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Abstract

In this note we investigate the centraliser of a linearly growing element of Out(Fn) (that is,
a root of a Dehn twist automorphism), and show that it has a finite index subgroup mapping
onto a direct product of certain “equivariant McCool groups” with kernel a finitely generated
free abelian group. In particular, this allows us to show it is VF and hence finitely presented.

2020 Mathematics Subject Classification: 20E05, 20E08, 20E36, 20E06 (Primary);
20F65 (Secondary)

1. Introduction

Let G be a group, and consider the centraliser CG(g) of an element g of G. Understanding
centralisers of elements is related to solving the conjugacy problem – it serves as a kind of
dual problem – and for calculating the virtually cyclic dimension of the group [16]. It also
has implications for actions of G on a CAT(0) space: if an element g has finite order in the
abelianisation of its centraliser C(g)ab then it cannot act loxodromically in any action on a
CAT(0) space [10].

In this paper, we consider elements � of Out(Fn), the outer automorphism group of a
free group of rank n. It is an open problem, in general, to prove that centralisers of free
group outer automorphisms are finitely generated, even though some important cases are
well understood: for instance when the outer automorphism is irreducible, its centraliser is
virtually cyclic by [6].

By contrast, in the mapping class group of a surface, the centraliser of a pure element –
where the reduction system is fixed up to isotopy and the restrictions to complementary
surfaces are either fixed or pseudo-Anosov – is Type VF by work of Ivanov [18] and is
known to be finitely generated in general, with an algorithm producing a generating set due
to Rafi, Selinger and Yampolsky [23].

A group G is of Type F if it has a finite Eilenberg–Maclane space, its K(G,1). A group
is said to be of Type VF if it has a finite index subgroup of Type F. Groups of Type VF
are finitely generated and finitely presented; since groups of Type F are necessarily torsion
free, being Type VF is the strongest homotopic finiteness property available for a group with
finite order elements.

However we note that deducing information about a centraliser from a power – from a
pure mapping class, say – is not straightforward. Our example in Section 2 shows that in
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general the centraliser of a group element need not be commensurable with the centraliser
of some power of the element even if the element has infinite order. (In fact our example can
easily be made to be geometric, where the elements are actual mapping classes.) This stands
in contrast to the situation within the finite index subgroup IA3(n) of Out(Fn), as investigated
by Guerch [15].

In [13] Culler and Vogtmann construct a contractible simplicial complex on which
Out(Fn) acts with finite stabilisers. Together with the existence of a torsion-free, finite
index subgroup IA3(n) of Out(Fn), this shows that Out(Fn) has Type VF. Later, Krstic
and Vogtmann used the fixed point subsets of this complex for finite order elements to
show that the same is true for centralisers of finite order elements of Out(Fn) [20]. In [25],
Rodenhausen and Wade consider Dehn twist automorphisms of free groups: these preserve
certain cyclic splittings of Fn in the same way a Dehn (multi)twist of a surface preserves
the cyclic splitting of the fundamental group dual to the twisting curves. They prove that
their centralisers are of type VF, using their “efficient” representatives as graph of groups
automorphisms due to Cohen and Lustig [11]. Here we prove the same result for automor-
phisms of linear growth, which are exactly the roots of the Dehn twists: in some sense this is
analogous to passing from the trivial element (centralised by all of Out(Fn)) to a finite order
element.

Results. Before stating our results more precisely we draw the reader’s attention to our
convention of writing maps on the right.

Convention 1·1. Let G be a group.

(i) We write lower case greek letters, ϕ, for automorphisms of G and upper case Greek
letters, � for outer automorphisms of G.

(ii) We write our automorphisms on the right; gϕ is the image of g ∈ G under the
automorphism ϕ.

(iii) If x ∈ G, we write Ad(x) to denote the inner automorphism of G so that

gAd(x) = x−1gx.

With this convention we get that Ad(x)Ad(y) = Ad(xy) and Ad(x)ϕ = ϕAd(xϕ).

(iv) Accordingly we write gx := x−1gx

Our main theorem is the following:

THEOREM 1·2. Let � be a linearly growing element of Out(Fn). Then C(�) is of type VF.
More precisely, C(�) admits a finite index subgroup, C0(�), which fits into a short exact

sequence:

1 −→Z
m −→ C0(�) −→ N −→ 1,

where N is a finite index subgroup of a finite product of equivariant McCool groups,∏
u∈U Mcu. The indexing set U is a finite set and each equivariant McCool group, Mcu,

(and hence their product) is of type VF.

Equivariant McCool groups are defined in Definition 3·11. They are subgroups of
Out(Fn), taking as input a collection of conjugacy classes of Fn to preserve and a subgroup
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of Out(Fn) to centralise. McCool first studied the subgroups of Out(Fn) preserving a set of
conjugacy classes; some examples arise from mapping class groups of punctured surfaces
with boundary words corresponding to the given conjugacy classes. Bestvina, Feighn and
Handel [8] recently showed that for finite subgroups of Out(Fn), the equivariant McCool
groups have Type VF, which is a crucial building block in our theorem.

In [3], we prove that a free-by-cyclic group where the defining automorphism has linear
growth has a finitely generated automorphism group. This is related to, but distinct from, the
properties of the centraliser of that automorphism.

Proof strategy. In Proposition 4·3 we use Cohen and Lustig’s work [11] to conclude that
there is a minimal, irreducible Fn-tree with cyclic edge stabilisers which is preserved by
C(�). Passing to a finite index subgroup, one obtains a map from the centraliser of � to the
product of the outer automorphism groups of the Gv whose kernel is often well understood
(in our situation it is a free abelian group – Lemma 4·9).

It is also necessary to understand the image of this map: Proposition 4·10 shows it is
contained in a product of equivariant McCool groups, indexing over fewer orbits. To fin-
ish, we show that the map is virtually onto this product. To do this we use the following
characterisation of centralisers in outer automorphism groups:

LEMMA 1·3. Let G be a group and ϕ ∈ Aut(G). Let Mϕ be the mapping torus of ϕ.
That is,

Mϕ = G �ϕ Z= 〈G, t : wt = wϕ for all w ∈ G〉.
Then some χ ∈ Aut(G) commutes with ϕ as an outer automorphism (which is to say that the
commutator of the automorphisms is an inner automorphism, [ϕ, χ] ∈ Inn(G)) if and only if
for some g ∈ G, the map:

t �→ tg
w �→ wχ ,

defines an automorphism of Mϕ .

As in Convention 1·1, the notation wχ indicates that the automorphism is acting on the
right. We refer to the automorphisms of Mϕ that take this form as fibre and coset preserving.

Equipped with this lemma, we can construct preimages. The mapping torus Mϕ acts on
the same tree, and we show in Proposition 4·12 that (perhaps up to finite index) the fibre and
coset preserving extensions of each vertex McCool group can be assembled to form a fibre
and coset preserving automorphism of the whole mapping torus. The restriction to G is then
an automorphism χ whose outer class commutes with �.

