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Universal spaces for asymptotic dimension
via factorization
Jerzy Dydak , Michael Levin , and Jeremy Siegert

Abstract. The main goal of this paper is to construct universal spaces for asymptotic dimension
by generalizing to the coarse context an approach to constructing universal spaces for covering
dimension using a factorization result due to Mardesic.

1 Introduction

In classical dimension theory, a universal space for the class of separable metric spaces
of covering dimension at most n is a separable metric space of covering dimension
n into which every separable metric space of dimension at most n embeds. Such
spaces provide a common structure with which the embedded metric spaces can be
studied. One way such universal spaces can be directly constructed was described
by Menger in [10] where one imitates the construction of the Cantor set (a universal
space for dimension 0) by taking a cube in (2n + 1)-dimensional Euclidean space and
removing successively smaller cubes, much in the same way one removes intervals in
the construction of the Cantor set. An accessible explanation of the construction can
be found in [5]. The resulting space is a compact subset of R2n+1 that is of covering
dimension n and has the desired universal space property.

This construction of a universal space for covering dimension is very geometric,
but can hardly be adjusted to the more general settings of Cohomological Dimension,
Extension Theory, and Coarse Geometry. In this regard, a more efficient means of
showing the existence of universal spaces for covering dimension is via a factorization
result due to Mardesic in [9], specifically the following.

Theorem 1.1 (Mardesic factorization theorem) Let f ∶ X → Y be a map from a
compact Hausdorff space X to a compact metric space Y. Then there is a compact metric
space Z with dim(Z) ≤ dim(X) and maps g ∶ X → Z, h ∶ Z → Y such that f factors
through g and h.
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How this result is used to construct universal spaces is fairly easy to state. One
takes their space X to be the Stone–Cech compactification of the disjoint union of all
separable metric spaces of covering dimension at most n. Then Y is taken to be the
Hilbert cube into which every separable metric space embeds. Using this embedding
property, we get a map from X to Y that is an embedding on each separable metric
space as a subset of X. Then the Mardesic factorization theorem yields a compact
metric space Z with dimension equal to the dimension of X, n in this case. As the
map from X to Y is an embedding on each separable metric space that makes up
X, we have that its factor map into Z has the same property, making Z the desired
universal space. A striking feature of this approach that it makes use of the Stone–
Cech compactification, a space very far from being separable and metric, to get a
result that belongs to separable metric topology.

In this paper, we will focus on generalizing this approach to universal spaces to the
field of coarse geometry and asymptotic dimension.

The asymptotic dimension of metric spaces was introduced by Gromov in [6] in
order to study geometric properties of infinite discrete groups. As the small-scale
structure of such spaces is trivial, the asymptotic dimension is a property of the
“large-scale” or “coarse” structure of the space. Basic results surrounding asymptotic
dimension are well summarized in [4, 11]. In order to generalize the aforementioned
approach to universal spaces to the context of asymptotic dimension, we have to
replace the constituent parts used in the application of the Mardesic factorization
theorem with analogs more suitable to coarse geometry. In the place of the Stone–
Cech compactification of the disjoint union of separable metric spaces, we use a
“wedge” construction of all separable metric spaces of a given asymptotic dimension
as described at the beginning of Section 3. In place of the Hilbert cube, we use the
Urysohn universal metric space. Of course, using these pieces to construct a universal
space for asymptotic dimension is predicated on us first proving a large-scale analog
of Mardesic’s factorization result. Specifically, we need to prove the following.

Theorem 1.2 Let f ∶ X → Y be a coarsely continuous map from a metric space X to
a separable metric space Y. Then f factors through coarsely continuous maps g ∶ X → Z
and h ∶ Z → Y with asdimZ ≤ asdimX and Z is separable metric.

The existence of the desired universal space (Theorem 3.2) follows quickly from
the above result which the majority of this paper is devoted to proving. Similarly to
the above remark regarding the Stone–Cech compactification, this “coarse Mardesic”
factorization theorem is an example of a result that uses nonseparable metric spaces
to prove a result for separable metric spaces. Said differently, we apply this result to
a nonseparable metric space to get universal spaces for separable metric spaces of a
given asymptotic dimension.

