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Abstract An element g in a group G is called reversible if g is conjugate to g−1 in G. An element g in G
is strongly reversible if g is conjugate to g−1 by an involution in G. The group of affine transformations
of Dn may be identified with the semi-direct product GL(n,D) n Dn, where D := R,C or H. This paper
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1. Introduction

Let G be a group. An element g ∈ G is called reversible or real if g is conjugate to
g−1 in G. An element g ∈ G is strongly reversible or strongly real if g is conjugate to
g−1 in G by an involution (i.e., by an element of order at most 2) in G. Equivalently, an
element is strongly reversible if it is a product of two involutions from G ; see Remark 4.3.
The idea of ‘reversible elements’ originated in mathematical and physical systems from
different directions, cf. [1, 3, 10, 11, 13]. From the algebraic point of view, the terms
real and strongly real are used instead of reversible and strongly reversible. Investigation
of reversible and strongly reversible elements in a group is an active area of current
research; see [11] for an elaborate exposition of this theme from the geometric point
of view. A complete classification of reversible and strongly reversible elements is not
available in the literature except for the case of a few families of infinite groups, which
include the compact Lie groups, real rank one classical groups and isometry groups of
hermitian spaces; see [2, 5, 11]. In this article, by reversibility in a group G, we mean a
classification of reversible and strongly reversible elements in G.
Let D := R,C or H. The space Dn equipped with a (right) D-Hermitian form gives a

model for Hermitian geometry. When D = R, this is the well-known classical Euclidean

© The Author(s), 2023. Published by Cambridge University Press on Behalf
of The Edinburgh Mathematical Society.

1217

https://doi.org/10.1017/S001309152300069X Published online by Cambridge University Press

https://orcid.org/0000-0003-4327-0660
https://orcid.org/0000-0002-6912-6221
https://orcid.org/0000-0003-0673-3953
mailto:krishnendu@iisermohali.ac.in
mailto:tejbirlohan70@gmail.com
mailto:maity.chandan1@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S001309152300069X&domain=pdf
https://doi.org/10.1017/S001309152300069X


1218 K. Gongopadhyay, T. Lohan and C. Maity

geometry. The reversibility problem in the isometry group O(n)nRn of the n-dimensional
Euclidean space was classified by Short in [14]. This has been extended in [5] for the
isometry group U(n,F)n Fn of the F-Hermitian space, where F := C or H.
Considering Dn as an affine space, the group of automorphisms of Dn, denoted by

Aff(n,D), is given by GL(n,D)nDn. The affine space is important to understand the affine
structure on geometric manifolds; see the tome [4] for details. Understanding reversible
and strongly reversible elements in the affine group Aff(n,D) is a natural problem of
interest. In this paper, we have investigated this problem. Our main result is as follows:

Theorem 1.1. Let g = (A, v) ∈ Aff(n,D) be an arbitrary element, where D = R,C
or H. Then g is reversible (respectively, strongly reversible) in Aff(n,D) if and only if A
is reversible (respectively, strongly reversible) in GL(n,D). Further, for D = R or C, the
following statements are equivalent.

(1) g is reversible in Aff(n,D).
(2) g is strongly reversible in Aff(n,D).

This theorem answers a problem raised in [11, p. 78–79]. Note that the classifica-
tion of the reversible and strongly reversible elements in Aff(n,D) is intimately related
to the corresponding classification in GL(n,D). Such classification in Aff(n,D) can be
obtained by combining Theorem 1.1 with the reversibility in GL(n,D). The reversibility
in GL(n,D) is well known for D = R or C, cf. [11, 15], and this has been extended over
the quaternions recently, cf. [6].
To prove the above theorem, first, we investigate conjugacy in Aff(n,D) in Lemma 3.4.

Then using Lemma 3.4, reversibility in Aff(n,D) boils down to the case when the linear
part of the affine transformation is unipotent. We consider the Lie algebra aff(n,D) of the
affine group Aff(n,D) and consider the adjoint action; see Equation (3.4). Then we apply
the notion of ‘adjoint reality’ introduced in [7], also see Section 3.3, to classify the strongly
reversible elements in Aff(n,D) whose linear parts are unipotent; see Proposition 3.11.
The reversibility problem is closely related to the problem of finding the involution

length of a group. The involution length of a group G is the least integer m so that
any element of G can be expressed as a product of m involutions in G ; see [11, p. 76].
Now we state our second result. We refer to Definition 4.1 for the notion of quaternionic
determinant.