A similar strategy should be viable for more groups and automorphisms, provided a suf-
ficiently invariable action on a tree exists, and the relevant equivariant McCool groups can
be understood.

2. An illustrative example

In this section we give a detailed example to illustrate Theorem 1·2. Consider the free
group of rank 4, F = F(a, b, α, β). Let I : 〈a, b〉 → 〈α, β〉 be the isomorphism sending a to α
and b to β. Let g ∈ 〈a, b〉 and let γ = gI ∈ 〈α, β〉. (In what follows it will be easier if these
are not proper powers, so we shall assume that).
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Figure 1. A graph of groups G on which � is realised as the root of a Dehn twist.

Now define the automorphism, ϕ, of F by:

ϕ

a �→ α

b �→ β

α �→ ag

β �→ bg.

The outer automorphism � (represented by ϕ) has linear growth, but is not a Dehn twist.
However, �2 is a Dehn twist:

ϕ2

a �→ ag

b �→ bg

α �→ αγ

β �→ βγ .

There are three isogredience classes (genuine automorphisms in the outer class of �2

which are not conjugate by any inner automorphism) in �2 whose fixed subgroup has rank
at least two. These fixed subgroups form the vertex groups of a graph of groups of which�2

can be realised as an (efficient) Dehn twist and is one way to construct the graph of groups,
G, below. They are:

Fixϕ2Ad(g−1) = 〈a, b〉
Fixϕ2 = 〈g, γ 〉
Fixϕ2Ad(γ−1) = 〈α, β〉.

(We remind the reader of our Convention 1·1 that we place automorphisms on the right
and that throughout the paper Ad(x) denotes the inner automorphism h �→ x−1hx.)

Returning to�, this is represented as a graph of groups automorphism, R, on the following
graph of groups, G, shown in Figure 1. See Section 3 for an explanation of the formalism.
Perhaps the most important thing to note at this stage is that the conjugation will take place
outside the map on vertex groups.

Let the underlying graph � have three vertices u, v, w and two edges, eu = (u, v) and
ew = (w, v). The vertex groups are Gu = 〈a, b〉, Gv = 〈g, γ 〉 and Gw = 〈α, β〉, the edge groups
are infinite cyclic, with Geu = 〈g〉 and Gew = 〈γ 〉 Then π1(G) ∼= Gu ∗ Gw ∼= F.

The underlying graph map R� interchanges u and w, and the edges eu and ew, and fixes v.
The vertex group isomorphisms are then:

Ru : Gu → Gw; Ru(a) = α, Ru(b) = β

Rv : Gv → Gv; Rv(g) = γ , Rv(γ ) = g

Rw : Gw → Gu; Rw(α) = a, Rw(β) = b.
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Figure 2. A graph of groups M for the free-by-cyclic group M.

The edge group maps should interchange the generators g and γ , and set δeu = 1, δeu = 1,
δew = 1 and δew = g, inducing the conjugation of the third and fourth generators. It is straight-
forward to check that the automorphism R induces on π1(G, v) is ϕ. The automorphism R2

is a Dehn twist of G.
There are therefore three equivariant McCool groups:

Mc(Gu; 〈g〉; R2
u) = Mc(Gu; 〈g〉; 1Gu)

Mc(Gv; {〈g〉, 〈γ 〉}; Rv) = 1
Mc(Gw; 〈γ 〉; R2

w) = Mc(Gw; 〈γ 〉; 1Gw),

which follows since both R2
u and R2

w are inner, and since the automorphisms of a free group
of rank 2 which preserve the conjugacy classes of a basis are all inner.

A graph of groups for M = F �ϕ Z is shown in Figure 2.
By Theorem 1·2, the centraliser C(�) has a finite index subgroup C0(�) which

maps onto

Mc(Gu; 〈g〉; R2
u) × Mc(Gv; {〈g〉, 〈γ 〉}; Rv) ∼= Mc(Gu; 〈g〉; 1Gu).

To demonstrate how to construct pre-images, let ψu be any automorphism of Gu = 〈a, b〉
which fixes g (every element of the McCool group Mc(Gu; 〈g〉; 1Gu) has such a represen-
tative). Write ψw = I−1ψuI for the corresponding automorphism of Gw (formally changing
every a to α and so on), which fixes γ .

Then if we define ψ =ψu ∗ψw to be ψu on Gu and ψw on Gw, its outer class� commutes
with �. Note that if ψu (fixing g) and ψ ′

w (fixing γ ) are not ‘conjugate’ by I, then �
commutes with �2 but not �.

The kernel in the short exact sequence does not consist of all Dehn twists on G. Consider
the Dehn twist D on G given by:

D
a �→ agr

b �→ bgr

α �→ αγ
s

β �→ βγ
s
.

Varying r and s describes a free abelian subgroup of rank 2, accounting for all the Dehn
twists on G.

Then, conjugating ϕ by D−1, we see

DϕD−1

a �→ αγ
r−s

b �→ βγ
r−s

α �→ ags−r+1

β �→ bgs−r+1
.
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So D does not always centralise � (even as an outer automorphism), although it does
centralise �2. They commute precisely when r = s, giving a rank one subgroup. The short
exact sequence of Theorem 1·2 is

1 −→Z−→ C0(�) −→ Mc(Gu; {〈g〉}; 1Gu) −→ 1.

We can also apply this theorem to the structure of the centraliser of �2 (represented by the
Dehn twist R2 on G). The exact sequence, agreeing with [25, theorem 3·8], is:

1 −→Z
2 −→ C0(�2) −→ Mc(Gu; {〈g〉}; 1Gu) × Mc(Gw; {〈γ 〉}; 1Gw) −→ 1.

Note that since� acts by permuting the only two edges of �, C0(�) is an index 2 subgroup
of C(�) = 〈C0(�),�〉. Since � commutes with �2, the same is true of C(�2).

Although the difference in the ranks of the kernels already imply that C0(�) is not com-
mensurable with C0(�2), for many choices of g ∈ 〈a, b〉 the right-hand terms are also not
commensurable. For instance, let g = a−1b−1ab so that Mc(Gu; {〈g〉}; 1Gu) is precisely the
mapping class group of a (once punctured) torus. Then the right-hand side of the exact
sequence for � contains F2 with finite index, whereas for �2 it contains F2 × F2 with finite
index.

Moreover with this g = a−1b−1ab, the graph of groups from Figure 1 encodes a surface:
take a torus with a single boundary component for 〈a, b〉, another torus with a single bound-
ary component for 〈α, β〉 and a sphere with 3 boundary components (a pair of pants) for
〈g, γ 〉. Now glue the boundary circles of the tori to different boundary circles of the 3-holed
sphere. The resulting surface is a genus 2 orientable surface with a single boundary compo-
nent. In this situation, � can be realised as a homeomorphism of that surface and �2 is the
product of two Dehn twists along disjoint curves, corresponding to g and γ .

