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Abstract. In this erratum, we correct an erroneous result in [PV2] and prove

that the affine algebraic hypersurfaces xy2 =1 and z= xy2 are not interpolating

with respect to the Gaussian weight.

§1. Introduction

Let (X,ω) be a Stein Kähler manifold of complex dimension n, equipped with a

holomorphic line bundle L → X with smooth Hermitian metric e−ϕ, and let Z ⊂ X be

a complex analytic subvariety of pure dimension d. To these data, assign the Hilbert spaces

Bn(X,ϕ) :=

{
F ∈H0(X,OX(L)) ; ||F ||2X :=

∫
X

|F |2e−ϕω
n

n!
<+∞

}

and

Bd(Z,ϕ) :=

{
f ∈H0(Z,OZ(L)) ; ||f ||2Z :=

∫
Zreg

|f |2e−ϕω
d

d!
<+∞

}
.

Such Hilbert spaces are called (generalized) Bergman spaces. When the underlying manifold

is C
n and the weight ϕ is a Bargmann–Fock weight, the spaces are called (generalized)

Bargmann–Fock spaces.

We say that Z is interpolating if the restriction map

RZ :H0(X,OX(L))→H0(Z,OZ(L))

induces a surjective map on Hilbert spaces. If the induced map

RZ : Bn(X,ϕ)→Bd(Z,ϕ)

is surjective, then one says that Z is an interpolation subvariety, or simply interpolating with

respect to ϕ. It can be easily shown that if Z is interpolating, the map above is bounded.

In [PV2], Pingali and Varolin claimed that (Theorems 2 and 3) the (nonuniformly

flat) curve C2 = {(x,y) ∈ C
2 | xy2 = 1} and the surface S = {(x,y,z) ∈ C

3 | z = xy2}
are interpolating with respect to a smooth weight ϕ satisfying mω0 ≤

√
−1∂∂̄φ ≤ Mω0,

where ω0 is the Euclidean metric and m,M > 0 are positive constants. The purported proof

of the claim rested heavily on Lemma 3.2, which aimed to generalize the QuimBo trick

[BOC]. Unfortunately, Lemma 3.2 is false. (However, for Theorems 1 and 4, we do not need
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Lemma 3.2. Instead, Lemma 6 in [L] in conjunction with elliptic regularity is enough.) In

this erratum, we in fact prove that the negations of Theorems 2 and 3 in [PV2] are true.

Theorem 1. The curve C2 is not interpolating with respect to the Gaussian weight

|x|2+ |y|2.
Using Theorem 6.1 in [PV2], we can easily see that the following result holds.

Theorem 2. The surface S is not interpolating with respect to the Gaussian weight

|x|2+ |y|2+ |z|2.
These results lead us to suspect that perhaps uniform flatness might be equivalent

to being interpolating (with respect to the Gaussian weight) for smooth affine algebraic

hypersurfaces. For smooth affine analytic hypersurfaces, this expectation is false as shown

in [PV1].

§2. Proof of Theorem 1

Let fn(x,y) = y−(2n+1), then fn ∈ O(C2).

Now,

||fn||2 =
∫
C2

|fn(x,y)|2e−(|x|2+|y|2)dA

=

∫
C∗

|y−(2n+1)|2e−(|y|−4+|y|2) (1+4|y|−6
)
dV (y)

= π

∫ ∞

r=0

r−(2n+1)e−(r+r−2)
(
1+4r−3

)
dr. (1)

For 1
2 < s < 3

2 and 1
2 < t < 3

2 , let us consider the following integral:∫ ∞

0

e−(sr+tr−2)4r−3dr =

[
e−sr

∫
e−tr−2

4r−3dr

]∞

0

−
∫ ∞

0

−se−sr

(∫
e−tr−2

4r−3dr

)
dr

=

[
e−sr 2

t
e−tr−2

]∞

0

+

∫ ∞

0

se−sr 2

t
e−tr−2

dr

=
2s

t

∫ ∞

0

e−(sr+tr−2)dr.

Therefore, we have∫ ∞

0

e−(sr+tr−2)
(
1+4r−3

)
dr =

(
1+

2s

t

)∫ ∞

0

e−(sr+tr−2)dr. (2)

Differentiating (2) with respect to s, we arrive at the following:∫ ∞

0

−re−(sr+tr−2)
(
1+4r−3

)
dr =

(
1+

2s

t

)∫ ∞

0

−re−(sr+tr−2)dr+
2

t

∫ ∞

0

e−(sr+tr−2)dr.

