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Global Injectivity of C
1 Maps of the Real

Plane, Inseparable Leaves and the
Palais–Smale Condition

C. Gutierrez, X. Jarque, J. Llibre and M. A. Teixeira

Abstract. We study two sufficient conditions that imply global injectivity for a C1 map X : R
2 → R

2

such that its Jacobian at any point of R
2 is not zero. One is based on the notion of half-Reeb component

and the other on the Palais–Smale condition. We improve the first condition using the notion of

inseparable leaves. We provide a new proof of the sufficiency of the second condition. We prove that

both conditions are not equivalent, more precisely we show that the Palais–Smale condition implies the

nonexistence of inseparable leaves, but the converse is not true. Finally, we show that the Palais–Smale

condition it is not a necessary condition for the global injectivity of the map X.

1 Introduction and Statement of the Main Result

In this note we denote by X = ( f , g) : R
2 → R

2 a C1 map such that its Jacobian
at any point of R

2 is non zero. Then by the inverse function theorem, this map is
locally injective at any point of R

2. As the map f (x, y) = (ex cos x, ex sin y) (i.e., the
complex map f (z) = ez as a map from R

2 to R
2) shows that the above local condition

is not sufficient to guarantee the global injectivity. Indeed, Pinchuck [13] showed that
there is a polynomial map X satisfying the above local condition for injectivity that
is not globally injective in R

2 (see also [4, p. 241]). Consequently, the goal is to give
sufficient conditions on such a map to insure that it is globally injective. Our concern

is to discuss two of these conditions (that appeared in the literature), to compare
them, and to establish relationships between them.

We denote by X f the Hamiltonian planar vector field associated with f , i.e., X f =

(−∂ f /∂y, ∂ f /∂x). Of course, X f is, in general, only a C0 vector field, but we know
that its solutions lie in the level curves of f . Similarly we define Xg .

A vector field Y in R
2 defines a planar foliation if Y has no singularities. Since the

Jacobian of X is never zero, X f and Xg are planar Hamiltonian foliations as well.

The orbits of a foliation are called leaves. It is well known in the general theory
of planar foliations that the relevant leaves in the study of the phase portrait of the

foliations are the inseparable leaves and their accumulations, if such accumulations
exist.
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Two different leaves L1 and L2 of a foliation Y are inseparable if for any arcs T1

and T2, to which Y is nowhere tangent and such that Li has non-empty intersection

with Ti , i = 1, 2, there is a third leaf L, distinct from L1 and L2, which intersects both
T1 and T2. In other words, the distinct orbits through the points p and q of R

2 are
said to be inseparable if there exist one-sided compact transversal sections Σp at p

and Σq at q such that the Poincaré map π : Σp \ {p} → Σq \ {q} may be defined

and satisfies limx→p π(x) = q. The notion of inseparable leaves may be considered
in general when L1 = L2, but it forces the vector field to have a singular point, and
hence not a foliation.

Let X = ( f , g) : R
2 → R

2 be a local homeomorphism. Then it is easy to see from
the definitions that the surjective map X̃ : R

2 → X(R
2), induced by X, is a finite

covering map if and only if it is a proper one. In this way,

(i) if X(R
2) is simply connected, X is globally injective if and only if X̃ is a proper

map;
(ii) if X(R

2) = R
2, then X is a proper map ⇔ X is a homeomorphism⇔ every level

set of the form { f = constant} and {g = constant} is connected ⇔ X f and Xg

have no inseparable leaves.

However if X is a (proper) embedding, that is, X is globally injective and X(R
2) $

R
2 (in which case X(R2) is simply connected), it may happen that both X f and Xg

have infinitely many pairs of inseparable leaves. This will depend on the geometry of
the set X(R

2). For instance, if X(R
2) is vertically (resp., horizontally) convex, then

X f (resp., Xg) has no inseparable leaves. The examples given below will show that if
X(R

2) is far from being convex, then both X f and Xg have infinitely many pairs of

inseparable leaves. More precisely, we have the following result.