3. Preliminaries

Graphs of groups. We follow Bass [4] and define a graph of groups G to consist of a graph
� (as defined by Serre [26], with edges in pairs {e, e} and maps ι(e) and τ (e) indicating the
initial and terminal vertices of e), together with groups Gv for every vertex and Ge = Ge for
every edge, and monomorphisms αe : Ge → Gτ (e) for every edge.

The path group P(G) is the group generated by the vertex groups and the edges of G,
subject to relations eαe(g)e = αe(g) for g ∈ Ge. Note that taking g = 1 this gives that e−1 = e,
as expected.

A path (of length n) in P(G) is a sequence g0e1g1 . . . engn, where each ei has ι(ei) = vi−1

and τ (ei) = vi for some vertices vi (so there is a path in the graph), and each gi ∈ Gvi . A loop
is a path where v0 = vn. The relations in P(G) put an equivalence relation on the set of paths,
analogous to homotopy, which we work up to throughout.

The fundamental group of G at a vertex v is the set of loops in P(G) at v, inheriting the
multiplication of P(G) (working up to the above equivalence). It is denoted π1(G, v). Thus
we think of π1(G, v) as a subgroup of P(G).

One can also define a tree with an action by π1(G, v); the structure theorem for Bass–Serre
theory asserts that the quotient graph of groups associated with such an action is sufficient to
reconstruct it (up to isomorphisms). We will take the following construction of the quotient
graph of groups for a given action on a tree.
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Definition 3·1. Suppose a group G acts on a tree T . The quotient graph of groups G for this
action has the quotient graph for the action as its underlying graph. We think of the edges
and vertices of G as a subset of the edges and vertices of T , choosing a representative for
each G-orbit. (The choice should respect the edge inversion: if e is chosen, so is e.)

The vertex groups are vertex stabilisers Gv of the representative of each G-vertex orbit,
and the edge groups are the edge stabilisers Ge, again of the representative of each edge
orbit.

Then, for each edge e of G, there are group elements g−
e and g+

e of G such that ι(e)g−
e

and τ (e)g+
e are our chosen orbit representatives in T . The choice of g−

e , g+
e is not canonical,

but one choice is made from the start, and should be compatible with the edge inversion:
g−

e = g+
e .

The edge monomorphisms αe are given by the inclusion of the edge stabiliser into the
vertex stabiliser, followed by conjugation by g+

e :

Ge ⊆ Gτ (e) → G
g+

e
τ (e) = Gτ (e)g+

e
.

It is common to require representatives of vertex and edge orbits that form subtrees of T ,
in which case at least one of g−

e and g+
e can be chosen to be trivial. However, we found it

more convenient to adopt this more symmetric notation.
A result we will need later is the following:

PROPOSITION 3·2. Let G be a (connected) graph of groups and v a vertex of the underlying
graph. Let P(G) be the associated path group and π1(G, v) the fundamental group at v,
thought of as a subgroup of P(G).

Then for any homomorphism, ρ : π1(G, v) → Q, where Q is any group, there exists
a homomorphism ρ̂ : P(G) → Q, extending ρ in the sense that the following diagram
commutes:

:

Proof. Take as a generating set for P(G) the collection of all vertex groups Gv along with
all edges e. Pick a maximal tree S (so as not to confuse it with the Bass-Serre tree) of G. For
every vertex u let σu be the unique reduced path in S from v to u. We define ρ̂ as follows:

ρ̂(e) = 1 for all e ∈ S,
ρ̂(e) = ρ(σι(e)eστ (e)

−1) for all e �∈ S,
ρ̂(gu) = ρ(σuguσ

−1
u ) for all gu ∈ Gu.

(Note that the second condition applied to all edges implies the first, which we have only
included for clarity.)

To check that ρ̂ defines a homomorphism to Q we simply need to check that all the
relations in P(G) are sent to the trivial element by ρ̂. There are two kinds of relations; those
within a vertex group and the edge relations. For the first, if guhuku = 1 then,

ρ̂(guhuku) = ρ(σuguhukuσ
−1
u ) = 1.
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For an edge relation, if we take some x ∈ Ge and consider the relation eαe(x)e−1 = αe(x). Let
u = ι(e), w = τ (e). Then in π1(G, v) we have the corresponding relation

σueαe(x)e−1σ−1
u = σuαe(x)σ−1

u ,

and hence

ρ(σueαe(x)e−1σ−1
u ) = ρ(σuαe(x)σ−1

u ).

But now,

ρ̂(eαe(x)e−1) = ρ̂(σueσ−1
w σwαe(x)σ−1

w σwe−1σ−1
u )

= ρ(σueσ−1
w )ρ(σwαe(x)σ−1

w )ρ(σwe−1σ−1
u )

= ρ(σueαe(x)e−1σ−1
u )

= ρ(σuαe(x)σ−1
u )

= ρ̂(αe(x)).

This verifies that ρ̂ is a well-defined homomorphism from P(G) to Q. The fact that it
extends ρ is immediate from the definition; we simply take the generators of π1(G, v) to
be the elements σι(e)eστ (e)

−1 where e ranges over the edges of G, and σuguσ
−1
u , where gu

ranges over the vertex groups, Gu.

Automorphisms of graphs of groups. Given a graph of groups G an automorphism
F of G consists of a graph automorphism F� , group isomorphisms fv : Gv �→ GF�(v)

and fe : Ge �→ GF�(e), and elements δe ∈ GF�(τ (e)) for each edge, satisfying fτ (e)(αe(g)) =
δ−1

e (αF�(e)(fe(g)))δe.
An automorphism of G induces a group automorphism of the path group, sending ele-

ments of Gv to their image in fv(Gv) and edges e to δ−1
e F�(e)δe, and in turn an isomorphism

from π1(G, v) to π1(G, F(v)). If F(v) = v this is an element of Aut(π1(G, v)); otherwise differ-
ent choices of a path in P(G) joining v and F(v) give elements that differ in Aut(π1(G, v)) by
conjugation (by the loop formed by concatenating the paths) and so this gives a well-defined
element of Out(π1(G, v)).

As one might expect, automorphisms of graphs of groups form a group under composi-
tion. The graph and group maps compose as normal; the δ-values of the new map can be
seen by considering the image of an edge (as an element of the path group) and reading off
the ‘non-edge’ terms.

Moreover, any automorphism of G induces an automorphism of the associated Bass–Serre
tree T . Here, by an automorphism of T we mean a graph map on T which sends vertices to
vertices and edges to edges. An automorphism of T arising in this way will permute G-orbits.

(Note that Bass allows for a more general notion of isomorphism, inducing additional
conjugations on the fundamental group; these do not induce extra outer automorphisms, so
we do not need to consider them here.)

