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Abstract

The definition of cyclic maps is recalled and their existence discussed. Among other things, it is shown
that cyclicity of maps is closed under product and that i f / i s cyclic then Uf is central. Some results of
Gottlieb (1972) on homology are applied to investigate the relationship between cyclicity of maps and
maps of finite order.

1980 Mathematics subject classification (Amer. Math. Soc): 55 E 05.

1. Introduction

Let A'be a topological space and / the closed unit interval [0,1]. A cyclic homotopy
(see Ganea (1968) and Gottlieb (1965)) H: X X / -» X is a homotopy such that
H(x,0) = H(x, 1) = x for all x in H. If H is a cyclic homotopy, then the path a:
/ -» X given by a(t) — H(*, t) for all / in / , is called the/race of H. Gottlieb
(1965) introduced the subgroup G(X) (of the fundamental group) which consists
of all the homotopy classes of those loops which are the trace of some cyclic
homotopy. Later, Varadarajan (1969) generalized G(X) to G(A, X) for any space
A and called the maps/ : A -» X which are represented by elements of G(A, X)
"cyclic". We shall follow this convention (see also Hoo (1972)). In Section 2,
some concepts and notations which will be used later are recalled. Section 3 is
devoted to the definition and existence of cyclic maps. In Section 4, we show,
among other things, that cyclicity of maps is closed under product and that i f / i s
cyclic then fl/is central. Some results of Gottlieb (1972) on homology are applied
in Section 5 to investigate the relationship between cyclicity of maps and maps of
finite order.
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2. Preliminaries

We shall now establish some notations and terminologies that will be used
throughout this paper. Unless otherwise stated, we shall work in the category of
spaces with base points and having the homotopy type of locally finite CW-
complexes. All maps shall mean continuous functions. All homotopies and maps
are to respect base points. The base point as well as the constant map will be
denoted by *. 1 (sometimes with decoration) will denote the identity function
(resp. map) of a set or a group (resp. space) when it is clear from the context. For
simplicity, we sometimes use the same symbol for a map and its homotopy class.

All function spaces will be endowed with the compact-open topology and,
unless otherwise stated, the constant map will be taken to be the base point. Xx

shall denote the space of free maps' from A' to A' with 1^ as base point. The
evaluation map to: Xx -» A" is defined to be w ( / ) = / (*) for e a c h / E Xx.

The diagonal map A: X -» X X X is given by A(x) = (x, x) for each x £ X, the
folding map V: X V X -» X by V(*, *) = V(*, x) = x for each x £ X, and the
switching map T: XX Y ^ YX Xby T(x, y) = (y, x) for each x £ X, y £ Y.

Frequently (not always) / and j will be reserved for the inclusion maps of the
form /,: X - X X Y or i2: Y -> X X Y, and;: * V Y - XX Y respectively. The
projection is denoted by p with decoration.

2 X and fi X denote the reduced suspension and the loop space of X respectively.
The adjoint functor from the group [2Ar, Y] to the group [A", fiF] will be denoted
by T. The symbols eA and e'A denote T~\\aA) and T ( 1 2 / ) ) respectively, the
subscript will be dropped if there is no danger of confusion.

Let n > 1 be an integer. A space X is said to be (« — \)-connected iff
^(Jif) = 0 for all J t < n - 1.

The following well-known results are frequently used:
(1) If A is a co-//-space, then we can find a map s: A -> 2.SIA such that es - \A.
(2) If B is an //-space, then we can find a map s'\ fi2/? -» B such that

s'e' - 1B.
(3) Let A and B be an //-cogroup and an //-group respectively. Then [A, X]

and [X, B] are groups for any space X.

3. Definition and existence of cyclic maps

DEFINITION 3.1. A map / : A -> X is said to be cyclic if there exists a map F:
A" X A -> A" such that the following diagram is homotopy commutative: that is,
Fj — v ( l V / ) . Since y is a cofibration, this is equivalent to saying that we can
find a map G: X X A -> X such that Gj = V(l V / ) . We call such a map G an
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associated map of / . The set of all homotopy classes of cyclic maps from A to X is
denoted by G(A, X) and is called the Gottlieb subset of [A, X]

REMARK 1. Note that a map / : A -» X is cyclic if and only if there exists a map
F: XXA^X such that Fix = 1 x and Fi2 = / , where /,: X^XXA and z"2:
,4 -> X X /4 are inclusions, that is, F is of type (1, / ) . Clearly the constant map *:
A -» X is cyclic.

REMARK 2. If v4 = 5" (« > 1 is an integer), then G(^ , X) reduces to G(X)
(Gottlieb (1965)) and Gn(X) (Gottlieb (1969)) which is called the nth evaluation
subgroup of X.