Proposition 1 There exists a smooth embedding X : R
2 → R

2 such that both X f and

Xg have infinitely many pairs of inseparable leaves.

This proposition is proved at the beginning of Section 2.

The above definition of a pair of inseparable leaves is equivalent to the notion of
saddle-at-infinity (SAI) or half-Reeb component (hRc), widely used in the literature,

specially in the context of the injectivity problem. We just notice that in the defini-
tion of (hRc) (see [3] for more details), the homeomorphism does not need to be
extended to infinity.

The first main result in this note deals with the sufficiency (but not necessity) of
the non existence of inseparable leaves in X f or Xg in order that X determines a global
injective map.

Theorem 2 Let X = ( f , g) : R
2 → R

2 be a C1 map such that its Jacobian at any point

of R
2 is not zero.

(i) If X f or Xg has no inseparable leaves, then X is globally injective.

(ii) There are maps X globally injective such that both foliations X f and Xg have no

inseparable leaves.
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(iii) There are maps X globally injective such that one and only one of the foliations X f

and Xg has inseparable leaves.

(iv) The converse of statement (i) does not hold; i.e. there are maps X globally injective

such that both X f and Xg have inseparable leaves.

Theorem 2(i) was indeed proved by Cobo, Llibre and Gutierrez [3], although we

include the proof here for completeness (see also [5]). Statement (ii) is trivial, by
considering X = ( f , g) equal to the identity map of R

2, while statements (iii) and
(iv) are proved in Section 2.

From the result above there is still an open question of finding the sufficient and
necessary conditions on X f and Xg to guarantee global injectivity. Recently, a new
paper [7] has appeared in the line of [3], giving sufficient conditions for global injec-
tivity on C1 maps X : R

2 → R
2 i.e., using the eigenvalues of the Jacobian of X at any

point of R
2.

Given a C1 map f : R
2 → R and c ∈ R, we say that f satisfies the Palais–Smale

condition at level c (see [2,14]) if every sequence {pm} in R
2 satisfying (i) f (pm) → c

and (ii) ‖( fx, fy)(pm)‖ → 0, as m → ∞, possesses a converging subsequence. If f

satisfies the condition for every c ∈ R, then we say that f satisfies the Palais–Smale

condition or the (PS) condition. We notice that when f is such that X f has no singular

points, (that is, ( fx, fy) 6= (0, 0) in all R
2) the (PS) condition can be stated as follows:

for any sequence pm → ∞ in R
2 satisfying f (pm) → c, c ∈ R there exists an ε > 0

such that ‖( fx, fy)(pm)‖ > ε for all m.

Theorem 3 Let X = ( f , g) : R
2 → R

2 be a C1 map such that its Jacobian at any point

of R
2 is not zero.

(i) If f or g satisfies the (PS) condition, then X is globally injective.

(ii) There are maps X globally injective such that both f and g satisfy the (PS) condi-

tion.

(iii) There are maps X globally injective such that one and only one of the functions f

or g satisfies the (PS) condition.

(iv) The converse of statement (i) does not hold, i.e., there are maps X globally injective

such that neither f nor g satisfy the (PS) condition.

Statement (i) of Theorem 3 has been proved by Silva and Teixeira [15]. So the (PS)

condition gives an alternative (to the non existence of inseparable leaves condition)
sufficient condition for global injectivity. In Section 2, we provide a new proof of
statement (i), by using Theorems 2 and 4.

Statements (i) and (iii) of Theorem 3 are proved in Section 2, while statement (ii)
is trivial by considering X = ( f , g) equal to the identity map of R

2.

A natural question to ask is whether the two sufficient conditions stated in The-

orem 2(i) and Theorem 3(i) are equivalent. The answer is that they are not. More
precisely, the (PS) condition (an analytic condition), implies the nonexistence of in-
separable leaves (a topological condition), but the converse is not true. This is de-
tailed in the next theorem, proved in Section 2.
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Theorem 4 Let f : R
2 → R be a C1 map with gradient different from zero at any

point of R
2.

(i) If f satisfies the (PS) condition, then X f has no inseparable leaves.