Dehn twists and linear growth outer automorphisms of free groups. One kind of automor-
phism of a graph of groups is a Dehn twist, where the graph map and group homomorphisms
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are required to be trivial, and the values δe are required to be the image αe(ge) of an element
ge ∈ Z(Ge). Together with the edge relations, these give twistors ze = δeδ

−1
e for each edge

e (and ze = z−1
e ) where as an element of the path group e �→ zee. The induced element of

Out(π1(G, v)) depends only on these twistors, and not on the values of δe used to define
them; provided G is centreless the subgroup they comprise is isomorphic to a quotient of the
direct product of the centres Z(Ge) taken over the geometric edges.

The maps and elements do not uniquely determine the Dehn twist, as an automorphism,
and following [19], we say that a graph of groups automorphism represents a Dehn twist
if it induces the same element of Out(G) as the Dehn twist. For example, replacing the
group homomorphisms with inner automorphisms, adjusting the values of the δ appropri-
ately, realises the same (outer) automorphism of the fundamental group. In fact, by [19,
proposition 4·6(1)], this is the only way to get alternative representatives in the case we are
concerned with, where G is a finitely generated free group and G has edge groups maximal
cyclic in adjacent vertex groups.

Cohen and Lustig [11] define an efficient Dehn twist on a graph of groups G with π1(G) =
Fn. This adds certain conditions which amount to saying that the Fn-action is very small and
that there are no ‘unused edges’; in particular this implies that the graph of groups is finite,
vertex groups are free groups of rank at least 2, and edge groups are maximal infinite cyclic.
For our purposes it is enough to note that every Dehn twist has an efficient realisation.

Suppose G is a graph of groups, and D a Dehn twist on G. Say that a graph of groups
automorphism R is a root of D if there is some k such that Rk represents D, and Re(ze) = zR�(e)

for all edges e of G.
Given an element � of Out(Fn), consider the effect of iterating � on elements of Fn by

fixing a basis and considering the length of the shortest representative of the conjugacy class
g�k. Say� is linearly growing if the growth in this sense of every element is bounded above
by Ak, and if the growth of some element is bounded below by Bk, for some constants A
and B. (In general, elements of Out(Fn) may be exponentially growing or polynomially
growing, with the possible degrees bounded above by n – see [7, 9, 21].)

However, the property of these automorphisms we make use of throughout this paper –
which may be taken as the definition – is the following.

THEOREM 3·3 ([19, proposition 5·3]). Let � be a linearly growing element of Out(Fn).
Then � is realised by a root of an efficient Dehn twist on a graph of groups G.

Remark 3·4. This statement is a combination of several results: that all polynomially grow-
ing elements of Out(Fn) have a power which is UPG; that UPG and linearly growing
elements of Out(Fn) are represented by Dehn twists, and that outer automorphisms having a
power represented by a Dehn twist can be realised by a root of a Dehn twist [19, proposition
5·3]. These results are discussed in detail in [3, theorem 2·4·6].

Note that the graph of groups automorphism realising � might only have a power repre-
senting the Dehn twist; in fact this must be the case if it involves automorphisms of a vertex
group which are finite order as outer automorphisms but not as automorphisms.

Invariant trees. Dual to a graph of groups is the Bass–Serre tree. All the actions on trees
we consider will be minimal – admitting no proper invariant subtree – and irreducible, acting
without fixing an end on a tree that is not a line (equivalently, containing a non-abelian free
group acting freely).
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Given a group, G, acting on a tree, T , we can define the translation length function,
‖.‖T : G →Z, given by ‖g‖T := infx∈T dT (x, xg). For minimal and irreducible actions, this
function determines both the tree T and the action of G on it (see [1, theorem 7·13(b)] and
[12, theorem 3·7]).

Note that the translation length function is constant on conjugacy classes, thus the
following definitions make sense.

Definition 3·5. Suppose we have a group G acting without inversions on a tree T . We set:

(i) OutT (G) = {� ∈ Out(G) : ‖g�‖T = ‖g‖T for all g ∈ G};
(ii) AutT (G) to be the full pre-image of OutT (G) in Aut(G).

That is, AutT (G) = {ϕ ∈ Aut(G) : ‖gϕ‖T = ‖g‖T for all g ∈ G}.
These automorphisms can be studied through the action on the invariant tree (see for

instance [2] for a detailed discussion of how to derive this from the literature):

PROPOSITION 3·6. Let G act on a tree, T. Then AutT (G) also acts on T, and extends the
G-action, where each element of G is identified with the inner automorphism it induces.

Another perspective comes from the work of Bass and Jiang:

PROPOSITION 3·7. ([5, theorem 4·1]). Suppose G acts on a tree T with quotient graph of
groups G. An outer automorphism � of G is contained in OutT (G) if and only if it has a
representative which can be realised as an automorphism of G.

We will use both perspectives – automorphisms acting on a tree, and automorphisms of
the quotient graph of group – throughout.

Fibre and coset preserving automorphisms. Here we prove the elementary lemma which
allows us to relate centralisers of outer automorphisms to automorphisms of the mapping
torus.

LEMMA 1·3. Let G be a group and ϕ ∈ Aut(G). Let Mϕ be the mapping torus of ϕ.
That is,

Mϕ = G �ϕ Z= 〈G, t : wt = wϕ for all w ∈ G〉.
Then some χ ∈ Aut(G) commutes with ϕ as an outer automorphism (which is to say that

the commutator of the automorphisms is an inner automorphism, [ϕ, χ] ∈ Inn(G)) if and
only if for some g ∈ G, the map:

t �→ tg
w �→ wχ ,

defines an automorphism of Mϕ .

Proof. If the map above defines an endomorphism of Mϕ , then it is straightforward to check
it will be bijective (and the inverse will be given by the map t �→ t(g−1χ−1), w �→ wχ−1).
Hence it is sufficient to check that the map above defines an endomorphism.
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Therefore, by an application of Von Dyck’s theorem [24, theorem 2·2·1], the map given
above defines an automorphism of Mϕ if and only if for all w ∈ G we have that:

(wχ)tg = wϕχ ,

which is equivalent to

(wχϕ)g = wϕχ
⇔ χϕAd(g) = ϕχ

⇔ Ad(g) = ϕ−1χ−1ϕχ ,

where Ad(g) denotes the inner automorphism defined by g.
Hence the map is an automorphism of Mϕ if and only if [ϕ, χ] = Ad(g) ∈ Inn(G).

Remark 3·8. We note that in the case that G has a centre, the element g in Lemma 1·3 is not
unique; it is only well defined up to a coset of the centre. However, Lemma 1·3 works with
any and all of these choices.

Here it can help to make the following definition:

Definition 3·9. Let M be a group, and G be a normal subgroup of M – for instance, when
M is a mapping torus of G. An element χ of Aut(M) is fibre and coset preserving for G if it
preserves every coset of G in M. In particular, such a χ restricts to an automorphism of G.