Our construction of universal spaces for asymptotic dimension is not the first
such construction, but appears to be the first to be done via factorization. In [3],
Dranishnikov and Zarichnyi constructed universal spaces for proper metric spaces
with bounded geometry (for an explanation of these terms, see [11]). Then, in [2],
universal spaces for separable metric spaces were constructed. In [8] universal spaces
for general proper metric spaces of asymptotic dimension zero were constructed.
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Universal spaces for asymptotic dimension via factorization 393

Finally, in [14], it was shown that universal spaces for general proper metric spaces
of asymptotic dimension greater than or equal to one do not exist.

The outline of this paper is as follows. In the next section, we cover some basic
preliminary notions in coarse geometry and the theory surrounding asymptotic
dimension. The existence of universal spaces for separable metric spaces of a given
asymptotic dimension is proved in Section 3 and Theorem 1.2 is proved in Section 4.
As the constructions we make in Section 4 seem like they may be applicable to
other coarse properties, we provide some open questions in Section 5 about the
possible existence of universal spaces for asymptotic property C, finite decomposition
complexity, and Yu’s coarse property A.

2 Preliminaries

We say that a map f ∶ X → Y between metric spaces is coarsely continuous if f sends
uniformly bounded covers in X to uniformly bounded families in Y. Maps f , g ∶ X →
Y are coarsely close if there is r > 0 such that f (x) and g(x) are such that the distance
between f (x) and g(x) is less than r for all x ∈ X. A coarsely continuous map f ∶
X → Y is a coarse equivalence if there is a coarsely continuous map g ∶ Y → X such
that g ○ f and f ○ g are coarsely close to the identity maps of X and Y, respectively.
A map f ∶ X → Y is a coarse embedding if f is a coarse equivalence between X and
f (X). Note that a coarsely continuous map f ∶ X → Y is a coarse embedding if and
only if the preimages of uniformly bounded covers of Y are uniformly bounded in X.
We recall that the asymptotic dimension of a metric space X is bounded by n, written
asdimX ≤ n, if for every r > 0 there is a uniformly bounded cover of X that splits into
n + 1 families of r-disjoint sets. All the spaces are assumed to be metric.

Let F be a family of subsets of X. By the star st(A,F) of a subset A of X, we denote
the union of A with all the sets F ∈ F meeting A, and stF stands for the cover of X
consisting of st(x ,F) for all x ∈ X. We say that Fseparates subsets A and B of X if
st(A,F) does not meet B.

For a metric space (X , d) and a subset A ⊂ X, we denote by B(A, r) the set of
points at distance at most r from A. We say that a subset B of X is r-close to A if in
B ⊂ B(A, r).

Proposition 2.1 Let X be a metric space with asdimX ≤ n. Then, for every r > 0, there
is a uniformly bounded cover of X which has a Lebesgue number r and which splits into
n + 1 families of r-disjoint sets. Moreover, if b is a base point in X, then we can assume
that B(b, r) is contained in an element of each family of this splitting.

Proof Let F be a uniformly bounded cover of X that splits into families F j , 1 ≤ j ≤
n + 1, of (3r)-disjoint sets. Then the familiesF′j = {B(F , r) ∶ F ∈ F j} are r-disjoint and
form the cover F′ = F′1 ∪ ⋅ ⋅ ⋅ ∪ F′n+1 whose Lebesgue number is r.

Now, suppose b is a base point of X. Define F′′j to be the family consisting of
elements of F′j not intersecting B(b, 2r) and one extra element being the union of
B(b, r) with the elements of F′j intersecting B(b, 2r). Then the cover F′′ = F′′1 ∪ ⋅ ⋅ ⋅ ∪
F′′n+1 satisfies the second conclusion of the proposition. ∎
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394 J. Dydak, M. Levin, and J. Siegert

Definition 2.1 Let X be a metric space of asdim ≤ n. A sequence F of covers Fi , i ∈
N, of X is said to witness asdim ≤ n if Fi is R i -bounded, r i is a Lebesgue number of
Fi , and Fi splits into the union of n + 1 families Fi j , 1 ≤ j ≤ n + 1, of r i -disjoint sets
with r i+1 > (100i + 1)R i and R i > r i . We will say that F is guided by the pairs (R i , r i).
For a pointed space X with a base point b, the sequence F is said to respect the base
point if B(b, r i) is contained in an element of Fi j for every j.