(ii) The converse of statement (i) does not hold.

We provide two different proofs of Theorem 4(i). The first uses a previous result
of Silva and Teixeira [16] called the level surface theorem while the second involves
the notion of virtual critical point (or, equivalently, asymptotic value).

2 Proofs of the Results

In order to prove Proposition 1 we need the following two preliminary lemmas. The
first one is immediate.

Lemma 5 Suppose that X = ( f , g) : R
2 → R

2 is an embedding such that the bound-

ary C of X(R
2) is a topological circle. Suppose that for some (x0, y0) ∈ C and some

ε > 0 there is a smooth function ϕ : [y0 − ε, y0 + ε] 7→ R such that

(i) ϕ(y) = x0 + c(y − y0)2 + higher order terms, where c < 0 is a constant;

(ii) {(ϕ(y), y) : y ∈ [y0 − ε, y0 + ε]} ⊂ C and if (x, y) ∈ X(R
2) with |y − y0| < ε

is close to C, then x > ϕ(y).

Then { f = x0} contains a pair of inseparable leaves.

Lemma 6 Given a bounded simply connected open subset U of R
2, there exists a

smooth embedding X : R
2 → R

2 such that X(R
2) = U .

Proof It follows directly from the Riemann mapping theorem.

Proof of Proposition 1 Let C be a topological circle such that

(i) The curves

{(x, x sin(1/x)/2) : x ∈ (0, 1)} and {(y sin(1/y)/2, y) : y ∈ (0, 1)}

are part of C .

(ii) Away from (0, 0), the circle C is smooth.

Let U be the topological 2-disc bounded by C . It follows from Lemma 6 that there ex-
ists a smooth embedding X : R

2 → R
2 such that X(R

2) = U . Therefore, by Lemma 5,
X f has infinitely many pairs of inseparable leaves. Similarly, it can be seen that Xg has
infinitely many pairs of inseparable leaves.

Now we prove Theorem 2, Theorem 4 and Theorem 3, in this order.

Theorem 2(iv) follows from Proposition 1. Theorem 2(iii) can be proved in a
similar way, although we will prove these items below in a different way by exhibiting
explicit examples.
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Proof of Theorem 2(i) Let X = ( f , g) : R
2 → R

2 be a C1 map such that its Jacobian
at any point of R

2 is non zero. Suppose that X f has no inseparable leaves, and we shall

prove that X is globally injective. If Xg has no inseparable leaves, the proof is similar.
Since the Jacobian of X is never zero, the induced Hamiltonian vector field X f

has no singularities in R
2. Hence, by Neumann’s classification of flows on 2-mani-

folds [12] (see also [10]), the phase portrait of X f is topologically equivalent to the

horizontal foliation of R
2 (i.e., the foliation of R

2 given by the constant vector field
(1, 0)) or equivalently, there is a global transversal section.

Assume that in two different leaves L1 and L2 of the topological horizontal folia-
tion of X f , the function f takes the same value, and consider the segment S of the

transversal segment connecting p1 ∈ L1 with p2 ∈ L2. At any point of S we consider
the basis of R

2 given by the transversal and the orbit passing through that point. Now
it is clear that the two partial derivatives at one point must be zero. So f will have
a local maximum or minimum, and the gradient of f will be zero, in contradiction

with the fact that the Jacobian of X never vanishes. So there is a unique leaf in every
level of f .

We claim that g restricted to each leaf of f is strictly monotone. The claim follows
easily by noting that if we denote by (x(t), y(t)) a solution curve of X f , then

(1)
d

dt
g(x(t), y(t)) =

∂g

∂x
ẋ +

∂g

∂y
ẏ = −

∂g

∂x

∂ f

∂y
+

∂g

∂y

∂ f

∂x
6= 0,

since the Jacobian of X is never zero. Then X is globally injective.

Proof of Theorem 2(iii) We consider the analytic map X = ( f , g) : R
2 → R

2 de-
fined by

f (x, y) = ey(1 − x2), g(x, y) = −eyx.

