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Abstract. In this paper, we study transitivity of partially hyperbolic endomorphisms of
the two torus whose action in the first homology group has two integer eigenvalues of
moduli greater than one. We prove that if the Jacobian is everywhere greater than the
modulus of the largest eigenvalue, then the map is robustly transitive. For this, we introduce
Blichfedt’s theorem as a tool for extracting dynamical information from the action of a map
in homology. We also treat the case of specially partially hyperbolic endomorphisms, for
which we obtain a complete dichotomy: either the map is transitive and conjugated to its
linear part, or its unstable foliation must contain an annulus which may either be wandering
or periodic.
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1. Introduction
Although it may now be long forgotten, dynamicists once believed that diffeomorphisms
with gradient-like dynamics (so-called Morse–Smale systems) make up a dense subset
among diffeomorphisms on any compact manifold. That should remind us about how
striking the existence of robustly transitive diffeomorphisms actually is. Recall that a
diffeomorphism f is transitive if it has a dense orbit, and robustly transitive if there is a C1

neighbourhood U of f such that every g ∈ U is transitive. The first examples of robustly
transitive diffeomorphisms were Anosov diffeomorphisms and, for some time, it was
believed that there were no others. However, in the 70s, Shub and Mañé gave examples of
robustly transitive diffeomorphisms on T

4 and T
3 that are not Anosov. Both of these exam-

ples are homotopic to Anosov (that is ‘derived-from-Anosov’) and partially hyperbolic.
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Partial hyperbolicity is not a necessary condition for robust transitivity, but an even
weaker form of hyperbolicity (dominated splitting with uniform contraction/expansion
in the extreme bundles, see [DPU99, BDP03]) is. In particular, in dimension three,
any robustly transitive diffeomorphism must have a non-trivial dominated splitting with
uniform expansion or contraction in the one-dimensional bundle. Until the 90s, there
were no known examples of robustly transitive diffeomorphisms which are not homotopic
to Anosov. That changed with the publication of [BD96], where a new tool called a
blender was introduced, allowing for a whole range of new examples. Yet it still remains
an open problem to describe and classify all robustly transitive derived-from-Anosov
diffeomorphisms, even on T

3.
In hindsight, it may seem surprising that the research on this topic was born in the

context of invertible maps, since the simplest examples of robustly transitive maps are
actually uniformly expanding maps. It is therefore natural to ask whether it is possible
to describe and classify robustly transitive ‘derived-from-expanding’ maps, that is, maps
which are robustly transitive and homotopic to an expanding map without being themselves
expanding. In a sense, it is a more elementary problem to classify derived-from expanding
maps on, say, T2 than the analogous problem for derived-from-Anosov diffeomorphisms
on T

3 and we believe that the former is the right starting point for both problems.
This is because of the simpler topology present in the derived-from-expanding case.
In fact, there is a strong analogy between uniformly expanding maps and Anosov
diffeomorphisms which becomes apparent by lifting a uniformly expanding map to its
natural extension in the inverse limit space. Similarly, there is a strong analogy between
derived-from-expanding maps on T

2 and derived-from-Anosov maps with a dominated
splitting and a uniformly contracted one-dimensional bundle.

In spite of their more straightforward topological description, linear expanding maps
on T

2 come in a greater variety than linear Anosov maps on T
3. Whereas the latter must

have either three real irrational eigenvalues or one irrational and a pair of complex ones,
the former allows for a pair of irrational, a pair of complex or a pair of integer eigenvalues.
This paper is dedicated to this latter case.

Problem 1.1. Fix a linear expanding map A on T
2 with integer eigenvalues. What are the

robustly transitive maps homotopic to A?

Note that every homotopy class contains maps with attractors, which is an obvious
obstacle to transitivity, so the robustly transitive maps cannot make up the whole homotopy
class. Something extra is needed. In previous works, we have considered this question for
maps which are conservative [And16] or for which the non-wandering set is the whole of
T

2 [Ran18]. Both conditions serve to make sure the map has no attractors and are in fact
sufficient for transitivity. A possible candidate for a weaker condition would be maps which
are volume expanding. Indeed, a volume expanding map cannot have an attractor whose
trapping region is inessential, that is, which does not wind around the torus. However, even
volume expanding maps may have attractors with essential trapping regions.