Remark For the results presented in this section and the following one, it is
sufficient to assume r i+1 > 2R i . The inequality r i+1 > (100i + 1)R i will be used in the
last section for proving the factorization theorem.

Definition 2.2 Let X be a set. A sequence F of covers Fi , i ∈ N, of X is said to define
asdim ≤ n if stFi refines Fi+1, Fi splits into the union of n + 1 families Fi j , 1 ≤ j ≤
n + 1, of disjoint sets, the sets of Fi+1, j are separated by Fi and for every x , y ∈ X there
is i such that y ∈ st(x ,Fi). We say that F separates the points of a subset Z of X if F1
separates the points of Z.

Proposition 2.2
(i) A metric space of asdim ≤ n admits a sequence of covers witnessing asdim ≤ n.

A pointed metric space of asdim ≤ n admits a sequence of covers witnessing asdim ≤ n
and respecting the base point.

(ii) A sequence of covers witnessing asdim ≤ n is also a sequence defining asdim ≤ n.

Proof
(i) follows from Proposition 2.1.
(ii) follows from the definitions of families witnessing asdim ≤ n and defining

asdim ≤ n. ∎

Proposition 2.3 Let F be a sequence of covers Fi of a set X with the splittings Fi j such
that F defines asdim ≤ n. For x , y ∈ X, set dF(x , y) to be the maximal i such that Fi
separates x and y if such i exists and dF(x , y) = 0 otherwise. Then, for a subset Z ⊂ X
separated by F, we have:

(i) dF is a metric on Z.
(ii)Fi+1 restricted to Z is i-bounded and has a Lebesgue number i − 1,Fi+1, j restricted

to Z is (i − 1)-disjoint, and, as a result, asdimZ ≤ n (everything here with respect to dF).
(iii) If F is a sequence witnessing asdim ≤ n for a metric space (X , d), then d and dF

are coarsely equivalent on Z.

Proof
(i) The only thing needed to be checked is the triangle inequality. Take x , y, z ∈ Z.

Clearly, we may assume that i = dF(x , z) ≥ dF(z, y) ≥ 1. Then x , y ∈ st(z,Fi+1) and
hence x and y are contained in an element ofFi+2 and therefore dF(x , y) ≤ i + 1. Thus,
dF(x , y) ≤ dF(x , z) + dF(z, y).

(ii) follows from the definition of dF and the definition of a family defining
asdim ≤ n.

https://doi.org/10.4153/S0008439523000838 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000838


Universal spaces for asymptotic dimension via factorization 395

(iii) Take a uniformly bounded coverB of Z with respect to dF . By (ii),B refinesFi
for some i and thereforeB is uniformly bounded with respect to d. A similar argument
also works in the other direction. ∎

3 Universal space

Let (Xα , dα) be a collection of separable metric spaces with asdim ≤ n representing,
up to coarse equivalence, all the separable metric spaces with asdim ≤ n. In each Xα ,
we fix a base point bα and, by (i) of Proposition 2.2, take a sequence Fα of covers Fα

i
of Xα with the splittings Fα

i j that witnesses asdim ≤ n, respects the base point bα and
guided by the pairs (Rα

i , rα
i ). Replacing Xα by a coarsely equivalent subset, we may

assume that Fα separates the points of Xα .
Denote by X = ∨Xα the wedge sum of the spaces Xα with the base point b ∈ X

obtained by identifying the base points of all Xα . We consider each Xα as a subset of
X and denote by F the sequence of covers Fi of X with the splittings Fi j defined as
follows: Fi j is the union of Fα

i j for all α where the sets containing the base point b
being replaced by their union.

Proposition 3.1 In the above setting, the following holds:
(i) F is a sequence of covers of X defining asdim ≤ n and separating the points of X,

and hence, by (i) and (ii) of Proposition 2.3, we have asdim(X , dF) ≤ n.
(ii) Each (Xα , dα) is coarsely embedded into (X , dF).
(iii) If a function f ∶ X → Y to a metric space Y isometrically embeds each Xα into

Y with respect to dF , then f is coarsely continuous.