LEMMA 3.2 (Varadarajan (1969)). Letf: A -» X be a cyclic map and 0: B -» A an
arbitrary map. Then fd: B -» X is a cyclic map.

The existence of cyclic maps is easily seen from the previous remark and the
following proposition.

PROPOSITION 3.3. Let X be a space. Then the following are equivalent:
(i) X is an H-space.
(ii) 1 x is cyclic.
(hi) G(A, X) = [A, X] for any space A.

PROOF, (i) => (ii). Let m be the //-structure on X. Then mj ^ V = V ( l x V 1 ,̂),
so that 1 x is cyclic.

(ii) => (iii). Let A be any space and let / G [A, X]. Then f— 1 xf is cyclic, by
Lemma 3.2.

(iii) => (i). Take A = X. Then 1^ is cyclic, so that we can find a map m:
X X X -» X such that mj = V.

Another way in which cyclic maps arise naturally is by fibrations. Suppose
F — E -» B is a fibration. Then we have an operation p: F X ft/? -* F of the loop
space of the base on the fibre. The fibration gives rise to a Puppe sequence

• •• -> ft£ — 8B -»F -» £ -> B. We can take 3 = p | Bfi, that is, p is a map of

type (1, 9), or 8 is cyclic. It follows that for all spaces A, dt[A, SIB] C G(A, F). If
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G(A, F) = 0, then we can obtain some information on the fibration. More
precisely, we have the following result.

THEOREM 3.4. Let F -> E ^ZA be a fibration. If G(A, F) = 0, then p has a

cross-section.

PROOF. If G(A, F) = 0, then d$[A, £22/1] — 0. Hence from the exact sequence
of the fibration, we see that (£2/?)^: [A, £2£] -»[A, £22/1] is onto. In particular, we
can find a map / : A -* £2£ such that (£2/?)/ — e', where e'\ A -> £22/1 is the
adjoint of the identity map 2/1 -» 2/1. Taking adjoints, we obtain pr'x{f) — l2/4,
where T " ' ( / ) is the adjoint of/. Thus we obtain a cross-section.

EXAMPLE 3.5. Any fibration E^.S2n+l with fibre S2" (n > 1) admits a
cross-section. In fact, G2n(S

2n) = 0, by Theorem 5.4 of Gottlieb (1969).

A third way of getting cyclic maps is as follows: Let G be a topological group
and let H be a closed subgroup. Let G/H denote the space of left cosets and let/):
G -» G/H be the natural map. Then p is cyclic since we have a natural map
G/H X G -> (7/7/ given by ( g , # , g2) -> g2g,/ / , of type (1, p). For further detail
arbout this, see Lang (1970).

4. Some basic properties of cyclic maps

Let 0: B -> A and g: X -» F be maps such that g has a right homotopy inverse.
Then if / : A --> X is cyclic, so are fO and gf.

EXAMPLE 4.1. Let A be a co-//-space and / : A -» A" a map. Then / is cyclic if
and only if fe: 2£2/l -> X is cyclic. In fact, there exists a map s: A -» 2£2̂ 4 such
that e.s = 1,,, so t ha t / = /ey.

EXAMPLE 4.2. Let a E 7r2n+l(X) be such that any representative / of a has a
right homotopy inverse, then 2« G G2n+i(X). For if/: S 2 " + l -> S 2 " + l is a map
of degree 2, then 2 [g] = [g/] a n d / i s cyclic, by Theorem 5.4 of Gottlieb (1969).
Thus gf is cyclic.

DEFINITION 4.3 (Hu (1959)). A space X is said to be m-coconnected (m > 1 is
an integer) if H%X\ G) — 0 for each q 3= w and for each coefficient group G.
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LEMMA 4.4 (Hu (1959), page 213). Let X and Y be two (2m — \)-coconnected
spaces. If f: X -» Y is a map, then/*: irm(Y) ->irm(X) is a homomorphism, where
Trm(X) and irm(Y) are the mth cohomotopy groups of X and Y respectively.

PROPOSITION 4.5. Let B be (An + \)-coconnected. If g: B -> S2n+l is any map,

then 2g is cyclic.

PROOF. If n = 0, then [B, Sl] - G(B, S1) since S' is an //-space. Thus the
proposition is true for n = 0.