Example 1.2. Let F be the direct product of two maps f , g : S1 → S1, where f (x) = 3x
mod 1 and g(x) a map homotopic to x �→ 2x mod 1, satisfying:
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(1) g(0) = 0;
(2) g′(0) < 1;
(3) 2

3 < g′(x) < 3 for all x ∈ S1.
Then F has Jacobian larger than 2 everywhere but is clearly not transitive. Indeed, g has an
attractor at 0, so F has an attractor with trapping region of the form S1 × (−ε, ε) for some
ε > 0. Once an orbit enters this region, it cannot escape.

Our main finding is that when the map is partially hyperbolic and has a sufficiently
large Jacobian, then it is robustly transitive. Let us be more specific.

In this paper, an endomorphism is synonymous with a non-invertible local diffeomor-
phism. A partially hyperbolic endomorphism is a local diffeomorphism f : T2 → T

2

admitting an unstable cone-field Cu : p �→ Cup, where Cup is a closed cone in TpT2, and
constants � > 0 and λ > 1 satisfying:
(i) Cu is Df �-invariant, that is,

Df �pCup ⊆ int Cu
f �(p)

∪ {0},
where int(Cup) denotes the interior of Cup;

(ii) for every v ∈ Cup, ‖Df �(v)‖ ≥ λ‖v‖.
The action of an endomorphism in the first homology group is given by a 2 × 2 matrix

with integer entries. We refer to this matrix (and the maps it induces on R
2 and T

2) as the
linear part of the endomorphism.

THEOREM A. Let f : T2 → T
2 be a partially hyperbolic endomorphism whose linear

part A has integer eigenvalues λ1, λ2 with |λ1| ≥ |λ2| > 1. Suppose that

|det(Dfp)| > |λ1| for every p ∈ T
2. (1)

Then f is transitive.

The condition in equation (1) says that the Jacobian of f at every point is larger than
the spectral radius of the linear part of f. It can be slightly relaxed by asking that it
holds on an iterate of f or, equivalently, that there is some C > 0 and λ > λ1 such that
|det(Df np )| ≥ Cλn for every n ≥ 1 and every p ∈ T

2. We say that an endomorphism with
this property is strongly volume expanding.

It should be noted that partial hyperbolicity and the strongly volume expanding
condition are both persistent under C1-perturbations. As a consequence, we have the
following corollary.

COROLLARY A. Suppose that f is a partially hyperbolic endomorphism whose linear
part is expanding with integer eigenvalues. If f is strongly volume expanding, then f is
C1 robustly transitive.

In §5, we give an explicit example of an endomorphism satisfying the hypotheses of
Theorem A which is (C1 robustly) not conjugated to its linear part.

Theorem A is similar in flavour to a theorem by Rodriguez Hertz, Ures and Yang
[RHUY22] about partially hyperbolic diffeomorphisms on T

3. Using the hypothesis that f
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is C2 and a slightly weaker version of equation (1) (they allow for equality in equation (1)
in a set with zero leaf volume along unstable leaves), they conclude that the strong stable
and unstable foliations are C1 robustly minimal, which in particular implies C1 robust
transitivity. Here we require less regularity but a slightly stronger condition on the Jacobian
than that of [RHUY22]. Notwithstanding the apparent similarities, the approaches taken
in the two works are very different. The argument in [RHUY22] relies on the existence
of positive Lyapunov exponents in the centre direction and makes thorough use of the
partially hyperbolic structure. In contrast, the present work applies Blichfedt’s theorem to
show that the strongly volume expanding condition has a rather far reaching topological
consequence: a sufficiently high iterate of any open set must wind around the torus in two
directions (Lemma 3.1). This is entirely independent of the map being partially hyperbolic
or not and is of independent interest. Partial hyperbolicity is used to guarantee that this
property indeed implies transitivity.

