (ZA€' ) (Gr £ ( L ' , 0 ( G ) for all 1^ * < / ? ' . 

For s G [1,/?') define the function Fs on (L^^^CG) by Fs(f) = | | / | | i , , . As in the 
proof of Theorem 3.2 the set Va = {/G (L", €')(G)|F5(/) > a} is dense in {LP,V){G) 
for all real a. Also, Fs is lower semicontinuous and therefore the set {/E (Z/, € ' ^ F ^ / ) 
= 00} is a G§ set. If {̂ n} is a strictly increasing sequence converging to p', then by Baire's 
theorem the set {/G (Z/, €')(G)| ||/||,,5| | - °° for all «e iV}isa dense set of type G8. 
Take/in this set; let 5 G [1 ,/?')• Since/G (Z/, V) its Fourier transform / belongs to 
(L"JP') by [8, Theorem 2.8], then by (2.1) we have that / G (L] JS»)(G) for all 
sufficiently large n iff G (L1, T)(G). From this we conclude that/ G (L1, T)(G) for 
all 1 ta s < p' and this proves the theorem. • 

The next corollary extends [5, Remark 2] if G is neither compact nor discrete. 

COROLLARY 4 A. If E C G is not locally null, G is noncompact and 1 ^ p tk 2, r/ieft 

(4.7) ( ^ , € ! ) ( F r (f U (L',€*)(G). 

PROOF. AS in Theorem 3.2 it is enough to prove the corollary for compact sets E 
of positive measure. It follows from (4.4) and an argument like that for the case 2) 
of Theorem 4.3 that (Z/, €')(£)* (jl (L\V)(G) for all s < 2. The case where 
2 < s < p' follows from Theorem 3.3 and a duality argument like that given in the last 
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part of the proof of Theorem 4.3. The remainder of the argument uses the Baire 
Category Theorem as before. 

The next result is a direct consequence of (2.1) and (2.2). 

COROLLARY 4.5. / / G is noncompact and 1 ^ p,q ^ 2, then for 1 ^ r ^ <», 
(z/,nA £ u,<„.tf/, €*)(£). 

§5. The case where G is neither compact nor discrete. Theorem 2, c) of [5] is as 
follows. 

THEOREM 5.1. If G is neither compact nor discrete and 1 < p ^ 2, then 

(5.1) L'A $ U Lr(G). 

The next result generalizes Theorem 5.1. 

THEOREM 5.2. If G is neither compact nor discrete and 1 < p ^ q ^ 2 or 
1 ^ p < q ^ 2, r/zeAi 

(5.2) (L',€«)A4: U [ ( Z / , r ) fl (L',€ r)]. 

NOTE. If /? = q, then Theorem 5.2 says that for 1 < p ^ 2, 

L^ 4: U (z/,r) n (L\€r). 

This improves the right side of (5.1) because by (2.4) the space U is a proper subspace 
of (Lr,€°°) H (L',€ r) (1 < r < oo). 

PROOF. By Corollary 3.3 there exists/G (LxJq) such that 

(5.3) /$ U 0/,O. 

By Theorem 4.3 there exists h G (LP,V) such that 

(5.4) A $ U (L',€ r). 

We shall see that one of the three functions f,h,f + h'm (Lp,îqY (remember 
that (L00, €*) C (If, iq) and (If, ix) C (Z/\ €*)) does not belong to 
U r + p W (L r , € f l O )U(L 1 , €0 . 

Suppose 1 ^ p < <? ^ 2 and assume that / G (Lr',€°°) H (L , ,€ r ' ) , fc G (Lr2,€x) 
H (L',€ r2), and / + h G (Lr°,€x) fl (L',€r<)) for some r , , r 2 , r 0 distinct from both 
p' and </'. 

Since / $ (L r ' ,€") if r, > q' and A $ (L',€r2) if r2 < / / , we conclude that 
r\ < q' < p' < r2. So by the inclusion properties (2.1) and (2.2) we have that 

a) If r] < q' <p' < r2^ r0, then / + h G (Z/2, €°°). Hence, f = (f + h) - h 
G (Z/2,€°°) and this contradicts (5.3) as r2 > <?'. 
^ b) If r, <q' <pf <r0<r2 or r, < q' < r0 < p' < r2, then h G (Z/°, €°°). Hence, 
/ = ( / + h) - h G (Lr°,€°°) and again this contradicts (5.3) as r0 > q'. 
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c) If r, <r0<qf < p' < r2, then/ G (L1, €r°). Hence, h = (f + h)-fE ( L \ €r°) 
and this contradicts (5.4) as r0 < p'. 

d) If r0 < r, < <?' < / / < r2, then/ + / Î G ( L 1 , ^ ) - Hence, h - ( / + A) - / 
E (L1, €n) and again this contradicts (5.4) as r, < pf. From a) - d) we conclude that 
r0 = /?' or r0 = <?'. This contradiction shows (5.2). The proof for 1 < p ^ q ^ 2 is 
the same. • 

REMARK 5.3. Theorem 5.2 is no longer true if 1 ^ q < p ^ 2 because in this case 
for any pf < r < q' we have that 

(z/,-HA c (Lq'jp) c (z/,r) n (L\t). 
§6. A(qr)-sets in nondiscrete groups. 