Proof
(i) Since Fα separates the points of Xα , we get that Fα

1 consists of singletons. Then
F1 consists of singletons as well and therefore F separates the points of X.

Let xα ∈ Xα and xβ ∈ Xβ , and let i be such that xα ∈ B(bα , rα
i ) and xβ ∈ B(bβ , rβ

i ).
Then xα and xβ are contained in an element of Fi because Fα and Fβ respect the base
points.

Thus, to show that F defines asdim ≤ n, we only need to show that Fi refines Fi+1
and separates Fi+1, j . Take a point x ∈ X and consider the following cases.

Case 1: b ∉ st(x ,Fi). Then, for Xα such that x ∈ Xα , we have that the sets of Fi
containing x are exactly the sets of Fα

i containing x. By (ii) of Proposition 2.2, Fα
i is

also defining asdim ≤ n, and hence st(x ,Fα
i ) is contained in an element of Fα

i+1 and
no element of Fα

i containing x meets disjoint elements of Fα
i+1, j for every j. Since Fi

restricted to Xα coincides with Fα
i , we get that st(x ,Fi) is contained in an element of

Fi+1 and no element of Fi containing x meets disjoint elements of Fi+1, j for every j.
Case 2: b ∈ st(x ,Fi). Recall that Fα witnesses asdim ≤ n. Then, since rα

i+1 > 2Rα
i ,

we have that st(x ,Fi) is contained in the union of the balls B(bα , rα
i+1) for all α and

this union in its turn is contained in an element of Fi+1, j for every j because each Fα

respects the base point. Thus, we get that st(x ,Fi) is contained in an element of Fi+1
and no element of Fi containing x meets disjoint elements of Fi+1, j for every j.

(ii) follows from (iii) of Proposition 2.3 and the fact that Fi restricted to Xα

coincides with Fα
i .
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(iii) Consider F ∈ Fi . By (ii) of Proposition 2.3, Fi is (i − 1)-bounded with respect
to dF . If F does not contain b, then F is contained in some Xα and therefore
diam f (F) = diamF ≤ i − 1. If F does contain b, then F is contained in the union of the
elements of Fα

i containing b for all α and therefore diam f (F) ≤ 2(i − 1). Thus, f (Fi)
is uniformly bounded. Moreover, by (ii) of Proposition 2.3, any uniformly bounded
cover of (X , dF) refines Fi for some i and, hence, f is coarsely continuous. ∎

Theorem 3.2 (Bell–Nagórko [2]) For every n, there is a separable metric space of
asdim = n which is universal for separable metric spaces of asdim ≤ n (i.e., it contains
a coarsely equivalent copy of every separable metric space of asdim ≤ n).

Proof Consider the space X from Proposition 3.1 and assume that X is equipped
with the metric dF . LetU be the Urysohn space [12]. Recall that each separable metric
space isometrically embeds into U and U is homogeneous by isometries. Then one
can define isometric embeddings f α ∶ Xα → U (with respect to dF restricted to Xα)
sending all the base points bα to the same point in U and this way to define a function
f ∶ X → U that isometrically embeds each Xα ⊂ X into U (with respect to dF). By (iii)
of Proposition 3.1, f is coarsely continuous. Apply Theorem 1.2 to factorize f through
coarsely continuous maps g ∶ X → Z and h ∶ Z → U with Z being separable metric
with asdimZ ≤ asdimX. Recall that, by (i) of Proposition 3.1, asdimX ≤ n and hence
asdimZ ≤ n.

Since f coarsely (even isometrically) embeds Xα into U, we get that g coarsely
embeds Xα into Z. Indeed, if B is a uniformly bounded cover of Z, then h(B) is
uniformly bounded in U and, hence, the cover g−1(B) is a uniformly bounded on Xα

since g−1(B) and f −1(h(B)) coincide on Xα and f −1(h(B)) is uniformly bounded
on Xα with respect to dF . Finally, note that, by (ii) of Proposition 3.1, the metrics dα

and dF are coarsely equivalent on Xα and this shows that Z is a universal space for
separable metric spaces of asdim ≤ n. ∎

4 Factorization theorem

We actually prove the following more general result obviously implying Theorem 1.2.

