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All our matrices are square with real elements. The
Schur product of two n X n matrices B =(b..) and C =(c..)
1) 1]
(i,j, =1,2,...,n), is ann X n matrix A =(a, ) with
i

J

a,.=b,c ,(i,j=1,2,...,n).
ij ij ij

A result due to Schur [1] states that if B and C are
symmetric positive definite matrices then so is their Schur
product A. A question now arises. Can any symmetric
positive definite matrix be expressed as a Schur product of
two symmetric positive definite matrices? The answer is in
the affirmative as we show in the following theorem.

THEOREM. A real symmetric positive definite matrix
is a Schur product of two real symmetric positive definite
matrices.

Proof. Let us first prove the theorem for a real
symmetric positive definite matrix A = (a!,) where a_ =1,
ij 1

1 i
(i=1,2,...,n). Foreach i, (i=1,2,...,n), letthe i
characteristic roots of the leading i X i principal submatrix of
A1 (i. e. the submatrix occupying the upper left hand corner of

A1) be N ., A_., ..., \.. with >\1_>)\ >... >N, >0

21’ ii i— 2i— ii

1i
Write X =min X\ . Choose o« to be a positive number

i 11
satisfying 1 - A<a< 1. I B is an n Xn matrix with 1 in
its main diagonal and « elsewhere, and C :(Cij) where

c. =a Ja, i#£j, c..=1, (i,j =1,2,...,n), then the Schur
1] 1] 11
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product of B1 and C is Ai.

Now we have to show that the matrices B1 and C are

positive definite. Indeed the i-th leading principal minor is

easily seen (see [2]) to be equal to (1-(1/)1 (1+ie-0), (1=1,2,...,n).
So B1 is positive definite. With regard to C, let us consider

the following polynomial of degree i in x:

1 1 ' .
X a12 a13 a1i
a! b4 a! al .
P (x) = 21 23 21
1
1 1 1
ai1 a12 ai3 X

A X .., we have

117 7217 T T
P{(1-N )=P{1-X_)=...=P(1-1_)=0, and P (x)> 0 whenever
i 11 i 21 i ii i

According to the definition of A\

x>1 - )\ii' The leading principal minor of order i of C is

equal to oz—lP‘(oz). As >0 and a>1 - )\ii’ we see that this
1

leading principal minor is positive. This holds for i=1,2,...,n.
Thus C 1is a symmetric positive definite matrix. Hence we have
got a desired factorisation of A.

Let now A =(a ), (i,j=1,2,...,n), be a symmetric
1]

positive definite matrix in which not all the main diagonal
elements are 1. We know that a.. >0 for i=1,2,...,n.
ii

1

2 .. .
Put a! =a, /(a,a,), (i,j=1,2,...,n). Then A, =(a') is

ij ij- " ii ) 1 ij

a symmetric positive definite matrix, because the leading i-th
principal minor of A1 is equal to the product of

-1 .. . .
(a11a22a33. .. aﬁ) and the leading i-th principal minor of A,
and so is positive, (i=1,2,...,n). Further, we define B =(b, )
1)
1

where b,,=a. and b, . =oz(a,,ax,,)2 if 1475,
11 1" 1) 11 JJ
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Then B is symmetric and positive definite, since its i-th

11%22" 334
and the leading i-th principal minor of B1 , i.e. equal to

principal minor is equal to the product of (a

-1
3, e- aii(‘l-a) (1+ia-a).

We now see that A is the Schur product of the symmetric

positive definite matrices B and C, with « and a! as
1)
defined above. This completes the proof.

We notice that each real symmetric positive definite
matrix can be exhibited as a Schur product of two real symmetric
positive definite matrices in infinitely many ways. Combining
the above result with Schur! s result, we can state that a real
symmetric matrix is positive definite if and only if it is the
Schur product of two real symmetric positive definite matrices.
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