DEFINITION 6.1. [7, §2] Let EC G. A function fin LP(G) (1 ^p ^2) is an E-function 
if f is essentially supported by E. A set E is a A(q)-setfor 1 < q < o° f/anv E-function 
in L\G) also belongs to Lq(G). 

Fournier proved [5, Theorem 3] that any noncompact group G contains open sets E 
of infinite measure which are A(r)-sets for any r E (2,oo) and have the property that 
for 1 < p < 2, 

(6.1) Lp"\EC H U(E). 
2<r<p' 

The generalization of (6.1) is as follows (cf. [6, Theorem 4.1]). 

THEOREM 6.2. Let G be noncompact and E be a set as in [5, Theorem 3]. If 
1 < p ^ 2, and 1 ^ q ^ 2, f/ien 

(6.2) (LpJqY\E C (Z/,€2)(£) = H (Z/,€2)(£). 

NOTE. If /? = g, then Theorem 6.2 says that 

LpA\EC H (Z/,€2)(£) 

and this improves the right side of (6.1) because by (2.2) we have that 

n (//,€2)c n (z/,€2)c n u. 
\^r^p' l'èrtkp' llàrtàp' 

PROOF. If p = 2, then (6.2) is just the Hausdorff-Young theorem. So we assume 
that 1 < p < 2 and 1 ^ q ^ 2. Consider the inverse of the Fourier transform 
\J:(LqJ2)(E) -> (L\tq')(G) [8, Theorem 2.8]. I f / E (L\Z2)(E), then / is an 
^-function [7, §2], [8, §8], and therefore by [7, Theorem 1] (see also [5, Remark 4]) 
the function actually maps (L\£2)(E) into (Lp\£q')(G). Then its adjoint transform 
\J*:(LpJq)(G)-» (Lq'J2)(E) is such that 

V*( l ) ( / ) = [ gWfWdx for all g(E(LpJq)(G) 
JG 
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a n d / E (L«,€2)(£). Since Lq C (LqJ2) and either (LpJq) C If or Lq C (Lp Jq) 
according to whether p ^ q or q < p, we can apply the Parse val identity (as in 
[9, 31.48 a)]) and we have that for a l l /G Lq(E) and either g E (LpJq)(G) if p ^ q 
or g E L«(G) if ? > p; V*( l ) ( / ) = hf(x)~g(x)dx. Since V*(#) E V (see (2.3)) 
we conclude that \J*(g) = g|£ for all g E (LpJq)(G) if p ^ q or for all g E Lq if 
<?>/?. Hence g|£ E (Z/ , €2)(£) for all g E (Z/\ €*) if/? ^ q and g|£ E (Z/ , €2)(£) 
for all g E Lq if g > p. In this last case we have that 

(6.3) lll |£|L2^ IIVilUIL fora11 8^Lq(G). 

Since L* is dense in (/ / , €«) by [2, §7 c)] we conclude that g\E E ( L \ €2)(£) for all 
g E (ZA €*)(G) and the proof is complete. • 

The next corollary is a generalization of [5, Corollary of Theorem 3] and its proof 
is (mutatis mutandis) the same. 

COROLLARY 6.3. If G is infinite and \<p<2, \^q^2, then 

(L',€«)(G)A + (Lq'Jp')(G). 

§7. Final remarks. By the Hausdorff-Young theorem we have that if 1 ^ p ^ 2, then 
(Lp, V) C (C0, €p'). So the only possible improvement is global, i.e. for a not locally 
null set E 

(LpJlT\E C (Co, €*)(£) for some j < /? ' . 

If G is compact and E is not locally null, then for 1 ^ p ^ 2, ( / / , € ' ) = V and we 
have that for s < /?', 

( Z A € T | £ = V*\E C C0(£) = (C0, €*)(£). 

The next result follows from Theorems 4.3 and 6.2 together with (2.2). 

PROPOSITION 7.1. Let G be noncompact. Then 

i ) / / l ^p ^ 2, then {If,V)* { U (C0 ,T). 

ii) / / 1 < p < 2, r/zeft f/iere a w ^ «Az open set E of infinite measure such that 
(LpJ]r\EC(C0J

2)(E). 

Now, by (2.2) if 2 < p ^ <», then (//,€*) C (L2Jq) and by the Hausdorff-Young 
theorem we have that {If, £qf C (Z/ , €2)(G) for 1 ^ 4 ^ 2. Then we consider the 
possibility that for a not locally null set E the inclusion {If , €c/)"|£' C (Z/, V)(E) holds 
for some r > g' and s < 2. If G is discrete, then {Lp, €*) = Z/ and for £ a not locally 
null set, 2 < p ^ oo and 1 ^ q ^ 2, we have that 

(Z/\€*)A|E - L^ |£ C €2 |£ = (Z/,€2)(£) for r > <?'. 

Finally, Theorem 3.2 implies the following result. 

PROPOSITION 7.2. If G is nondiscrete and E is not locally null, then for 2 < p ^ oo 
and 1 < q ^ 2, 
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(Lp,eqy\E<t U (Lrjs)(E). 
r>q',s<2 
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