Theorem 1.2. Let g = (A, v) ∈ Aff(n,D) such that det(A) ∈ {−1, 1}. Then g can be
written as a product of at most four involutions for D = R,C or H.

1.1. Structure of the paper

The structure of the paper is as follows. In Section 2, we fix some notation and recall
some necessary background. In Section 3, we consider the affine group and prove the
main result of this article, Theorem 1.1. Finally, in Section 4, we investigate the product
of involutions in the affine group Aff(n,D) and prove Theorem 1.2.
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2. Preliminaries

Let H := R + Ri+ Rj+ Rk be the division algebra of Hamilton’s quaternions. We will
use the notation D to denote either R,C or H unless otherwise specified. We consider
Dn as a right D-module. We begin by recalling some basic notions of quaternion linear
algebra. We refer the reader to [12, Chapter 3, Chapter 5] for a detailed exposition of the
theory of linear transformations over the quaternions.

Definition 2.1. (cf. [12, p. 90]). Let M(n,H) be the algebra of n× n matrices
over H. A non-zero vector v ∈ Hn is said to be a (right) eigenvector of A ∈ M(n,H)
corresponding to a (right) eigenvalue λ ∈ H if the equality Av = vλ holds.

Note that eigenvalues of A ∈ M(n,H) occur in similarity classes, and each similarity
class of eigenvalues contains a unique complex representative with non-negative imaginary
part. Here, instead of similarity classes of eigenvalues, we will consider the unique complex
representative with non-negative imaginary part.

Definition 2.2. (cf. [12, p. 94]). A Jordan block J(λ,m) is an m×m matrix with
λ ∈ D on the diagonal entries, 1 on all of the super-diagonal entries and zero elsewhere.
We will refer to a block diagonal matrix where each block is a Jordan block as Jordan
form.

Jordan canonical forms in GL(n,D) are well studied in the literature; see [12, Chapter 5,
Chapter 15]. Recall that an element U ∈ GL(n,D) is called unipotent if each eigenvalue of
U equals to 1. In our convention, we shall include identity as the only unipotent element,
which is also semisimple. The next result provides the Jordan form for a given unipotent
element in GL(n,D).

Lemma 2.3. (cf. [12, Theorem 15.1.1, Theorem 5.5.3]). For every unipotent
element A ∈ GL(n,D), there is an invertible matrix S ∈ GL(n,D) such that SAS−1 has
the following form:

SAS−1 = Im0
⊕ J(1,m1)⊕ · · · ⊕ J(1, mk), (2.1)

where mi ∈ N, for all i ∈ {0, 1, 2, . . . , k}. The form (2.1) is uniquely determined by A up
to a permutation of diagonal blocks.

Now we recall a well-known result, which gives equivalence between reversible and
strongly reversible elements in GL(n,D) for D = R or C.

Proposition 2.4. (cf. [11, Theorems 4.7]). Let A ∈ GL(n,D), where D = R or C.
Then A is reversible in GL(n,D) if and only if A is strongly reversible in GL(n,D).

We would like to mention that the above equivalence does not hold for the case D = H,
e.g., A = (i) ∈ GL(1,H) is reversible but not strongly reversible in GL(1,H).
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3. Reversibility in the affine group Aff(n,D)

Consider the affine space Dn, where D = R,C or H. Let Aff(n,D) denote the affine
group of all invertible affine transformations from Dn to Dn. Each element g = (A, v) of
GL(n,D)nDn acts on Dn as affine transformation

g(x) = A(x) + v,

where A ∈ GL(n,D) is called the linear part of g and v ∈ Dn is called the translation part
of g. This action identifies the affine group Aff(n,D) with GL(n,D)nDn. We can embed
Dn into Dn+1 as the plane P := {(x, 1) ∈ Dn+1 | x ∈ Dn}. Consider the embedding
Θ : Aff(n,D) −→ GL(n+ 1,D) defined as

Θ((A, v)) =

(
A v

0 1

)
, (3.1)

where 0 is the zero vector in Dn. Note that action of Θ(Aff(n,D)) on the planeP is exactly
the same as the action of Aff(n,D) on Dn. In this section, we will classify reversible and
strongly reversible elements in the affine group Aff(n,D). We begin with an example.