(3)

Setting s= 1 in (3), we have∫ ∞

0

re−(r+tr−2)
(
1+4r−3

)
dr =

∫ ∞

0

re−(r+tr−2)dr+
2

t

∫ ∞

0

(r−1)e−(r+tr−2)dr. (4)
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Differentiating (4) (n+1) times with respect to t, we see that

∫ ∞

0

r
(
−r−2)n+1

e−(r+tr−2) (1+4r−3)dr
=

∫ ∞

0

r
(
−r−2)n+1

e−(r+tr−2)dr+2

∫ ∞

0

(r−1)e−r dn+1

dtn+1

(
e−tr−2

t

)
dr

= (−1)n+1

∫ ∞

0

r−2n−1e−(r+tr−2)dr+2(−1)n+1

∫ ∞

0

(r−1)e−r
n+1∑
k=0

(n+1)!

(n+1−k)!

r−2(n+1−k)

tk+1
e−tr−2

dr

= (−1)n+1

∫ ∞

0

r−2n−1e−(r+tr−2)dr+2(−1)n+1(n+1)!

∫ ∞

0

(r−1)e−(r+tr−2)
n+1∑
k=0

r−2(n+1−k)

(n+1−k)!

1

tk+1
dr.

(5)

Substituting t= 1 in (5), we get∫ ∞

0

r−(2n+1)e−(r+r−2)
(
1+4r−3

)
dr =

∫ ∞

0

r−2n−1e−(r+r−2)dr

+2(n+1)!

∫ ∞

0

(r−1)e−(r+r−2)
n+1∑
k=0

r−2k

k!
dr. (6)

Now, ∫ ∞

0

r−2n−1e−(r+r−2)dr

=

[
e−r

∫
r−2(n−1)e−r−2

r−3dr

]∞

0

−
∫ ∞

0

−e−r

(∫
r−2(n−1)e−r−2

r−3dr

)
dr

=
(−1)n−1

2

[
e−r

n−1∑
k=0

(−1)n−1−k (n−1)!

k!
(−r−2)ke−r−2

]∞

0

+
(−1)n−1

2

∫ ∞

0

e−r
n−1∑
k=0

(−1)n−1−k (n−1)!

k!
(−r−2)ke−r−2

dr

=
(n−1)!

2

∫ ∞

0

e−(r+r−2)
n−1∑
k=0

r−2k

k!
dr

≤ (n−1)!

2

∫ ∞

0

e−(r+r−2)er
−2

dr.

≤ (n−1)! (7)

Using (1), (6), and (7), we can see that the following holds:

||fn||2 ≤ π(n−1)!+2π(n+1)!

∫ ∞

0

(r−1)e−(r+r−2)
n+1∑
k=0

r−2k

k!
dr <∞. (8)

Suppose C2 is interpolating. Then, there exist Fn ∈ B2((|x|2+ |y|2)) and C > 0 such that

Fn|C2 = fn and

||Fn|| ≤ C||fn||,∀n ∈ N. (9)
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Let

Fn(x,y) =
∑
i,j≥0

cijx
iyj .

Then, we have

y−(2n+1) =
∑
i,j≥0

cijy
−2iyj

=
∑
i,j≥0

cijy
−(2i−j)

=
∑

2i−j=2n+1

cijy
−(2i−j).

(10)

This equation implies that

∞∑
k=1

ck+n,2k−1 = 1. (11)

Equation (11) implies that there exists an m ∈ N such that |cm+n,2m−1| ≥ 2−(m+1).

Therefore,

||Fn||2 ≥
∞∑
k=1

|ck+n,2k−1|2(k+n)!(2k−1)!

≥ |cm+n,2m−1|2(m+n)!(2m−1)!

≥ (2−(m+1))2(1+n)!22m−2

≥ (n+1)!

24
. (12)

From (8), (9), and (12), we conclude that

(n+1)!

24
≤ C

(
π(n−1)!+2π(n+1)!

∫ ∞

0

(r−1)e−(r+r−2)
n+1∑
k=0

r−2k

k!
dr

)
.

This inequality implies that

1

24
≤ πC

(
1

n(n+1)
+2

∫ ∞

0

(r−1)e−(r+r−2)
n+1∑
k=0

r−2k

k!
dr

)
.

We are led to a contradiction because

(
1

n(n+1) +2

∫ ∞

0

(r−1)e−(r+r−2)
n+1∑
k=0

r−2k

k!
dr

)
→ 0,

as n→∞. �
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