Since X f = (ey(x2 − 1),−2eyx) and Xg = (eyx,−ey), it is clear that X f and Xg define
regular foliations in R

2. Moreover, the Jacobian of X at any point (x, y) ∈ R
2 is equal

to e2y(1 + x2) > 0.
Looking at the phase portrait of the foliation X f , it follows that the straight lines

x = ±1 are the two inseparable leaves of the foliation X f . On the other hand, the
phase portrait of Xg shows that this foliation has no inseparable leaves. Then by
Theorem 2(i), the map X is globally injective.

We will need the following lemma in the proof of Theorem 2(iv).

Lemma 7 Let R be an open, simply connected subset of R
2. Let Z = ( f , g) : R → R

2

be a C1 local diffeomorphism. Suppose that there exist two points p, q ∈ R
2 such that

Z(p) = Z(q) = (c, d). Then p and q belong to different connected components of both

f −1(c) and g−1(d).

Proof Suppose, by contradiction, that p and q belong to the same connected com-
ponent L of f −1(c) (the case of g−1(c) is similar). Then, as g|L is strictly monotone
(since Z is a local diffeomorphism, see (1)), we should not have g(p) = g(q) = d.

https://doi.org/10.4153/CMB-2007-036-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-036-0


382 C. Gutierrez, X. Jarque, J. Llibre and M. A. Teixeira

Proof of Theorem 2(iv) Let I = (0, 1) and let Θ : I × I 7−→ R
2 be the diffeomor-

phism given by Θ(x, y) = (tan(πx − π/2), tan(πy − π/2)). Given ε = 0.1, let

Y = (h, k) : I × I 7−→ R
2 be defined by

h(x, y) = (y − ε)2 − ε2x2 and k(x, y) = (y − 1 + ε)2 − ε2x2.

We claim that the map X = Y ◦ Θ−1 = ( f , g) : R
2 → R

2 is an analytic, globally
injective, local diffeomorphism such that both X f and Xg have inseparable leaves.
We notice that the only role of Θ is to extend the behaviour from I × I to R

2 (in

particular, the square boundary goes to infinity). Of course, Theorem 2(iv) follows
from the claim. We establish the claim in three steps.

First, we compute det(DY (x, y)) = 4ε2(1 − 2ε)x, which is different from zero in

I × I, so Y and then X are local diffeomorphisms.

Second, we must show that Y is globally injective. In the light of Lemma 7, we
only need to see that there is no intersection between level sets of h and k with more

than one connected component. Let c ∈ Y (I, I). By dealing with the expressions of
h and k, it is not difficult to see that h−1(c) (resp., k−1(c)) has at most two connected
components, and moreover they have exactly two if and only if 0 ≤ c < ε2. Indeed,
c = 0 corresponds to two pairs of straight lines (one pair for h−1(0) and one pair

for k−1(0). Above that value of c = ε2 each level set is given by one connected
component. One can check that h−1([0, ε2)) ∩ k−1([0, ε2)) = ∅.

Third, we see that in the filled square I × I the Hamiltonian foliations Yh and Yk

have both inseparable leaves lying in A = {(x, y) ∈ I × I : ε2x2 ≥ (y − ε)2} and
B = {(x, y) ∈ I × I : ε2x2 ≥ (y − 1 + ε)2}, respectively. So the Hamiltonian
foliations of the plane defined by X f and Xg have both inseparable leaves lying in
Θ(A) and Θ(B), respectively.

The next goal is to prove Theorem 4. Indeed, we prove (i) by using two different
arguments, one using the “mountain pass theorem” and the other by characterizing
the inseparable leaves in terms of sequences.

Given a C1 map f : R
2 → R and c ∈ R, we define the sets Sc( f ) = {u ∈ R

2 :
f (u) = c} and Kc = {u ∈ R

2 : f (u) = c, ∇ f (u) = 0}, respectively. Of course,
∇ f denotes the gradient of f . We say that c is an admissible level of f if, either c is a
regular value of f , or each component of Kc is just a point and c is an isolated critical

value of f .