Example 3.1. Let g = (In, v) ∈ Aff(n,D). Consider g1 = (−In,0) and g2 = (−In,−v)
in Aff(n,D). Then g1 and g2 are involutions in Aff(n,D) such that

g = g1 g2, i.e., (In, v) = (−In,0) (−In,−v).

Hence, g is strongly reversible in Aff(n,D).

In the next result, we obtain necessary and sufficient conditions for the reversible
elements in Aff(n,D).

Lemma 3.2. Let g = (A, v) ∈ Aff(n,D) be an arbitrary element. Then g is reversible
in Aff(n,D) if and only if there exists an element h = (B,w) ∈ Aff(n,D) such that both
the following conditions hold:

(1) BAB−1 = A−1,
(2) (A−1 − In)(w) = (A−1 +B)(v).

Proof. Note that g−1(x) = A−1(x)− A−1(v) and h−1(x) = B−1(x)−B−1(w) for all
x ∈ Dn. This implies for all x ∈ Dn, we have

hgh−1(x) = h(AB−1(x)−AB−1(w) + v) = BAB−1(x)−BAB−1(w) +B(v) + w.

Therefore, hgh−1 = g−1 ⇔ BAB−1 = A−1 and − A−1(v) = −BAB−1(w) + B(v) + w.
This proves the lemma. �

The following lemma gives necessary and sufficient conditions for the strongly reversible
elements in Aff(n,D).
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Lemma 3.3. Let g = (A, v) ∈ Aff(n,D) be an arbitrary element. Then g is strongly
reversible in Aff(n,D) if and only if there exists an element h = (B,w) ∈ Aff(n,D) such
that both the following conditions hold:

(1) BAB−1 = A−1 and B2 = In,
(2) (B + In)(w) = 0 and (B +A−1)(w − v) = 0.

Proof. Note that h = (B,w) ∈ Aff(n,D) is an involution if and only if h2(x) = B2(x)+
B(w) + w = x for all x ∈ Dn. This implies that B2 = In and (B + In)(w) = 0. Further,
in view of Lemma 3.2, hgh−1 = g−1 if and only if conditions (1) and (2) of Lemma 3.2
hold. Observe that equation (B+In)(w) = 0 and equation (A−1− In)(w) = (A−1+B)(v)
implies (B +A−1)(w − v) = 0. This proves the lemma. �

3.1. Conjugacy in the affine group Aff(n,D)

In the affine group Aff(n,D), up to conjugacy, we can consider every element in a more
simpler form, which is demonstrated in the next lemma. Recall that a unipotent element
U ∈ GL(n,D) has only 1 as an eigenvalue.

Lemma 3.4. Every element g in Aff(n,D), up to conjugacy, can be written as
g = (A, v) such that A = T ⊕ U , where T ∈ GL(n − m,D), U ∈ GL(m,D) such
that T does not have eigenvalue 1, U has only 1 as eigenvalue and v is of the form
v = [0, 0, . . . , 0, v1, v2, . . . , vm] ∈ Dn, where 0 ≤ m ≤ n is the multiplicity of eigenvalue
1 of the linear part of g. Further, if 1 is not an eigenvalue of the linear part of g (i.e.,
m=0), then up to conjugacy, g is of the form g = (A,0).

Proof. Let g ∈ Aff(n,D) be an arbitrary element. In view of the Jordan decomposition
in GL(n,D), after conjugating g by a suitable element (B,0) ∈ Aff(n,D), we can assume
g = (A,w) such that A = T ⊕ U , where T ∈ GL(n −m,D) does not have eigenvalue 1
and U ∈ GL(m,D) is unipotent. There are two possible cases:

(1) Suppose 1 is not an eigenvalue of A. So the linear transformation A−In is invertible.
Therefore, we can choose xo = (A − In)

−1(w) ∈ Dn. Consider h = (In, xo) ∈
Aff(n,D). For all x ∈ Dn, we have

hgh−1(x) = hg(x− xo) = h(Ax−Axo + w) = Ax+ w − (A− In)xo.