Remark 3·10. Lemma 1·3 can then be restated as saying that χ commutes with ϕ as an
outer automorphism if and only if it extends to a fibre and coset preserving automorphism of
Mϕ – we use this equivalence repeatedly.

Equivariant McCool groups. An important input to our result is the study of equivariant
McCool groups, carried out by Bestvina, Feighn and Handel [8] for finite order elements of
Out(Fn). Here we recall the definition of these subgroups, as well as their result.

Definition 3·11. Let G be a group, let {Gi} be a finite family of subgroups of G and � an
outer automorphism of G.

Then, the �-equivarant McCool group relative to the Gi (or simply the equivariant
McCool group) Mc(G; {Gi};�) consists of those outer automorphisms � of G such that:

(i) for each Gi, there is a ψi ∈� (a genuine automorphism in the outer class of �) such
that:

(a) ψi(Gi) = Gi,

(b) ψi|Gi is the identity map;

(ii) � commutes with �.

One can also define the generalised McCool group by dropping the condition that ψi

restricts to the identity map on Gi. This is the point of view in [8].
The ‘usual’ McCool groups – without equivariance – can be recovered by putting� equal

to the identity.
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12 NAOMI ANDREW AND ARMANDO MARTINO

The theorem we need is:

THEOREM 3·12 ([8, theorem 1·2]). Let F be a finitely generated free group, let {Gi} be
a finite family of finitely generated subgroups and let � ∈ Out(F) be a finite order outer
automorphism. Then Mc(F; {Gi};�) is of type VF.

Remark 3·13. In fact, the Theorem in [8] is stated for generalised McCool groups, but it
follows that the same is true for McCool groups. This is because corollary 1·6 of [17] states
that any McCool group (in a free group, or even a toral relatively hyperbolic group) is equal
to the McCool group of a finite family of cyclic groups. And since cyclic groups have finite
automorphism group, this is commensurate with the generalised McCool group of the same
collection of cyclic groups.

The equivariant McCool groups are then simply intersections with a centraliser.

4. Proof of the theorem

Notation and actions on invariant trees. We set the following notation throughout:

Notation 4·1.

(i) Fn is a free group of rank n.

(ii) � ∈ Out(Fn) is a fixed linearly growing outer automorphism.

(iii) C(�) is the centraliser of � in Out(Fn).

(iv) Ĉ(�) is the full pre-image of C(�) in Aut(Fn).

(v) Set G = Fn and M = G �� Z, the corresponding mapping torus with monodromy �.
(Note that the isomorphism type does not depend on the chosen representative ϕ
of �).

(vi) By abuse of notation, we will write G ≤ M ≤ Ĉ(�), thinking of M as the full pre-
image of 〈�〉 in Aut(Fn) and identifying Fn with Inn(Fn).

Just as in [25], our proof relies on a theorem of Cohen and Lustig:

THEOREM 4·2 ([11, proposition 7·1(a)]). Suppose � ∈ Out(Fn) is represented by an effi-
cient Dehn twist, based on G with twistors {ze}. Then the centraliser COut(Fn)(�) consists
of outer automorphisms induced by graph of groups automorphisms of G which preserve
twistors.

Any element centralising � will centralise any power of �, so any element of C(�) can
be realised as a graph of groups automorphism of G which preserves twistors. The following
proposition is largely a precise statement of some of the consequences of this theorem.

PROPOSITION 4·3. Given a linear growth outer automorphism � there is a minimal, co-
compact G = Fn tree T with Ĉ(�) ≤ AutT (Fn). In particular, Ĉ(�) acts on T – perhaps
inverting some edges – and this action is compatible with the inclusions G ≤ M ≤ Ĉ(�).
After subdividing as necessary, the G- and M-stabilisers of this action have the following
properties:
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(i) each G-vertex stabiliser Gv is a finitely generated free group of rank at least 2, unless
it is a subdivision vertex, in which case it is maximal infinite cyclic;

(ii) each M-vertex stabiliser Mv is virtually Gv ×Z;

(iii) each G-edge stabiliser Ge is maximal infinite cyclic, and in particular malnormal;

(iv) each M-edge stabiliser Me is Ge �Z and hence is either free abelian of rank 2, or the
Klein bottle group.

In fact, each vertex stabiliser Mv may be written as Gv ��t(v)|Gv
Z, where t(v) is the minimal

positive power such that� has a representative preserving Gv (equivalently, every represen-
tative preserves the G-orbit of v, and some representative stabilises it), and the restriction to
Gv of any such representative induces a finite order outer automorphism �t(v) |Gv.

Proof. By Theorem 3·3, there is a graph of groups G on which � is realised as a root of
an efficient Dehn twist. The tree T is the Bass–Serre tree for this graph of groups. Any
element centralising � also centralises all powers �k. By considering the power which is
a Dehn twist, we see from Theorem 4·2 that every element of C(�) can be realised as an
automorphism of G. By Proposition 3·7, this means C(�) is contained in OutT (G), and so
Ĉ(�) is contained in AutT (Fn).

The equivalence of the definitions of t(v), as well as the fact that�t(v) |Gv is a well defined
outer automorphism of Gv follow from the fact every vertex group Gv is equal to its own
normaliser. This is implied by the observation that every edge group of G is a proper sub-
group of the adjacent vertex groups. (In particular, note that any two representatives of �
that both preserve Gv must differ by an inner automorphism induced by an element of Gv.)

The statements about G-stabilisers follow from the definition of an efficient Dehn twist;
the corresponding statements about M-stabilisers follow from [14, proposition 2·6]), which
gives that Mv ∼= Gv � 〈ϕt(v)g〉. Since � is a root of a Dehn twist, there is some power �k

which is realised by a representation of a Dehn twist on G, and in particular restricts to an
inner automorphism at every vertex group. The restriction �t(v) |Gv is a root of this, and so
must be finite order as an outer automorphism.

Notation 4·4. Henceforth, we fix the notation t(v) (for the minimal power of � preserving
the vertex orbit) and �t(v) |Gv introduced in Proposition 4·3.

This allows us to view C(�) as a subgroup of those outer automorphisms of Fn preserving
the action on a tree encoded by G, which is described in [5, theorem 8·1]. As observed in
[25, theorem 2·11], when (as in our case) the graphs of groups have malnormal edge groups,
this can be simplified.

THEOREM 4·5 ([5, theorem 8·1] and [25, theorem 2·11]). Suppose G is a graph of groups
corresponding to a minimal action on a tree, T, without fixed ends, and with underlying
graph �= T/G.

Suppose further that the edge groups are malnormal as subgroups of G = π1(G, v0).
Let OutT (G) be the subgroup of Out(G) preserving the length function of this action
(equivalently, the splitting of G indicated by G). Then OutT (G) has a filtration by normal
subgroups,

OutT (G) � OutT0 (G) � K � 1,
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14 NAOMI ANDREW AND ARMANDO MARTINO

such that

(i) OutT (G)/OutT0 (G) is isomorphic to a subgroup of Aut(�);

(ii) OutT0 (G)/K is isomorphic to a subgroup of
∏

v∈V(�) Out(Gv);

(iii) K is the group of Dehn twists of G.