Assume n > 0. Then 5 2 " + 1 is (An + l)-coconnected. Let/: S2n+] -> S2n+] be a
map of degree 2 and i a generator of 7r2"+1(S2"+1) = w2n+1(,S2"+1) = Z. Accord-
ing to Lemma 4.4, g*: m2n+\S2n+x) -^ 772"+ ' (5) is a homomorphism since B and
S2"+1 are (An + l)-coconnected. Hence g\f) = gf(2e) = g*(t + t) - ^*(0 +
g*(t) = g + g = 2g, so that fg — 2g. Now since / is cyclic, it follows that 2g is
also cyclic.

The next result says that cyclicity of maps is closed under product.

PROPOSITION 4.6. If the maps f: A -> X and g: B -» Y are cyclic, then so is / X g:
AX B - I X y.

PROOF. Let F and G be two associated maps of / and g respectively. Let
H = (FX G)(\ X T X \): (X X Y) X (A X B) ^ X X Y. Then H is an associ-
ated map of / X g.

It might be supposed that if / : A -> X and g: B -» Y are cyclic then so is / V g:
A V B — X V Y. That this is not true can be illustrated by the following example.

EXAMPLE 4.7. Let A = B = X = y = 51. Then ls. is cyclic. But lsi V ls, =
l s i v s i is not cyclic by Proposition 3.3, for S] V 5 ' is not an //-space.

LEMMA 4.8. / / the maps f: A -> X andg: B — Xare cyclic, then so is v ( / V g ) :
AV B^ X.

PROOF. Let F and G be two associated maps of/ and g respectively. Let h:
XX (AX B)->(XXA)X B b e the h o m e o m o r p h i s m . Let K = G(F X \B)h:

XX(AX B)^ X and H = K\ XX (A V B)^ X. T h e n H is a n assoc ia ted m a p

of V ( / V g ) .

The next corollary is an immediate consequence of Lemmas 3.2 and 3.3.
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COROLLARY 4.9. If A is a co-H-space, then G(A, X) C [A, X] is closed under
the natural operation induced by the co-H-structure on A.

We recall the following definition and results:

DEFINITION 4.10 (Arkowitz and Curjel (1967)). Let (G, m, p.) be an //-group
and A any space. We say that a map / : A -* G is central if c( 1 X / ) — * where c:
G X G -* G is the basic commutator map (that is, c = m(m X w)(l X 1 X ju X

LEMMA 4.11 (Arkowitz and Curjel (1967)). (i) Let />,: G X A -> G and p2:
G X A -> A be the projections. Then f is central if and only if the commutator
(PufPi)=P\ + fPi~ P\ -fPi- *in[GXA,G].

(ii) Any central map f: A -> G lies in the center of [A, G].
(iii) Let f: A -> G be central and 0: B -> A an arbitrary map. Then fO: B -> G is

central.

Let / : A -» X be a map. It is evident from the preceding lemma that if Qf is
central, then (f l /) ( : [Z, SIA] -»[Z, SIX] has image contained in the center of
[Z, SIX] for any space Z.

The following lemma is due to Ganea:

LEMMA 4.12 (Ganea (1967)). Let XbA ^XVA^XXA be a fibration. Then

V ( / V / ) L = * if and only if Q / is central.

PROPOSITION 4.13. If f is cyclic, then Qf is central.

PROOF. Since / is cyclic, v ( l V / ) extends to a map XX A ^ X, so that
V(l V / ) L = * and the assertion follows from the preceding lemma.

5. Cycliciry of maps and maps of finite order

In this section we make some further observations on cyclic maps using some
results of Gottlieb (1972) on homology. Following Gottlieb (1972), we observe
that composition of maps makes Xx an //-space with 1 x as base point, where Xx

is the space of free maps from A' to X. If /n is the composition map, then we can
define a multiplication on Hif(X

x;Q) by xy — nt(x ® y) for all x, y in
H^.(XX; Q), where Q is the field of rationals. With the diagonal map A:
Xx -» Xx X Xx inducing a co-algebra structure on Ht(X

x; Q) it follows that
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H^X"; Q) is a Hopf algebra. We say that an element A G H (Xx; Q) is primitive
if At(A) = 1 ® A + A <8> 1. The following result is essentially due to Gottlieb
(1972),.

LEMMA 5.1. Let u: Xx -> X be the evaluation map. Suppose that H+(X) is
finitely generated. Let A E Hn(X

x; Q) be primitive and suppose that uJ(X) T6 0.
Then if the Euler characteristic x (^ ) ^ 0, we have w*(A*) =£ 0 for all k > 0.

Now suppose that /: A -» X is a map satisfying cat / < 2, that is, we can find a
map (j>:̂  - > I V I such that/4> — A/. It is then easily checked that for all a in
HJ.A; Q), \f*(a) = /*(a) ® 1 + 1 ®/*(a). In particular, this means that if / i s
actually a map ,4 -» A'*, we have that /*(a) is primitive. Such would be the
situation if A were a co-#-space, for we might let # = ^ / where ^ is the
co-//-structure on ,4.