1.1. Specially partially hyperbolic endomorphisms. Whenever f is a partially hyperbolic
endomorphism, we may define the centre direction at a point p by

Ecp = {v ∈ TxT2 : Df np (v) /∈ Cu(f n(p)) for all n ≥ 0} ∪ {0}.
However, in contrast to the invertible case, there may not be a well-defined unstable
direction. More precisely, given a choice of pre-orbit p̂ = (. . . , p−2, p−1, p0) of p, that
is, a sequence of points in T

2 satisfying p0 = p and f (pi−1) = pi for every i ≥ 0, we
define the direction

Êu
p̂

=
⋂
n≥0

Df n(Cu(pn)). (2)

In general, Êu
p̂

will depend on the particular choice of pre-orbit p̂. In the exceptional
case where it does not, we say that f is a specially partially hyperbolic endomorphism and
write Eup = Êu

p̂
. In this case, Eup can easily be shown to be f -invariant and continuous.

For specially partially hyperbolic endomorphisms, we are able to give a full charac-
terization of transitivity both in terms of conjugacy and in terms of absence of periodic
or wandering annuli. By an annulus, we mean an open subset A of T2 homeomorphic to
(−1, 1)× S1. We say that an annulus A is periodic if there is n ≥ 1 such that f n(A) = A;
and it is wandering if f n(A) ∩ A = ∅ for every n ≥ 1.

THEOREM B. Let f be a specially partially hyperbolic endomorphism with linear part A.
Suppose that A has integer eigenvalues |λ1| > |λ2| > 1. Then the following are equivalent:
(a) f is transitive;
(b) f is topologically conjugated to A;
(c) f admits neither a periodic nor a wandering annulus.

When they exist, periodic and wandering annuli can always be chosen to be saturated
by unstable leaves. We can therefore restate Theorem B as the following corollary.

THEOREM B’. Let f be a specially partially hyperbolic endomorphism with linear part A
having eigenvalues |λ1| > |λ2| > 1. Then one of the following holds:
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(a) f is transitive and topologically conjugated to A;
(b) f is not transitive and there is a periodic or wandering annulus saturated by the

unstable foliation.

Note that in virtue of being a direct product, Example 1.2 is in fact specially partially
hyperbolic, so it serves as an example for the non-transitive case in Theorem B (and B’).
In that example, the origin is an attractor for g whose basin is a union of intervals. If I is
the interval that contains 0, then T × I is a periodic (in fact fixed) annulus.

2. Some preliminaries
An endomorphism f : T2 → T

2 induces an action f� on π1(T
2). Since π1(T

2) is
isomorphic to Z

2, this action can be represented by a 2 × 2 integer matrix A. Now, A itself
induces an endomorphism on T

2, called a linear endomorphism. Each endomorphism is
homotopic to one and only one such linear endomorphism, which we refer to as the linear
part of f. One good reason for this is that if f̃ : R2 → R

2 is a lift of f, then

f̃ (x̃ + v) = f̃ (x̃)+ Av (3)

for every x̃ ∈ R
2 and every v ∈ Z

2. In particular, f̃ can be neatly decomposed as
A+ (f̃ − A), where f̃ − A is Z2-periodic and hence bounded.

A linear map A on R
2 is called expanding when all its eigenvalues have magnitude

larger than one. In the case where the linear part A of f is expanding, there is a surjective
continuous map h : T2 → T

2, homotopic to the identity, such that

h ◦ f = A ◦ h. (4)

The existence of h was proved by Franks in [Fra70] for diffeomorphisms with hyperbolic
linear part, but the proof can be easily adapted to endomorphisms with expanding linear
part. (We remark that if the linear part is a hyperbolic endomorphism, such a map may
not exist. See [CVa23].) The map h is called a semiconjugacy from f to A. When h is a
homeomorphism, we say that it is a conjugacy between f and A.

One of the consequences of the existence of the semi-conjugacy is that f̃ n and An ◦ h̃
stay uniformly close. Indeed, if h̃ is a lift of h, then h̃− id is Z

2-periodic (since h
is homotopic to the identity) and hence bounded by some constant, say κ . However,
An(h̃(x̃)) = h̃(f̃ n(x̃)) so that

‖f̃ n(x̃)− An(h̃(x̃))‖ < κ (5)

for every x̃ ∈ R
2 and every n ≥ 1.