Moreover, if all inclusions of edge groups into vertex groups are proper, then K is a direct
product of the centres of the edge groups, Z(Ge) (working over geometric edges).

(The last observation follows from [11, proposition 5·4].)
We call the map from OutT0 (G) to

∏
v∈V(�) Out(Gv), with kernel K, μ and refer to it fre-

quently through our arguments. We describe its construction here, for future reference. From
the perspective of a graph of groups automorphism, acting as the identity on the underly-
ing graph, one can write down automorphisms of each vertex group; the fact that this map
is given to the outer automorphism groups is a consequence of the failure of uniqueness
among representations of a given (outer) automorphism on the graph of groups.

However, we prefer to take a definition from the perspective of the AutT (G) action on T .
Let AutT0 (G) be the full preimage of OutT0 (G), and observe that this subgroup will preserve
the G-orbits (equivalently, it has the same quotient graph as the original G-action). Consider
a χ ∈ AutT0 (G), and a vertex v of T . There exists a y ∈ G such that v · χ = v · y.

Note that for any g, we have that Ad(g)χ = χAd(gχ). If we restrict to those g ∈ Gv, and
note that both g and Ad(g) act in the same way on T , we get that,

v = v · g · χ · y−1 = v · χ · (gχ) · y−1 = v · y(gχ)y−1 = v · (gχ)y−1
.

Hence if g ∈ Gv, then (gχ)y−1
is also in Gv.

Definition 4·6. Given χ and y as above, μ̂v(χ) is the automorphism of Gv defined by sending
g ∈ Gv to (gχ)y−1

.

This is an automorphism of Gv, since it is a restriction of an automorphism of G preserving
this subgroup. Note that there is a choice of elements y, corresponding to the stabiliser
Gv, so this map is only well-defined up to inner automorphisms of Gv, giving an outer
automorphism of Gv.

Moreover, since χ also preserves edge-orbits, we know that for every edge e whose initial
vertex is v, we have a ge ∈ Gv such that

e · χ · y−1 = e · ge.

Hence repeating the argument above for edge groups we deduce that the automorphism
μ̂v(χ) preserves the Gv-conjugacy classes of the incident edge groups Ge.

To define a map μv(χ), from OutT0 (G) to Out(Gv), observe that Inn(G) lies in the ker-
nel of μ̂v (since the action of the inner automorphisms matches that of the corresponding
group elements), which therefore factors through OutT0 (G). The map μ is then constructed
by assembling one μv for a representative of each vertex orbit under the G (or AutT0 (G))
action on T .

This leads to the following consequence of Rodenhausen–Wade’s work on Dehn twists
[25, lemma 3·6]:
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PROPOSITION 4·7. The image of μ is contained in the product

∏
[v]∈V(T)/G

Mc(Gv; {Ge}ι(e)=v).

The discussion above shows that the image in each Out(Gv) preserves the conjugacy
classes of the incident Ge. The fact that the image lies in the McCool group is equivalent to
asserting that the induced (outer) automorphisms on the Ge are trivial, which follows from
the ‘preserves twistors’ statement of Theorem 4·2. Note that the efficiency of the Dehn twist
is vital for that result.

Note that this claim concerns only a product of standard McCool groups; equivariance is
dealt with later on.

We fix the following notation for the rest of the paper.

Notation 4·8. As in Notation 4·1, we have a given linear growth outer automorphism of Fn,
denoted �, whose centraliser is denoted C(�) and whose pre-image in Aut(Fn) is denoted
Ĉ(�).

(i) We let T be the G-tree provided by Proposition 4·3. T is also an M-tree and a Ĉ(�)-
tree, with all these actions compatible with the inclusions G ≤ M ≤ Ĉ(�).

(ii) As usual, we write Gv to mean the G-stabiliser of a vertex v of T , and Ge to be an
edge stabiliser.

(iii) We let C0(�) be the subgroup of C(�) which preserves the G-orbits of T . That is,
C0(�) = C(�) ∩ OutT0 (G). This is a finite index subgroup of C(�).

(iv) Similarly, Ĉ0(�) is the full pre-image of C0(�) and is the finite index subgroup of
Ĉ(�) which preserves the G-orbits of T .

Specialising to the situation of this paper, described in Notation 4·8, it follows from
Theorem 4·5 that

LEMMA 4·9. The kernel of μ is a finitely generated free abelian group.

The same will be true of the intersection of C0(�) and this kernel, so in order to prove our
result it will be enough to understand the image of C0(�) under μ.

We will show that the image, μ(C0), is isomorphic to a finite index subgroup of the
product

∏
[v]∈V(T)/M

Mc(Gv; {Ge}ι(e)=v;�t(v) |Gv ),

where the product is taken over representatives v of vertex orbits for the action of M on T .
(Note that that there are only finitely many conjugacy classes of the Ge, since the G-action
on T is co-compact).

We will show both inclusions: first that the image is contained in the given product, and
then the converse.
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Characterising the image of μ. We need to show two additional facts about the image of
μ: that in fact it is sufficient to take one copy of each McCool group per M-orbit, and that
the images in each factor are contained in the centraliser of �t(v) |Gv .

PROPOSITION 4·10. Consider a projection map (by choosing orbit representatives):

ρ:
∏

[v]∈V(T)/G

Out(Gv) →
∏

[v]∈V(T)/M

Out(Gv).

Then ker (ρ) ∩μ(C0(�)) = {1}.
Moreover, for each v, μv(C0(�)) is a subgroup of Mc(Gv; {Ge}ι(e)=v;�t(v) |Gv ).
Hence μ(C0(�)) is isomorphic via ρ to a subgroup of∏
[v]∈V(T)/M Mc(Gv; {Ge}ι(e)=v;�t(v) |Gv ).

Proof. Recall that M = Fn �� Z, and we can think of any m ∈ M as an automorphism of Fn

via the conjugation action and this agrees with the inclusion M ≤ Ĉ(�). Given g ∈ Fn = G
and m ∈ M, we write g · m for this image (note that this is, strictly speaking, m−1gm, if we
view both g and m as elements of M).

Moreover, M acts on T , and this action can be viewed both as an extension of the action
of Fn and as arising from the fact M is a subgroup of Ĉ(�).

Given m ∈ M, there is an isomorphism induced by m between the automorphism (and
outer automorphism) groups of Gv and Gvm = (Gv) · m. That is, take some ϕ ∈ Aut(Gv) and
define an automorphism of Gvm on elements g · m (for some g ∈ Gv) as

That is, m−1ϕm is the unique automorphism which makes the following diagram
commute:

:

Moreover, if ϕ is an inner automorphism of Gv, then m−1ϕm will be an inner
automorphism of Gvm. More precisely, if ϕ = Ad(h) for some h ∈ Gv, then m−1ϕm =
Ad(h · m).