This implies hgh−1(x) = A(x) + 0 for all x ∈ Dn, since xo = (A− In)
−1(w).

(2) Let 1 be an eigenvalue of A. In this case m > 0 and A − In has rank n − m < n.
So we can choose an element u ∈ Dn having the last m coordinates zero such
that [(A − In)(u)]i = wi for all 1 ≤ i ≤ n − m, where w = [wi]1≤i≤n. Let v =
w−(A−In)(u). Then v = [0, 0, . . . , 0, wn−m+1, wn−m+2, . . . , wn] ∈ Dn. Now consider
h = (In, u) ∈ Aff(n,D). For all x ∈ Dn, we have

hgh−1(x) = hg(x− u) = h(Ax−Au+ w) = Ax+ w − (A− In)(u) = Ax+ v.

This completes the proof. �
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Remark 3.5. The idea of the above proof is in the same line of arguments as in
[5, Lemma 3.1]. But here, we have to deal with the subtle situation when the linear part
of affine transformations contains a unipotent Jordan block.

3.2. Elements in Aff(n,D) having a fixed point

Recall that if the linear part of an element in Aff(n,D) does not have eigenvalue 1,
then it will have a fixed point in Dn. In this case, the classification of reversible and
strongly reversible elements in Aff(n,D) follows from the corresponding classification in
GL(n,D).

Proposition 3.6. Let g = (A, v) ∈ Aff(n,D) be an arbitrary element such that 1 is
not an eigenvalue of the linear part A of g. Then g is reversible (respectively strongly
reversible) in Aff(n,D) if and only if A is reversible (respectively, strongly reversible) in
GL(n,D). Further, for D = R or C, the following are equivalent.

(1) g is reversible in Aff(n,D).
(2) g is strongly reversible in Aff(n,D).

Proof. Using Lemma 3.4, up to conjugacy, we can assume g = (A,0). The proof now
follows from Proposition 2.4. �

3.3. Elements in Aff(n,D) with unipotent linear part

In this section, we shall use the adjoint reality approach introduced in [7] to show that
every element of Aff(n,D) with a unipotent linear part is strongly reversible. In view
of Lemma 3.4 and Proposition 3.6, classification of reversible and strongly reversible
elements in Aff(n,D) reduces to the case when the linear part of the affine group element
is unipotent.
In view of Lemma 2.3, every unipotent element in GL(n,D) can be written as direct

sum of unipotent Jordan blocks; see Equation (2.1). Therefore, it is enough to consider
the case when the linear part of an element g ∈ Aff(n,D) is equal to the unipotent
Jordan block J(1, n). We will show that g = (J(1, n), v) ∈ Aff(n,D) is strongly reversible
in Aff(n,D) for all v ∈ Dn and n ∈ N. In the following example, we will illustrate this for
the case n =6 by constructing an explicit involution, which conjugate g to g−1.

Example 3.7. Let g = (A, v) ∈ Aff(6,D) be such that A = J(1, 6) ∈ GL(6,D), where
D = R,C or H. We will show that g is strongly reversible in Aff(6,D).

Here, A−1 =



1 −1 1 −1 1 −1

1 −1 1 −1 1

1 −1 1 −1

1 −1 1

1 −1

1


.
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Let B :=



1 4 6 4 1 0

−1 −3 −3 −1 0

1 2 1 0

−1 −1 0

1 0

−1


be an element of GL(6,D). Note that B is

an involution in GL(6,D) and it conjugates A to A−1. Further, we have

B + I6 =



2 4 6 4 1 0

0 −3 −3 −1 0

2 2 1 0

0 −1 0

2 0

0


, B +A−1 =



2 3 7 3 2 −1

0 −4 −2 −2 1

2 1 2 −1

0 −2 1

2 −1

0


.