THEOREM 5.2. Suppose f: A -> X is cyclic where A is a co-H-space. Suppose A is
a finite dimensional CW-complex, and H^(X) and -nJtX) are finitely generated. If
X(X) =£ 0, then 2 / is an element of finite order in [2^4, 2 X].

PROOF. Since / is cyclic, we can find a map g: A -> Xx such that ug = /. Now
since A is a co-//-space, it follows that cat g < 2, and hence g*(a) G HJ(XX; Q)
is primitive for all a in H^A; Q). We claim that/* = 0: H*(A; Q) -> H^X; Q).
For if not, then we can find an element a G Hn{A; Q) for some n > 0 such that
/»(«) ^ 0. Since g*(a) is primitive and "^(gaXa)) —/*(a) ^ 0, it follows from
Lemma 5.1 that w*(g*(a)*) ^ 0 for all A: > 0. According to Theorem 1 of
Gottlieb (1972), we have H^X; Q) s u j g ^ a ) ] ^ ® Mx as vector spaces over Q,
where [g»(a)]00 is the subspace of Hlt(X

x; Q) generated by 1, g*(a), g*(a)2,... if
the dimension of « is even, and generated by 1, g*(a) if the dimension of a is
odd, and Mx denotes the elements of HJ^X; Q) of depth zero (see Gottlieb
(1972) for details and definitions). If the dimension of a is even, this would
contradict the fact that H^{ X) is finitely generated, and if the dimension of a is
odd, it would contradict the fact that x ( ^ ) ^ 0. Hence/^ = 0. By duality, we
have that/* = 0: £*(*; Q) -> H*(A; Q). Now consider the map h - e'f: A -» X
-» Q2X where e': X -» flSA' is the usual map. Then h* = f*e'* = 0:
H*(Q1,X; Q) -> H*(A; Q). According to Arkowitz and Curjel (1964), it now
follows that h = e'f is an element of finite order in [A, Q2X]. Hence its adjoint
2 / i s an element of finite order in [2^4,
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COROLLARY 5.3. Let A be a co-H-space which is a CW-complex of dimension
< 2« — 1, and suppose that X is (n — \)-connected. Suppose that HJ^X) is finitely
generated and \(X) ¥= 0. Iff: A -> X is cyclic, then f is an element of finite order in
[A, X].

COROLLARY 5.4. Suppose that X is (n — \)-connected and HJ^X) is finitely
generated and x(X) ¥= 0. Iffis an element ofGm(X), we have that 2 / w an element
of finite order in 77-m+](2Ar). In particular, if m < 2n — 1, then f is an element of
finite order.

The .following result is essentially due to Gottlieb (1972) (see Theorem 5). We
state it here for co-//-spaces in general instead of for suspensions.

LEMMA 5.5. Suppose X is a co-H-space. If w+: H^(XX; Q) -» H^(X; Q) is
non-zero, then X is a rational homology n-sphere for some odd integer n.

COROLLARY 5.6. Let X be a co-H-space which is not a rational homology
n-sphere, where n is odd, and let A be a finite dimensional CW-complex. Iff: A -» X
is cyclic, then 2 / is an element of finite order.

PROOF. Under the hypotheses, we have u>t — 0. Here since / is cyclic, we have
/„, = 0. The rest of the proof goes along the same lines as the arguments in the
proof of Theorem 5.2.

Similarly, we have the following result.

THEOREM 5.7. Let A be a finite dimensional CW-complex and let X be a space
such that 2 X is not a rational homology n-sphere, n odd. Let f: A -» X be a map. If
2 / is cyclic, then it is of finite order.

COROLLARY 5.8. Let f: A -» X be a map, where X is a homotopy associative
H-space and A is a finite dimensional CW-complex. If 2 / is cyclic then f is an
element of finite order.

PROOF. According to the hypotheses, it follows that 2 A" is not a rational
homology n-sphere, n odd. Since 2 / i s cyclic, by Theorem 5.7, it follows that 2 / is
an element of finite order. Taking adjoints, we see that e'fis of finite order. Thus
there exists a positive integer k such that k(e'f) = 0. But since A" is a homotopy
associative //-space, there exists an //-map s'\ W2.X -» X such that s'e' - 1^.
Thus 0 = s'k(e'f) — ks'e'f= kf and hence/is of finite order.
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REMARK. The conditions that H^(X) and T^X) be finitely generated might
imply that X is contractible. This would be the case if X were required to be a
finite compact complex.
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