Denote by Ad(m) this map from Aut(Gv) to Aut(Gvm) sending ϕ to m−1ϕm. Then Ad(m) is
an isomorphism (with inverse Ad(m−1)). Since it preserves inner automorphisms, it induces
an isomorphism between Out(Gv) and Out(Gvm) which again we call Ad(m).

Next we claim that the following diagram commutes for all elements m of M (viewed as
a subgroup of Ĉ(�), and recalling that Ĉ0(�) is normal in Ĉ(�)):

:

The maps μ̂ are as in Definition 4·6, the left hand Ad(m) is conjugation by m within
Ĉ0(�), and the right hand Ad(m) is the isomorphism defined above. To see the commutativ-
ity, consider an element χ of Ĉ0(�), and let y be any element of G so that χAd(y) preserves
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Gv, or equivalently χy stabilises v. In particular, (χAd(y)) |Gv represents the image of χ
under μ̂v.

The image of this map under Ad(m) is represented by ((m−1χm)Ad(y · m)) |Gvm . Notice
that that vm(m−1χm)(m−1ym) = vχym = vm. That is, (m−1χm)(m−1ym) stabilises vm, and
hence (m−1χm)Ad(m−1ym) preserves Gvm. Hence μ̂vm(m−1χm) is again represented by
((m−1χm)Ad(y · m)) |Gvm , which proves the claim.

Inner automorphisms in Ĉ0(�) are sent by μ̂v and μ̂vm to inner automorphisms of Gv and
Gvm, since the vertex groups are self-normalising. Since both maps labelled Ad(m) preserve
inner automorphisms, we get the following commuting diagram:

:

But now notice that – by definition, since m is a representative of some power of
� – Ad(m) is the identity map on C0(�). Hence we get a commuting triangle.

Since Ad(m) is an isomorphism, this shows that ker (μv) = ker (μvm) and hence that
ker (ρ) ∩μ(C0(�)) = {1}, proving the first claim.

For the second claim, we simply set m to be any representative of �t(v) which fixes v.
Hence vm = v, μvm =μv, and Ad(m) is conjugation by �t(v) |Gv within Out(Gv). Then the
commutativity of the triangle gives that the image of μv commutes with �t(v) |Gv .

Since equivariant McCool groups arise as the intersection of a centraliser and a
McCool group, this (together with our earlier fact that the image of μv is in a McCool
group, Proposition 4·7), shows that μv(C0(�)) lies in the equivariant McCool group
Mc(Gv; {Ge};�t(v) |Gv ). This proves the second claim and the final claim follows from the
previous two.

Now we want to prove that ρ(μ(C0(�))) is a finite index subgroup of

∏
[v]∈V(T)/M

Mc(Gv; {Ge}ι(e)=v;�t(v) |Gv ).

Our strategy involves taking an element of
∏

[v]∈V(T)/M Mc(Gv; {Ge}ι(e)=v;�t(v) |Gv ) and
realising it as a fibre-preserving automorphism of M. We use several ideas from [3], though
in different ways to that paper: for instance, we do not need to pass to a nearly canonical tree
for our arguments here.

First we show that applying the extension of Lemma 1·3 to a finite index subgroup of
each equivariant McCool group Mc(Gv; {Ge}ι(e)=v;�t(v) |Gv ) produces automorphisms of
Mv whose outer classes have representatives that fix each incident Me. (In particular, they
are contained in a McCool group of Mv.)
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PROPOSITION 4·11. Let v be a vertex of T not coming from a subdivision, so its G-stabiliser
Gv is a free group of rank at least 2.

Let Mv be the corresponding M vertex stabiliser. So Mv = Gv ��t(v)|Gv
Z, and is virtually

Gv ×Z.
Let χ ∈ Aut(Gv) be an automorphism whose outer class lies in Mc(Gv; {Ge}ι(e)=v;

�t(v) |Gv ). Write χM to denote the automorphism of Mv induced by χ via Lemma 1·3.
Then:

(i) χM induces well-defined outer automorphisms on the edge stabilisers, Me;

(ii) if, for each Me which is isomorphic to a Klein bottle group, the outer automorphism
induced by χM is trivial, then for all edges e (without condition) there exists a he ∈ Gv

such that wχM = whe for all w ∈ Me.

Hence there exists a finite index subgroup, N, of Mc(Gv; {Ge}ι(e)=v;�t(v) |Gv ) such that for
any χ ∈ Aut(Gv) whose outer class belongs to N we have that there exist elements he ∈ Gv

with wχM = whe for all w ∈ Me.

Proof. Denote by t a pre-image in Mv of the generator of the infinite cyclic quotient, so that
conjugation by t induces the (outer) automorphism �t(v) |Gv .

Consider some edge, e, and let a = ae be a generator for Ge. Then Me will be generated by
a and tkg, where 0 �= k ∈N and g ∈ Gv both depend on e. Note that Ge is a normal subgroup
of Me and hence atkg = a±1, and the corresponding M-edge stabiliser Me is a Klein bottle
group precisely when atkg = a−1.

By hypothesis, the outer class of χ belongs to Mc(Gv; {Ge}ι(e)=v;�t(v) |Gv ), and hence
there exists h = he ∈ Gv such that aχ = ah. Since χM agrees with χ on Gv, we also get that
aχM = ah.

Define χe to be χMAd(h−1), lying in the same outer class as χM , but fixing a. Then,
by Lemma 1·3, there exists a y ∈ Gv such that tkgχe = tkgy. But considering the relation
atkg = a±1, this forces y ∈ 〈a〉 = Ge, since Ge is a maximal cyclic subgroup of a free group
and hence equal to its own normaliser in Gv.

Thus χe restricts to an automorphism of Me. While the choice of he was not uniquely
determined, any two choices will differ by an element of 〈a〉, so χM induces well defined
outer automorphisms on each Me.

Now we claim that whenever Me is free abelian of rank 2 – when atkg = a – then this forces
y = 1, and hence that χe is the identity map. This is is the same as saying that wχM = wh for
all w ∈ Me.

To show this, recall that �t(v) |Gv is a finite order outer automorphism of Gv. This implies
that there exists a z ∈ Gv and an 0 �= r ∈N such that (tkg)rz is a central element of Mv [22,
proposition 4·1].

In this case, we are assuming that tkg commutes with a and hence z must also commute
with a, forcing z ∈ 〈a〉 = Ge, again because Ge is a maximal cyclic subgroup of a free group.