It is sometimes useful to consider the set-valued function

φ : T2 → K(T2) (6)

x �→ h−1(h(x)) (7)

and its lift φ̃(x̃) = h̃−1(h̃(x̃)). Here K(T2) denotes the class of compact subsets of T2. The
set φ̃(x̃) is the set of points whose forward orbit stays a bounded distance away from the
orbit of x̃ under iterations of f̃ , that is,

φ̃(x̃) = {ỹ ∈ R
2 : sup

n≥0
‖f̃ n(x̃)− f̃ n(ỹ)‖ < ∞}.
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PROPOSITION 2.1. Let f : T2 → T
2 be an endomorphism with expanding linear part A

and f̃ a lift of f. Then the following hold.
(a) There is r > 0 such that

φ̃(x̃) =
⋂
k≥0

f̃−nk (B(f̃ nk (x̃), r))

for each x̃ ∈ R
2 and each sequence nk → ∞.

(b) There exists r0 and k ≥ 1 such that f̃ k(B(x̃, r)) ⊃ B(f̃ k(x̃), r) for every x̃ ∈ R
2 and

r > r0, where B(x̃, r) is the ball of radius r centred at x̃.
(c) For each x̃ ∈ R

2, φ̃(x̃) is a connected set.
(d) For each x̃, h̃−1(x̃) is connected.
(e) For each compact connected set C in T

2, the set h̃−1(C) is connected.

Proof. The inclusion ‘⊃’ in item (a) holds for every r > 0. This follows by noting that
iterates of any two points in the set on the right remain a bounded distance from one
another. Since the linear part is expanding, this can only happen if they have the same
image under h̃.

The inclusion ‘⊂’ in item (a) holds for any r > 2κ , where κ > 0 is chosen in such a
way that ‖h̃− id‖ ≤ κ . To see this, let ỹ ∈ φ̃(x̃). Then h̃(ỹ) = h̃(x̃) and, for n ≥ 0,

h̃(f̃ n(ỹ)) = An(h̃(ỹ)) = An(h̃(x̃)) = h̃(f̃ n(x̃)).

Hence,

‖f̃ n(ỹ)− f̃ n(x̃)‖ ≤ ‖f̃ n(ỹ)− h̃(f̃ n(ỹ))‖ + ‖h̃(f̃ n(x̃))− f̃ n(x̃)‖ < r ,

and we conclude that ỹ ∈ ⋂
n≥0 f̃

−n(B(f̃ n(x̃), r)).
Item (b) holds because of equation (5) and the fact that A is expanding.
To show item (c), fix k and r such that item (b) holds. If necessary, increase r so that

item (a) holds as well. Consider the sets Dn(r) = f̃−n(B(f̃ n(x̃), r)). From item (a), we
have that φ̃(x̃) = ⋂

k≥0 Dkn. Now,

f̃ k(n+1)(Dk(n+1)) = B(f̃ k(n+1)(x̃), r) ⊂ f̃ k(B(f̃ nk(x̃), r)) = f̃ k(n+1)(Dnk),

so that Dk(n+1) ⊂ Dnk . Hence, φ̃(x̃) can be written as
⋂
n≥0 Dnk . In other words, φ̃(x̃)

is the intersection of a decreasing sequence of compact connected sets, so it is itself
connected.

Item (d) is an immediate consequence of item (c).
We prove item (e) by contradiction. First note that h̃−1(C) is necessarily compact, since

h̃ is a bounded distance from the identity. Suppose that h̃−1(C) is not connected. Then there
are disjoint compact sets A and B such that h̃−1(C) = A ∪ B. Hence, C = h̃(A) ∪ h̃(B)
with both h̃(A) and h̃(B) compact. Now, since C is connected, there exists some point
p ∈ h̃(A) ∩ h̃(B).However, then h̃−1(p)canbewrittenas thedisjointunion(h̃−1(p) ∩ A) ∪
(h̃−1(p) ∩ B), both of which are closed. That is absurd.

Since πh̃−1 = h−1π , we have the following corollary.
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COROLLARY 2.2. Let f : T2 → T
2 be an endomorphism with expanding linear part A.