Silva and Teixeira [16] (see also [15]) proved the following version of the moun-
tain pass theorem which they call the “level surface theorem”.

Theorem 8 Suppose that the C1 map f : R
2 → R satisfies the (PS) condition. Assume

that c ∈ R is an admissible level of f and that u and v are two distinct points of Sc( f ).

Then, either u and v are in the same path-component of Sc( f ), or f has a critical value

d 6= c.

First proof of Theorem 4(i) Let f : R
2 → R be a C1 map with gradient different

from zero at any point of R
2, and assume that f satisfies the (PS) condition. Of
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course, X f is a Hamiltonian foliation in R
2. Therefore, all the levels of f are admis-

sible, and since f has no critical values, by Theorem 8, every level of f has a unique

component, which is not compatible with having two different inseparable leaves,
because each of them is a different connected component of a level curve of f .

Alternatively, we can prove Theorem 4(i) without using Theorem 8. For that we
need some preliminary notions and results.

Let f : R
2 → R be a C1 map. A point p ∈ R

2 is a virtual critical (point) for f if
there exists a sequence of embedded intervals Ci with endpoints pi , qi , i ≥ 0, on each
of which f has a constant value distinct from f (p), with pi → p, qi → q, but there is
a sequence {ri}, ri ∈ Ci , having no accumulation points in R

2.

The next lemma shows that provided that the function f has gradient different
from zero at any point of R

2, the existence of virtual critical points and the existence
of inseparable leaves are equivalent notions (see also [9], where the result is proved

for a general f ).

Lemma 9 Let f : R
2 → R be a C1 map with gradient different from zero at any point

of R
2. If p is a virtual critical point for f , then the level curve through p is an inseparable

leaf of X f . Conversely, if X f has inseparable leaves, then there exists a point p which is a

virtual critical point for the function f .

Proof The converse implication is straightforward, by taking the points p and q as
in the definition of inseparable leaves. The sequence of embedded intervals Ci with
endpoints pi , qi , i ≥ 0, correspond to the segment orbits of X f passing through the
points pi with pi → p, and the sequence of ri ∈ Ci with ri → ∞ can be easily chosen

in these segment orbits.

We assume that p is a virtual critical point. To see that the orbits of p and q

are inseparable leaves (both tending to infinity in forward and backward time), we

consider the sequence of embedded intervals Ci with endpoints pi and qi , where
pi → p and qi → q. On each Ci the function f takes a constant value distinct
from f (p). Clearly, these orbit segments of X f can be enlarged so that they cross
transversally the cross sections Σp and Σq of the definition of inseparable leaves, and

consequently the orbits of p and q are inseparable leaves.

Second proof of Theorem 4(i) From the definition, it is enough to see that if f has
a gradient different from zero at any point in R

2 and X f has inseparable leaves, then
there is (at least) a sequence of points {pm} such that conditions (i) and (ii) are
satisfied in the definition of (PS).

So assume X f has inseparable leaves (and ∇ f (p) 6= 0 for every p ∈ R
2). From

Lemma 9 this is equivalent to assuming that there exists a virtual critical point p. We
denote by Ω0 the canonical region partially fulfilled by the orbits passing through the

two one-sided transversal sections Σp at p and Σq at q. We denote by Ω the subset of
Ω0 determined by the segments of the two one-sided transversal sections Σp at p and
Σq at q joining p with p1 and q with q1, the segment orbit joining p1 and q1, and the
two orbits passing through p and q (see Figure 1).
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p q
q1 p1

Ω

Figure 1: The set Ω as a subset of the canonical region associated with the inseparable leaves

through p and q (or equivalently, through the virtual critical point p).

Notice that Ω is an open unbounded set. Moreover, it can be assumed that f takes
values strictly less than c in Ω. Observe that f takes the value c only in the orbits
passing through p and q, and perhaps in other components different than Ω0).