Theorem 4.1 Let f ∶ X → Y be a coarsely continuous map of metric spaces, and let wX
denote the topological weight of the space X. Then f factors through coarsely continuous
maps g ∶ X → Z and h ∶ Z → Y with asdimZ ≤ asdimX and wZ ≤ wY.

Let us first make the following observation.

Proposition 4.2 Let f ∶ X → Y, g ∶ X → Z, and h ∶ Z → Y be coarsely continuous
maps of metric spaces such that f and h ○ g are coarsely close and wY is infinite. Then
there is a metric space Z′ and coarsely continuous maps g′ ∶ X → Z′ and h′ ∶ Z′ → Y
such that asdimZ′ ≤ asdimZ, wZ′ ≤max{wZ , wY} and f = h′ ○ g′.

Proof Set Z′ = {( f (x), g(x)) ∶ x ∈ X} ⊂ Y × Z and consider Z′ with the metric
inherited from Y × Z and defined as the maximum of the distances between the
coordinates. Define g′ ∶ X → Z′ by g′(x) = ( f (x), g(x)), x ∈ X and let h′ ∶ Z′ → Y
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and π ∶ Z′ → Z be the projections. Clearly, g′ , h′, and π are coarsely continuous,
f = h′ ○ g′, and wZ′ ≤max{wZ , wY}.

Let us show that π is a coarse embedding. Take a uniformly bounded cover B of
Z. Then, since h(B) is uniformly bounded and f and h ○ g are coarsely close, we get
that f (g−1(B)) is uniformly bounded as well. Note that π−1(B) ⊂ f (g−1(B)) × B for
every B ∈ B and hence π−1(B) is uniformly bounded. This implies that π is a coarse
embedding and hence asdimZ′ ≤ asdimZ. ∎

Proof of Theorem 4.1 The theorem is trivial if wY is finite, so we may assume that
wY is infinite. Let asdimX ≤ n. Fix a base point b in X. Take a sequence FX of covers
FX

i of X with splittings FX
i j guided by the pairs (R i , r i) and witnessing asdim ≤ n. For

each i, take a uniformly bounded cover FY
i of Y that is refined by f (FX

i ) with the
cardinality of FY

i bounded by wY and define F0
i j as a collection of disjoint subsets of

X such that each element of F0
i j is a union of elements of FX

i j contained in an element
of f −1(FY

i ), each set of FX
i j is contained in some element of F0

i j and no element of FX
i j

is contained in different elements of F0
i j . Note that f (F0

i j) refines FY
i . ∎

We will construct by induction collections Fp
i j , p ∈ N, of subsets of X satisfying the

following conditions (the families Fp and F
p
i below are determined in the standard

way by F
p
i j , namely, Fp

i is the union of the families Fp
i j for 1 ≤ j ≤ n + 1 and Fp is the

sequence of the covers Fp
i of X):

(†1) The cardinality of Fp
i j is bounded by wY .

(†2) The elements of Fp
i j are disjoint, each element of Fp

i j is a union of elements of
FX

i j , and each element of FX
i j is contained in some element of Fp

i j .
(†3) Fp+1

i j and F
p
i j restricted to B(b, ir i+p) coincide and F

p+1
i j refines Fp

i j .
(†4) stFp+1

i refines Fp
i+1.

(†5) The elements of Fp
i+1, j are separated by F

p+1
i .

Clearly, the relevant properties hold for F0. Assume that the construction is
completed for F

p
i with p + i = m and proceed to m + 1 in the following order

F0
m+1 ,F1

m ,F2
m−1 , . . . ,Fm

1 . Recall that F0
m+1 is already defined and assume that

F0
m+1 , . . . ,Fm−i

i+1 are already constructed. We will construct Fm−i+1
i as follows. Denote

p = m − i.
Let 1 ≤ j, t ≤ n + 1, and let a set A be the union of some elements of FX

i j . By splitting
A by F

p
i+1,t , we mean replacing A by the family of disjoint subsets of X which is the

union of the following collections.

Collection 1: the union of the elements of FX
i j contained in A and intersecting

B(b, irm) (Collection 1 consists of only one set).
Collection 2: for each element F of Fp

i+1,t , take the union of the elements of FX
i j

which are contained in both A and F and which were not used in constructing
Collection 1 (by (†1) the cardinality of Collection 2 is bounded by wY).