(3.2)

Note that both the matrices B + I6 and B +A−1 have the same rank, which is equal to
3. Moreover, their corresponding diagonal entries are equal. Now, consider h = (B,w) ∈
Aff(6,D), where w ∈ Dn is defined as

w =



4v1 + 6v2 + 10v3 + 4v2
−2v1 − 3v2 − 7v3 − 3v4

2v3 + v4
−2v3 − v4

0

v6 − 2v5


. (3.3)

Then h satisfies all the conditions of Lemma 3.3. Therefore, h is an involution such that
hgh−1 = g−1. Hence, g is strongly reversible in Aff(6,D).

The complexity of computation involved in Example 3.7 increases as n (size of the
Jordan block) increases if we follow the above approach. Therefore, when the linear part
of g ∈ Aff(n,D) is J(1, n), generalizing the above construction to find reversing involution
for g seems to be difficult. We will choose a different path to avoid the computational
difficulties and give a significantly simpler proof by considering adjoint reality in the Lie
algebra set-up; see Lemma 3.10.
First, let us introduce some notation that will be used in the next part of this section.

As before, let Dn be the right D-vector space. Consider Dn as an abelian Lie algebra.
Then DerDDn ' gl(n,D). Thus, we can make the semi-direct product on gl(n,D) ⊕ι Dn
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by setting [(A, 0), (0, v)] := (0, Av); see [9, Chapter 1, Section 4, Example 2] for more
details. As done for Aff(n,D) in Equation (3.1), consider the embedding

Ψ: gl(n,D)⊕ι Dn −→ gl(n+ 1,D) given by Ψ((X,w)) =

(
X w

0 0

)
.

Then the image has the usual Lie algebra structure, and aff(n,D) := gl(n,D) ⊕ι Dn

is the Lie algebra of the linear Lie group Aff(n,D). Note that the adjoint action of
G := Aff(n,D) on its Lie algebra g := aff(n,D) is given by

Ad: G× g −→ g; Ad(A, v)·(X,w) =
(
AXA−1, −(AXA−1)v +Aw

)
. (3.4)

Now we recall the notion of adjoint reality for a linear Lie group G, which was intro-
duced in [7]. The adjoint action of a linear Lie group G on its Lie algebra g is given
by the conjugation, i.e., Ad(g)X := gXg−1. An element X ∈ g is called AdG-real if
−X = gXg−1 for some g ∈ G. An AdG -real element X ∈ g is called strongly AdG-
real if −X = τXτ−1 for some involution τ ∈ G; see [7, Definition 1.1]. Observe that if
−X = gXg−1 for some g ∈ G, then (exp(X))−1 = g exp(X)g−1. Thus, if X ∈ g is AdG -
real (respectively, strongly AdG -real), then exp(X) is reversible (respectively, strongly
reversible) in G, [7, Lemma 2.1]. But the converse is not true in general. For example,
X = diag(2πi, πi) ∈ gl(2,C) is not AdGL(2,C)-real, but g = diag(1,−1) = exp(X) ∈
GL(2,C) is reversible.
We will investigate the AdAff(n,D)-real elements in the Lie algebra aff(n,D). Next

result gives necessary and sufficient conditions for the strongly AdAff(n,D)-real elements
in aff(n,D). This can be thought of as a Lie algebra version of Lemma 3.3.

Lemma 3.8. Let (N, x) ∈ aff(n,D) be an arbitrary element. Then (N, x) is strongly
AdAff(n,D)-real if and only if there exists an element h = (B,w) ∈ Aff(n,D) such that
both the following conditions hold:

(1) BNB−1 = −N and B2 = In,
(2) (B + In)(w) = 0 and N(w) = −(B + In)(x).

Proof. We omit the proof as it is identical to that of Lemma 3.3. �

The following result will be used in proving Lemma 3.10.

Lemma 3.9. Let (N, x) ∈ aff(n,D) such that N = J(0, n), where D = R,C or H.
Then (N, x) is strongly AdAff(n,D)-real.