We consider an increasing sequence of radius {δi} ∈ R and the correspond-
ing sequence of balls Bδi

(0), centered at the origin. It is clear that we can choose
this sequence in a such way that for each ball we can choose a point ri lying in

Ω∩ (Bδi
(0) \Bδi−1(0)) and with f (ri) being a strictly increasing sequence. Of course,

f (ri) → c as i → ∞. For each point ri we consider the gradient solution curve φt (ri)
passing through that point for t ∈ (−1/4, 1/4). If such a curve does not entirely
belong to Ω, we change ri by the point φ−1/4(ri) which surely lies in Ω and by con-

struction the gradient solution curve passing through it is entirely included in Ω (for
t ∈ (−1/4, 1/4)). For simplicity we rename all points to be ri again.

We consider a C1 parametrizable curve C inside Ω passing through all of these
points (i.e., the ri) and which coincides with the gradient solution curves around the
ri ’s. Hence C can be understood as the image of a function g : R → Ω such that

‖g ′(t)‖ = 1 (by arc parametrization). Of course, C must cross all the level curves
f = constant inside Ω. Moreover, we also assume that ri = g(i), i ≥ 0.

Now we apply the mean value theorem to h(t) = f (g(t)) around each i in the
intervals Ii = (i − 1/4, i + 1/4), for i = 1, 2, . . . . Consequently, for every i we have
that

h(i + 1/8) = h(i) + h ′(ci)
1

8
= h(i) + ∇ f (g(ci))−→g ′(ti).

Of course, h ′(ci) → 0 as i → ∞. But this forces ‖∇ f (g(ci))‖ → 0, since

∇ f (g(ci))−→g ′(ti) = ‖∇ f (g(ci))‖‖−→g ′(ti)‖ cos θ,
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and ‖−→g ′(ti)‖ = cos θ = 1. Thus, the sequence g(ci) for i > 0, satisfies f (g(ci)) → c

(since it still belongs to the unbounded curve C), and ‖∇ f (g(ci))‖ → 0.

To show Theorem 4(ii), we first prove the following result.

Lemma 10 Let f (x, y) = arctan x + arctan y where we choose the values of arctan x

and arctan y in the interval (−π/2, π/2). The following statements hold.

(i) The function f has gradient different from zero at any point of R
2, and does not

satisfy the (PS) condition.

(ii) The vector field X f has no inseparable leaves.

Proof Let f : R
2 → R be the C1 map defined by f (x, y) = arctan x +arctan y where

we choose the values of arctan x and arctan y in the interval (−π/2, π/2).

Since its gradient is (1/(1 + x2), 1/(1 + y2)), clearly it is not zero at any point of
R

2. To see that f does not satisfy the (PS) condition, we consider the sequence {pn}
with pn = (n,−n). Then f (pn) = 0 for all n, and ∇ f (pn) → (0, 0) when n → ∞.

However the sequence {pn} has no any convergent partial subsequence. So f does
not satisfy the (PS) condition, and statement (i) follows.

Finally we prove statement (ii). The phase portrait of X f is topologically equiva-
lent to the phase portrait of the polynomial vector field Y = (−(1 + x2), 1 + y2) (they

differ only in time scaling). Of course, Y defines a polynomial foliation. The insepa-
rable leaves of the polynomial foliations correspond to hyperbolic sectors at infinity,
see [8]. These hyperbolic sectors can be associated with a unique singular point of Y

at infinity (having the two separatrices of the hyperbolic sector outside the infinity),
or with two different singular points at infinity, as illustrated in Figure 2(a).

(a) (b)

Figure 2: In (a) we illustrate the possible hyperbolic sectors at infinity of the Poincaré sphere

corresponding to saddles-at-infinity, while in (b) we show the phase portrait of the vector field

Y used in the proof of Lemma 10.
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Now we use the notation introduced in the appendix on the Poincaré compactifi-
cation. For the vector field Y we have that F(z1) = z1(z1 +1) and G(z1) = −z1(z1 +1).