Collection 3: for each element F of Fp
i+1,t , take the union of the elements of FX

i j
which are contained in A and (r i+1/10)-close to F and which were not used in
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constructing Collections 1 and 2 (by (†1) the cardinality of Collection 3 is bounded
by wY , and the elements of Collection 3 are disjoint because (†2) implies that Fp

i+1,t
is r i+1-disjoint).

Collection 4: the union of the elements of FX
i j contained in A and that were not

used in constructing Collections 1–3 (Collection 4 consists of only one set).

Now, split the elements of Fp
i j by F

p
i+1,1, split the elements of the resulting family

by F
p
i+1,2, and proceed by induction to the last splitting by F

p
i+1,n+1 to finally get the

family which we denote by F
p+1
i j . The construction is completed.

Claim 4.3 All the †-conditions hold.

We will prove Claim 4.3 later. Let us show now how to derive from Claim 4.3
the proof of the factorization theorem. Condition (†3) implies that there is a unique
collection Fi j of subsets of X such that Fi j coincides with F

p
i j on the ball B(b, ir i+p)

for every p. Condition (†2) implies that Fi j is a family of disjoint sets such that
Fi = Fi ,1 ∪ ⋅ ⋅ ⋅ ∪Fi ,n+1 covers X. Let F be the sequence of the covers Fi with the
splittings Fi j .

Claim 4.4
(i) FX

i refines Fi and Fi refines Fp
i for every p.

(ii) F defines asdim ≤ n.

Proof
(i) follows from (†2) and (†3).
(ii) Since FX is a sequence witnessing asdim ≤ n, any pair of points is contained

in an element of FX
i for some i. Then, by (†1), this pair is contained in an element of

F
p
i for every p and hence, by (†3), in an element of Fi . Thus, in order to show that F

defines asdim ≤ n, we only need to show that stFi refines Fi+1 and Fi separates Fi+1, j .
Take a point x ∈ X. By (†3) and (†4), for every p, there is F p ∈ Fi+1 such that

st(x ,Fi) ∩B(b, ir i+p) ⊂ F p ∩B(b, ir i+p). Note that x belongs to at most n + 1 ele-
ments of Fi+1 and hence there is F in Fi+1 such that F = F p for infinitely many p and
then st(x ,Fi) ⊂ F. Thus, stFi refines Fi+1.

The property that Fi separates Fi+1, j follows from (†3) and (†5). ∎

Let Z be a maximal subset of X separated by F1. Define a function g ∶ X → Z by
sending x ∈ X to a point z ∈ Z such that x ∈ st(z,F1). Consider Z with the metric dF

determined by F as described in Proposition 2.3.

Claim 4.5 We have that wZ ≤ wY, asdimZ ≤ n, the functions g ∶ X → Z and h =
f ∣Z ∶ Z → Y are coarsely continuous (everything here with respect to dF), and f and
h ○ g are coarsely close.

Proof Since F1 separates the points of Z, we get that F1 restricted to Z consists of
singletons and therefore the cardinality of Z is bounded by the cardinality ofF1. Then,
since F1 restricted to B(b, r1+p) coincides with F

p
1 for every p, we get by (†1) that the
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cardinality of F1 is bounded by wY and hence wZ ≤ wY . The property asdim ≤ n
follows from (ii) of Proposition 2.3.

Let us show that g is coarsely continuous. Take F ∈ FX
i and x1 , x2 ∈ F and let

z1 = g(x1) and z2 = g(x2). Then x1 ∈ st(z1 ,F1) and x2 ∈ st(z2 ,F1). By (ii) of Claim
4.4, x1 ∈ st(z1 ,Fi) and x2 ∈ st(z2 ,Fi) and then F ⊂ st(z1 ,Fi+1) and F ⊂ st(z2 ,Fi+1).
Therefore, by (ii) of Proposition 2.3, z1 and z2 are (i + 1)-close with respect to dF .
Thus, g(FX

i ) is uniformly bounded with respect to dF and hence g is coarsely
continuous.

Let us show that h is coarsely continuous. Recall that f (F0
i ) refines FY

i . Then, by
(i) of Claim 4.4, Fi refines F0

i and we get that f (Fi) is uniformly bounded and hence,
again by (ii) of Proposition 2.3, h is coarsely continuous.