Proof. For the element (N, x ), consider B := diag((−1)n, (−1)n−1, . . . , 1,−1)n×n.
Then condition (1) of Lemma 3.8 holds. Further, by choosing the diagonal matrix B,
the last row of N and B + In are equal to zero vector in Dn. This implies that for every
x ∈ Dn, the last coordinate of B+In(x) is zero. Since the rank of N is n − 1, so equation
Nw = −(B + In)(x) is consistent for given x ∈ Dn and has a solution. To prove this
lemma, it is sufficient to choose w ∈ Dn so that the condition (2) of Lemma 3.8 holds.
This can be done in the following way:

https://doi.org/10.1017/S001309152300069X Published online by Cambridge University Press

https://doi.org/10.1017/S001309152300069X


Reversibility of affine transformations 1225

(1) Let n be even. Then for x = [xk]n×1 ∈ Dn, take w = [wk]n×1 ∈ Dn such that

w2k−1 = 0 and w2k = −2x2k−1, where k ∈
{
1, 2, . . . ,

n

2

}
.

Here, we get unique w depending on v for our choice of B.
(2) Let n be odd. Then for x = [xk]n×1 ∈ Dn, take w = [wk]n×1 ∈ Dn such that

w1 ∈ D, w2k = 0, and w2k+1 = −2x2k, where k ∈
{
1, 2, . . . ,

n− 1

2

}
.

Here, for our choice of B, we get no condition on w1.

Then in view of Lemma 3.8, the element (N, x ) is strongly AdAff(n,D)-real. Hence, the
proof follows. �

The following lemma demonstrates that affine transformations with linear part
conjugate to a unipotent Jordan block are strongly reversible.

Lemma 3.10. Let (A, v) ∈ Aff(n,D) such that A = J(1, n), where D = R,C or H.
Then g is strongly reversible in Aff(n,D).

Proof. Let N := J(0, n) ∈ gl(n,D). Then (σ, y) exp((N, x))(σ, y)−1 = (A, v) for
some (σ, y) ∈ Aff(n,D). Recall that the Lie algebra aff(n,D) = gl(n,D) ⊕ι Dn. Using
Lemma 3.9, we have that (N, x) ∈ aff(n,D) is strongly AdAff(n,D)-real. Let (α, z) ∈
Aff(n,D) be an involution so that (α, z)(N, x)(α, z) = −(N, x). By taking the exponen-
tial, we have that (α, z) exp((N, x))(α, z)−1 = exp(−(N, x)). Let g := (σ, y)(α, z)(σ, y)−1.
Then g is an involution in Aff(n,D) and g(A, v)g−1 = (A, v)−1; see [7, Lemma 2.1]. This
completes the proof. �

The next result follows from Lemma 3.10, which will be crucially used in the proof of
Theorem 1.1.

Proposition 3.11. Let g = (A, v) ∈ Aff(n,D) such that A is a unipotent matrix,
where D = R,C or H. Then g is strongly reversible in Aff(n,D) and consequently g is
also reversible in Aff(n,D).

Proof. In view of Lemma 2.3, up to conjugacy in GL(n,D), we can assume A as
in Jordan form given by Equation (2.1). Using Lemma 3.10 and Example 3.1, we can
construct a suitable h = (B,w) ∈ Aff(n,D) such that hgh−1 = g−1. Hence, g is strongly
reversible in Aff(n,D). This completes the proof. �

3.4. Proof of Theorem 1.1

Let g ∈ Aff(n,D) be an arbitrary element. Using Lemma 3.2 and Lemma 3.3, it follows
that if g is reversible (respectively, strongly reversible) in Aff(n,D) then A is reversible
(respectively, strongly reversible) in GL(n,D).
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Conversely, using Lemma 3.4, up to conjugacy, we can assume that g = (A, v) ∈
Aff(n,D) such that

A =

(
T

U

)
, v =

(
0n−m

ṽ

)
, (3.5)

where 0 ≤ m ≤ n, 0n−m denotes the zero vector in Dn−m and T ∈ GL(n − m,D),
U ∈ GL(m,D) such that T does not have eigenvalue 1, U has only 1 as eigenvalue and
ṽ = [v1, v2, . . . , vm] ∈ Dm. Here, T and U do not have a common eigenvalue. This implies
that if B ∈ GL(n,D) is such that BAB−1 = A−1, then B has the following form

B =

(
B1

B2

)
, where B1 ∈ GL(n−m,D), B2 ∈ GL(m,D).