Therefore, the singular points at infinity are (0, 0) and (−1, 0) of the local chart U1,
and (0, 0) of the local chart U2, and their diametrally opposite singular points in the
local charts V1 and V2. The local phase portrait at these infinite singular points can
be studied using their linear parts given in (2) and (3). Then we get that the point

(0, 0) of the local chart U1 is an unstable node, the point (−1, 0) of the local chart U1

is a saddle having the two unstable separatrices at infinity, and the (0, 0) of the local
chart U2 is a stable node. So Y has no inseparable leaves, and the claim is proved. The
phase portrait of Y is given in Figure 2(b) where it is easy to see that the sequence in

question belongs to the saddle connection between the two saddle points at infinity.

Proof of Theorem 4(ii) This follows from the above proposition.

We finish this section with the proof of Theorem 3.

Proof of Theorem 3(i) Let X = ( f , g) : R
2 → R

2 be a C1 map such that its Jacobian
at any point of R

2 is not zero, and assume that f satisfies the (PS) condition. If g

satisfies the (PS) condition, the proof is similar.

Since the Jacobian of X is never zero, the gradient of f is not zero at any point of
R

2. So by Theorem 4, f has no inseparable leaves, and consequently, by Theorem 2,
the map X is globally injective.

Proof of Theorem 3(iii) We consider the analytic map X = ( f , g) : R
2 → R

2 de-

fined by f (x, y) = arctan x + arctan y, g(x, y) = x, where the values of arctan x and
of arctan y in the interval (−π/2, π/2). Since X f = (−1/(1 + y2), 1/(1 + x2)) and
Xg = (0, 1), it is clear that X f and Xg define foliations in R

2. Moreover, the Jacobian
of X at any point (x, y) ∈ R

2 is equal to −1/(1 + y2) < 0.

By Lemma 10, f does not satisfy the (PS) condition. Clearly, the leaves of the
foliation Xg are formed by the straight lines x = constant. On the other hand, since
‖(gx, gy)(x, y)‖ = 1 for all (x, y) ∈ R

2, the (PS) condition is trivially satisfied. Since g

satisfies the (PS) condition, applying statement (i) of Theorem 3, the map X (having
Jacobian different from zero at any point) is globally injective.

Proof of Theorem 3(iv) We consider the analytic map X = ( f , g) : R
2 → R

2 de-
fined by f (x, y) = arctan x + arctan y, g(x, y) = arctan x, where we choose the

values of arctan x and of arctan y in the interval (−π/2, π/2). Since we have that
X f = (−1/(1 + y2), 1/(1 + x2)) and Xg = (0, 1/(1 + x2)), it is clear that X f and Xg

define foliations in R
2. Moreover, the Jacobian of X at any point (x, y) ∈ R

2 is equal
to 1/((1 + x2)(1 + y2)) > 0.

By Lemma 10, f does not satisfy the (PS) condition. On the other hand, the
leaves of the foliation Xg are formed by the straight lines x = constant, and if pm =

(m,−m), then ‖g(pm)‖ → −π/2 and ‖(gx, gy)(pm)‖ → 0 as m → ∞. Since there is
no convergent subsequences of {pm}, g does not satisfy the (PS) condition.
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To finish the proof, we need to show that X is globally injective. If (a, b) belongs
to the image of the map X, then there exists a unique (x, y) ∈ R

2 such that X(x, y) =

(a, b). In fact, x = tan b and y = tan(a − b). Therefore, the map X is globally
injective.

A The Poincaré Compactification

Let X = (P, Q) be a polynomial vector field of degree d. The Poincaré compactified
vector field p(X) corresponding to X is a vector field induced in S

2 as follows (see for
instance [1, 6]).