Let us finally show that f and h ○ g are coarsely close. Take a point x ∈ X and let
z = g(x). Since x ∈ st(z,F1),F1 refinesF0

1 and f (F0
1 ) refinesFY

1 , we get that f (x) and
h(g(x)) = f (z) are contained in an element of FY

1 and hence f and h ○ g are coarsely
close. ∎

Thus, Theorem 1.2 follows from Claim 4.5 and Proposition 4.2. The only thing left
is the following.

Proof of Claim 4.3 Conditions (†1), (†2), and (†3) obviously follow from the con-
struction. So the only conditions we need to verify are (†4) and (†5) forFp+1

i assuming
that all the †-conditions hold for all the covers constructed before F

p+1
i . Recall that

m = p + i. Note that, by (†2),
(∗) r i+1 is a Lebesgue number of Fp

i+1 and
(∗∗) Fp

i+1,t is r i+1-disjoint for every t.
Also, recall that
(∗ ∗ ∗) FX

i is R i -bounded with (100i + 1)R i < r i+1 (in particular R i < r1+1/10).
Fix a point x ∈ X. We will say that x satisfies (†4) if st(x ,Fp+1

i ) is contained in an
element of Fp

i+1, and we will say that x satisfies (†5) if for every j no element of Fp+1
i

containing x meets disjoint elements of Fp
i+1, j one of which contains x. Note that if

every point of X satisfies (†4) and (†5), then F
p+1
i satisfies (†4) and (†5) as well.

Let E be an element ofFp+1
i . Recall that E is constructed from an element ofFp

i by a
sequence of splittings by the familiesFp

i ,1 , . . .Fp
i ,n+1. On each step of this construction,

we create four collections (Collections 1–4). Only one of these collections has an
element containing E, and we will refer to this collection as the collection refined
by E. We will refer to the step of splitting by Fp

i ,t in the construction of E as step t. For
given x and t, we assume throughout the proof that

(◇) E is an element of Fp+1
i that contains x, E is the collection refined by E created

on step t of the construction of E, and EE is the unique element of E that contains E.
Consider the following cases.

Case 1: st(x ,FX
i ) does not meet B(b, irm).

We will show that x satisfies (†4). By (∗) and (∗ ∗ ∗), take an element F ∈ Fp
i+1,t

containing st(x ,FX
i ). Having x and t chosen, we let E, E, and EE be as in (◇). By the
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assumption of Case 1, E cannot be Collection 1. Then E must be Collection 2 with
EE ⊂ F. Thus, E ⊂ F and hence x satisfies (†4).

Now, we will show that x satisfies (†5). Fix any t and suppose F is an element of
F

p
i+1,t containing x. Having x and t chosen, we let E, E, and EE be as in (◇). By the

assumption of Case 1, E is not Collection 1. Then, by (∗∗) and (∗ ∗ ∗), E must be either
Collection 2 or Collection 3 and then EE is either contained in F or (r i+1/10)-close
to F. Hence, by (∗∗), EE meets no element of Fp

i+1,t different from F. Thus, x satisfies
(†5).

Case 2: st(x ,FX
i ) does meet B(b, irm) and p = 0. Note that in this case m = i and

hence 2(irm + 2R i) < r i+1/10.

We will show that x satisfies (†4). By (∗), take an element F ∈ Fp
i+1,t containing

B(b, irm + 2R i). Then, by (∗ ∗ ∗), st(x ,FX
i ) ⊂ F. Having x and t chosen, we let E, E,

and EE be as in (◇). If E is Collection 1, then, again by (∗ ∗ ∗), EE ⊂ B(b, irm + 2R i)
and hence EE ⊂ F. If E is not Collection 1, then, since st(x ,FX

i ) ⊂ F, the only option
left is that E is Collection 2 and hence EE ⊂ F. Thus, x satisfies (†4).

Now, let us show that x satisfies (†5). Fix any t and suppose F is an element ofFp
i+1,t

containing x. Having x and t chosen, we let E, E, and EE be as in (◇). If E is Collection
1, then EE is contained in B(b, irm + 2R i) and hence EE is (r i+1/10)-close to F. If E is
either Collection 2 or Collection 3, and then in both cases EE is (r i+1/10)-close to F.
By (∗∗) and (∗ ∗ ∗),E cannot be Collection 4. Thus, by (∗∗), EE cannot meet an element
of Fp

i+1,t different from F and therefore x satisfies (†5).