Therefore, if A is reversible (respectively, strongly reversible) in GL(n,D), then T ∈
GL(n − m,D) and U ∈ GL(m,D) are reversible (respectively, strongly reversible).
Consider h = (U, ṽ) ∈ Aff(m,D), where U is a unipotent matrix. Then Proposition 3.11
implies that h is strongly reversible in Aff(m,D). Proof of the converse part now follows
from Equation (3.5).
Further, for the case D = R or C, Proposition 2.4 implies that g is reversible in Aff(n,D)

if and only if g is strongly reversible in Aff(n,D). This completes the proof.

4. Product of involutions in Aff(n,D)

In this section, we investigate the involution length in the group Aff(n,D). We shall begin
by recalling the basic concept of determinant for matrices over H. For A ∈ M(n,H), let
A = (A1) + (A2)j for some A1, A2 ∈ M(n,C). Consider the embedding Φ : M(n,H) −→
M(2n,C) defined as

Φ(A) =

(
A1 A2

−A2 A1

)
, (4.1)

where Aj denotes the complex conjugate of Aj.

Definition 4.1. For A ∈ M(n,H), determinant of A is defined as the determi-
nant of corresponding matrix Φ(A), i.e., det(A) := det(Φ(A)), where Φ is as defined
in Equation (4.1); see [12, Section 5.9]. In view of the Skolem–Noether theorem, the
above definition is independent of the choice of the chosen embedding Φ.

Recall that if h = (B, v) ∈ Aff(n,D) is an involution, then B has to be an involution
in GL(n,D); see Lemma 3.3. If an element of GL(n,D) is a product of involutions, then
necessarily its determinant is either 1 or −1. Product of involutions in GL(n,D) has been
studied in [8] and [11, Section 4.2.4] for the case D = R or C.
In the next result, we investigate the product of involutions in GL(n,D).
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Lemma 4.2. Let D = R,C or H. Every element of GL(n,D) with determinant 1 or
−1 can be written as a product of at most four involutions.

Proof. Using the Jordan decomposition over H, up to conjugacy, we can assume that
every element of GL(n,H) is in GL(n,C); see [12, Theorem 5.5.3]. The proof now follows
from [11, Theorem 4.9]. �

Remark 4.3. Note that an element of a group G is strongly reversible if and only if
it can be expressed as a product of two involutions in G ; see [11, Proposition 2.12].

Next, we will prove Theorem 1.2.

Proof of Theorem 1.2. Let g = (A, v) ∈ Aff(n,D) be such that det(A) ∈ {−1, 1}.
Then using Lemma 3.4, up to conjugacy, we can assume that

A =

(
T

U

)
, v =

(
0n−m

ṽ

)
, (4.2)

where T ∈ GL(n−m,D) and U ∈ GL(m,D) such that T does not have eigenvalue 1 and
U has only 1 as eigenvalue. Here, 0 ≤ m ≤ n, 0n−m denotes the zero vector in Dn−m and
ṽ = [v1, v2, . . . , vm] ∈ Dm. Consider h = (U, ṽ) ∈ Aff(m,D). Using Proposition 3.11, h is
strongly reversible in Aff(m,D). Therefore, in view of Remark 4.3, there exist involutions
h1 = (P, u) and h2 = (Q,w) in GL(m,D)nDm such that

h = h1 h2. (4.3)

Further, note that det(A) = det(T ) det(U) = det(T ). Thus, T ∈ GL(n − m,D) has
determinant either 1 or −1. In view of Lemma 4.2, we have

T = B1B2B3B4, (4.4)

where Bi is an involution in GL(n −m,D) for all i ∈ {1, 2, 3, 4}. Here, Bi may be equal
to In−m for some i ∈ {1, 2, 3, 4}. Now consider the following elements in Aff(n,D):

• f1 := (B1 ⊕ Im,0n),
• f2 := (B2 ⊕ Im,0n),
• f3 := (B3 ⊕ P,0n−m ⊕ u),
• f4 := (B4 ⊕Q,0n−m ⊕ w).

From the above construction, it is clear that f 1, f 2, f 3, and f 4 are involutions in
Aff(n,D). Using Equations (4.2), (4.3) and (4.4), we have g = f1f2f3f4. This completes
the proof. �
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