Hence,

(i) aχe = a,

(ii) tkgχe = tkgy, y ∈ 〈a〉,
(iii) (tkg)rz is a central element of Mv, where 0 �= r ∈N and z ∈ 〈a〉.
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Moreover, since χM (and hence χe) preserves t-exponent sums and the centre of Gv is
trivial, we also have that χM and χe both fix the central element (tkg)rz. Putting this together,
we get that:

(tkg)rz =
{

(tkg)rz
}
χe = (tkgχe)rz = (tkgy)rz = (tkg)rzyr,

since y, z ∈ 〈a〉 and commute with tkg. Hence y = 1, as required.
For the other case, we have that Me is a Klein bottle group – when atkg = a−1. Again we

have that aχe = a and tkgχe = tkgy for some y ∈ 〈a〉. If we further assume that χe is trivial
as an outer automorphism, then this amounts to adding the restriction that y ∈ 〈a2〉. But then
we get that y = b2, where b ∈ 〈a〉 and we have that aχe = ab and tkgχe = (tkg)b. Hence, by
modifying he (replacing it with heb) we deduce that wχM = whe for all w ∈ Me.

The last statement now follows immediately since the outer automorphism group of a
Klein bottle group is finite.

PROPOSITION 4·12 There is a finite index subgroup

∏
[v]∈V(T)/M

Nv ≤
∏

[v]∈V(T)/M

Mc(Gv; {Ge}ι(e)=v;�t(v) |Gv ),

such that for every element, (Xv) ∈ ∏
[v]∈V(T)/M Nv, there exists a fibre and coset preserving

automorphism χM of M such that:

(i) χM ∈ AutT (M);

(ii) the restriction of χM to G lies in Ĉ0(�) ≤ AutT (G);

(iii) for every (non-subdivision) vertex v of T, the outer automorphism induced by χM on
Gv is the same as that induced by Xv.

Proof. Since T is an M-tree, there is a corresponding graph of groups M as constructed in
Definition 3·1. In particular, we use the notation established there.

The finite index subgroups Nv are those provided by Proposition 4·11, and their product
is a finite index subgroup of

∏
[v]∈V(T)/M Mc(Gv; {Ge}ι(e)=v;�t(v) |Gv ).

To start with, pick a representative χv of each outer automorphism Xv and apply
Proposition 4·11 to produce an automorphism (which we will again call χv) of Mv such
that there exist elements, he ∈ Gv with wχv = whe for all w ∈ Me. Note that each χv is a fibre
and coset preserving automorphism of Mv with respect to Gv. For the subdivision vertices,
if any, let χv be the identity automorphism, and note that by definition this is fibre and coset
preserving. For convenience in what follows, additionally set he = 1 for the edge adjacent to
v (if the subdivision is required, there is exactly one).

We can now define a graph of groups isomorphism of M: the underlying graph map
should be the identity, the edge group homomorphisms the identity, and the vertex group
maps the automorphisms χv from above. For an edge e of M put e+ = e · g+

e , e− = e · g−
e ,

v = τ (e) · g+
e and u = ι(e) · g−

e . Finally, set δe = he+ , so that the image of e in the induced
map on the path group P(M) will be h−1

e− ehe+ .
(Recall that the elements g−

e , g+
e are defined in Definition 3·1. Namely, we describe the

quotient graph by taking a representative of each orbit, and these group elements are defined
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so that ι(e)g−
e , τ (e)g+

e equal their respective representatives. They are only unique up to the
relevant vertex stabiliser.)

To see that this is a graph of groups isomorphism, it suffices to check the edge relations
in the path group are satisfied. Observe that if x ∈ Me, then αe(x) = xg+

e and αe(x) = xg−
e .

Moreover, αe(x)χv = (xg+
e )χv = xg+

e he+ and similarly (xg−
e )χu = xg−

e he− for all x ∈ Me. It
follows that both sides of the relation eαe(x)e = αe(x) are sent to xg−

e he− by our map.
To summarise, we have produced a graph of groups automorphism, χM with the

following effect on generators of P(M):

mvχM = mvχv, for all mv ∈ Mv

eχM = h−1
e− ehe+ for all edges e.

As this is a graph of groups automorphism, we get that χM ∈ AutT (M) by
Proposition 3·7.

We want to show that χM restricts to an automorphism of G that commutes with � as an
outer automorphism. So we invoke Lemma 1·3. Hence, we need to show that χM is a fibre
and coset preserving automorphism of M with respect to G, as in Definition 3·9. Note that
showing this is equivalent to showing that m−1(mχM) ∈ G for all m ∈ M. We will do this in
stages.

For this, note that we have a map, ρ : M →Z whose kernel is G and such that, for
any v, ker (ρ) ∩ Mv = Gv. We then invoke Proposition 3·2 to extend ρ to a homomorphism,
ρ̂ : P(M) →Z. We work with the induced automorphism of the path group defined above.

To this end, let K be the normal closure of the subgroups Gv in the path group, P(M).
We claim that, for every generator, x, of P(M) we have that x−1(xχM) ∈ K. If x ∈ Mv, then
x−1(xχM) = x−1(xχv) ∈ Gv, since χv is a fibre and coset preserving automorphism of Mv

with respect to Gv. If x = e, an edge, then e−1(eχM) = e−1h−1
e− ehe+ ∈ K, since he− ∈ Gu and

he+ ∈ Gv for some vertices u and v.
But since x−1(xχM) ∈ K for a generating set, it follows using normality of K that this

holds for all elements of P(M). But now, if x ∈ M, then x−1(xχM) ∈ K ∩ M. Since the ker-
nel of each ρv := ρ |Mv is Gv, it follows that K ≤ ker (ρ̂) and so K ∩ M ≤ ker (ρ̂) ∩ M =
ker (ρ) = G, since ρ̂ extends ρ.

Thus we have shown that x−1(xχM) ∈ G for all x ∈ M. This shows that χM is a fibre
and coset preserving automorphism of M with respect to G. It immediately follows that the
restriction of χM to G lies in AutT (G). In fact, by Lemma 1·3, the restriction of χM to G
lies in Ĉ0(�).

Moreover, by construction, for every vertex v of T , the outer automorphism induced by
χM on Gv is the same as that induced by χv.

We are now in a position to prove our main theorem.

THEOREM 1·2. Let � be a linearly growing element of Out(Fn). Then C(�) is of type VF.
More precisely, C(�) admits a finite index subgroup, C0(�), which fits into a short exact

sequence:

1 −→Z
m −→ C0(�) −→ N −→ 1,

where N is a finite index subgroup of a finite product of equivariant McCool groups,∏
u∈U Mcu. The indexing set U is a finite set and each equivariant McCool group, Mcu,

(and hence their product) is of type VF.
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Proof. We define C0(�) and μ as in Notation 4·8. The kernel of μ is a finitely generated
free abelian group, by Theorem 4·5. The image of μ is isomorphic to a finite index subgroup∏

[v]∈V(T)/M Mc(Gv; {Ge}ι(e)=v;�t(v) |Gv ), since by Proposition 4·10 μ(C0(�))) is isomor-
phic via ρ to some subgroup of this product, and by Proposition 4·12 ρ(μ(C0(�))) contains
its finite index subgroup N. The last statement, that each equivariant McCool group has type
VF, is given by Theorem 3·12.
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