Case 3: st(x ,FX
i ) does meet B(b, irm) and p > 0. Note that then, by (∗ ∗ ∗),

st(x ,FX
i ) ⊂ B(b, (i + 1)rm).

Let us show that x satisfies (†4). By the inductive assumption for (†4), stFp
i refines

F
p−1
i+1 . Then, by (†3), there is F ∈ Fp

i+1 such that

(●) st(x ,Fp
i ) ∩B(b, (i + 1)rm) ⊂ F ∩B(b, (i + 1)rm).

Note that then, by (∗ ∗ ∗) and (†2), we also have st(x ,FX
i ) ⊂ F. Suppose F ∈ Fp

i+1,t .
Having x and t chosen, we let E, E, and EE be as in (◇). If E is Collection 1, then
EE ⊂ B(b, (i + 1)rm) and, then by (†3), E is contained in an element ofFp

i , and hence,
by (●), E ⊂ F. If E is not Collection 1, then, since st(x ,FX

i ) ⊂ F, the only option left is
that E is Collection 2 and hence EE ⊂ F. Thus, x satisfies (†4).

Now, we will show that x satisfies (†5). Fix any t and suppose F is an element
of Fp

i+1,t containing x. Having x and t chosen, we let E, E, and EE be as in (◇).
If E is Collection 1, then EE ⊂ B(b, (i + 1)rm) and, hence by (†3), E is contained
in an element of Fp

i . Thus, by the inductive assumption for (†5), E cannot meet
disjoint elements of Fp−1

i+1,t and hence, by (†3), E cannot meet disjoint elements of
F

p
i+1,t as well. If E is Collection 2 or Collection 3, then EE is (r i+1/10)-close to F

and, by (∗∗), EE cannot meet disjoint elements of Fp
i+1,t . By (∗∗) and (∗ ∗ ∗), E cannot

be collection 4. Thus, F is the only element F
p
i+1,t that E meets and therefore x

satisfies (†5).
Thus, every point of X satisfies (†4) and (†5) and the claim is proved. ∎
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5 Coarse property C and finite decomposition complexity

Yu’s result in [13] that proper metric spaces that admit uniform embeddings into
Hilbert space satisfy the Novikov conjecture inspired many to seek out sufficient
conditions for this same property. Yu showed that spaces with finite asymptotic
dimension have this property, but there are also known examples of spaces with infi-
nite asymptotic dimension that also have this property. Thus, properties weaker than
finite asymptotic dimension that still imply the existence of uniform embeddings into
Hilbert spaces have been sought out and explored. One such property is asymptotic
property C, described by Dranishnikov in [4]. The property is related to the property
of having finite asymptotic dimension. Indeed, metric spaces with finite asymptotic
dimension have asymptotic property C. Its similarity with having finite asymptotic
dimension leads us to the main goal of this section, which is to ask if the methods for
constructing universal spaces for asymptotic dimension can be extended to coarse
property C.

Below is the general definition for coarse property C (the general version of
asymptotic property C for coarse spaces) as given by Bell, Moran, and Nagorko in [1].

Definition 5.1 A metric space X has coarse property C if for any sequence {L i}i∈N of
uniformly bounded covers such that L i refines L i+1, there is an n and a finite sequence
U1 ,U2 , . . . ,Un of families of subsets of X such that:
(1) U = ⋃n

i=1 U
i covers X;

(2) each Ui is uniformly bounded; and
(3) each Ui is L i -disjoint.

We then ask the following.

Question
(i) Is there a (not necessarily separable) metric space X that has coarse property C

and contains a coarsely equivalent copy of each separable metric spaces with coarse
property C?

(ii) Let f ∶ X → Y be a coarsely continuous map from a metric space X with coarse
property C to a separable metric space Y. Does f factor through a separable metric space
with coarse property C?

We end by noting that there are other properties one might also want to try
constructing universal spaces for using the methods of this paper. These include finite
decomposition complexity [7] and coarse property A [13].
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