Let S
2 = {y = (y1, y2, y3) ∈ R

3 : y2
1 + y2

2 + y2
3 = 1} (called the Poincaré

sphere) and TyS
2 be the tangent space to S

2 at point y. Consider the central pro-
jections f+ : T(0,0,1)S

2 → S
2
+ = {y ∈ S

2 : y3 > 0} and f− : T(0,0,1)S
2 → S

2
−

=

{y ∈ S
2 : y3 < 0}. These maps define two copies of X, one in the northern hemi-

sphere and the other in the southern hemisphere. Denote by X ′ the vector fields
D f+ ◦ X and D f− ◦ X in S

2 except on its equator S
1 = {y ∈ S

2 : y3 = 0}. Obviously
S

1 is identified with the infinity of R
2. In order to extend X ′ to an analytic vector field

in S
2 (including S

1) it is necessary that X satisfy suitable hypotheses. The Poincaré

compactification p(X) is the only analytic extension of yd−1
3 X ′ to S

2.
For the flow of the compactified vector field p(X), the equator S

1 is invariant.
On S

2\S
1 there are two symmetric copies of X, and knowing the behaviour of p(X)

around S
1, we know the behaviour of X near infinity. The projection of the closed

northern hemisphere of S
2 in y3 = 0 under (y1, y2, y3) 7→ (y1, y2) is called the

Poincaré disc. Due to these two symmetric copies of X on S
2, it follows that the

infinite singular points (i.e., the singular points on S
1) appear in pairs of diametrally

opposite points.

As S
2 is a differentiable manifold for computing the expression of p(X), we can

consider the six local charts Ui = {y ∈ S
2 : yi > 0}, and Vi = {y ∈ S

2 : yi < 0}
where i = 1, 2, 3, and the diffeomorphisms Fi : Ui → R

2 and Gi : Vi → R
2 defined as

the inverses of the central projections from the tangent planes at the points (1, 0, 0),

(−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1), respectively. If we denote by
z = (z1, z2) the value of Fi(y) or Gi(y) for any i = 1, 2, 3, then z represents differ-
ent things according to the local charts under consideration. Some straightforward
calculations give for p(X) the following expressions:

zd
2∆(z)

[
Q

( 1

z2

,
z1

z2

)
− z1P

( 1

z2

,
z1

z2

)
, −z2P

( 1

z2

,
z1

z2

)]
in U1,

zd
2∆(z)

[
P
( z1

z2

,
1

z2

)
− z1Q

( z1

z2

,
1

z2

)
, −z2Q

( z1

z2

,
1

z2

)]
in U2,

∆(z)[P(z1, z2), Q(z1, z2)] in U3,

where ∆(z) = (z2
1 + z2

2 + 1)−
1

2 . The expression for Vi is the same as that for Ui except

for the multiplicative factor (−1)d−1. In these coordinates for i = 1, 2, z2 = 0 always
denotes the points of S

1. We omit the factor ∆(z) by rescaling the vector field p(X).
Since the unique singular point at infinity which cannot be contained in the charts

U1 ∪ V1 coincides with the origin (0, 0) in U2 and V2, when we study the infinite
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singular points on the charts U2 ∪ V2, we need only consider whether the (0, 0) of
these charts are or are not singular points.

A singular point q of p(X) is called an infinite (respectively, finite) singular point
if q ∈ S

1 (respectively, q ∈ S
2 \ S

1).
We want to study the local phase portrait at infinite singular points. For this we

choose an infinite singular point (z1, 0) and start by looking at the expression of the

linear part of the field p(X). For i = 0, 1, 2 we denote by Pi and Qi the homogeneous
polynomials of degree i of P and Q, respectively. Then (z1, 0) ∈ S

1 ∩ (U1 ∪ V1) is
an infinite singular point of p(X) if and only if F(z1) = Qd(1, z1) − z1Pd(1, z1) = 0.
Similarly (z1, 0) ∈ S

1 ∩ (U2 ∪ V2) is an infinite singular point of p(X) if and only if

G(z1) = Pd(z1, 1) − z1Qd(z1, 1) = 0.
The Jacobian matrix of the vector field p(X) at an infinite singular point (z1, 0) is

(2)

(
F ′(z1) Qd−1(1, z1) − z1Pd−1(1, z1)

0 −Pd(1, z1)

)
,

or

(3)

(
G ′(z1) Pd−1(z1, 1) − z1Qd−1(z1, 1)

0 −Qd(z1, 1)

)
,

if (z1, 0) belongs to U1 or U2, respectively.
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