Then the following hold.
(a) For each p ∈ T

2, the set h−1(p) is a connected set.
(b) For each closed connected set C in T

2, the set h−1(C) is connected.
(c) For each p ∈ T

2, f (φ(p)) = φ(f (p)).

2.1. Dynamical coherence. A partially hyperbolic endomorphism on T
2 is said to be

dynamically coherent if there exists an invariant C0 foliation with C1 leaves tangent to Ec.
When it exists, such a foliation is called a centre foliation of f and its leaves are called
centre leaves. If f and g are two dynamically coherent partially hyperbolic endomorphisms,
we say that f and g are leaf conjugate if there exists a homeomorphism ψ : T2 → T

2

mapping centre leaves of f to centre leaves of g. A periodic centre annulus is an annulus
A ⊂ T

2 such that f n(A) = A for some n ≥ 1 whose boundary consists of either one or
two C1 circles tangent to the centre direction.

THEOREM 2.3. (Hall and Hammerlindl [HH22]) Let f : T2 → T
2 be a partially hyper-

bolic endomorphism which does not admit a periodic centre annulus. Then f is dynamically
coherent and leaf conjugate to A.

Remark 2.4. In general, a partially hyperbolic endomorphism is not necessarily dynam-
ically coherent, even when having an expanding linear part. An example was given in
[HH23] with a linear part as in equation (8).

2.2. Changing coordinates. This work concerns specifically endomorphisms whose
linear part A has integer eigenvalues. It is convenient to suppose that one of the eigenspaces
is the vertical direction, that is, that A is represented by a lower triangular matrix of the
form

A =
(
λ1 0
μ λ2

)
, (8)

where |λ1| ≥ |λ2| > 1 are the (integer) eigenvalues of A and μ is some integer. There is no
loss of generality in doing that.

LEMMA 2.5. Let A be a 2 by 2 matrix with integer entries and two integer eigenvalues
λ1, λ2. Then there exists P ∈ SL(2, Z) such that P−1AP is of the form in equation (8) for
some μ ∈ Z.

Proof. Since A has integer eigenvalues, there exists v ∈ Z
2 such that Av = λ2v. Without

loss of generality, we may suppose that the components v1, v2 of v are coprime. Let p, q
be such that pv1 + qv2 = 1 and take

P =
(
q v1

−p v2

)
.

Then P−1AP is of the form in equation (8).
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3. Proof of Theorem A
Before turning to the specific setting of Theorem A, let us take a look at how the strongly
volume expanding property serves as a mechanism to produce homology in two linearly
independent directions for large iterates of an open set.

Recall that an open set U ⊂ T
2 is called essential if it contains a loop γ such that

its homotopy class [γ ] is non-zero in π1(T
2) ∼= Z

2. Similarly, we define U to be doubly
essential if it contains loops γ and σ such that [γ ] and [σ ] are linearly independent.

It is straightforward to see that if f is volume expanding, then a sufficiently large iterate
of any open set is essential. The main idea behind Theorem A is that strong volume
expansion leads to high iterates of any open set being doubly essential.

LEMMA 3.1. Let f be a strongly volume expanding endomorphism on T
2. Then, given any

open set U ⊂ T
2, there exists N ≥ 0 such that f n(U) is doubly essential for every n ≥ N .

The proof of Lemma 3.1 is a direct consequence of the following lemma.

LEMMA 3.2. Let f be a strongly volume expanding endomorphism on T
2 and

f̃ : R2 → R
2 a lift of f. Then, given any open set Ũ ⊂ R

2, there exists N ≥ 0 such
that for every n ≥ N , there exist points p̃1, q̃1, p̃2, q̃2 in f̃ n(Ũ ) such that p̃1 − q̃1 is a
non-zero multiple of e1 and p̃2 − q̃2 is a non-zero multiple of e2.

The proof of Lemma 3.2 is based on a classical theorem about the geometry of numbers.

THEOREM 3.3. (Blichfeldt’s theorem [Bli14]) Let B ⊆ R
2 be a Lebesgue measurable set

such that Leb(B) > k for some positive integer k. Then there exist x0, . . . , xk in B such
that xi − x0 ∈ Z

n for every i = 1, . . . , k.

Proof of Lemma 3.2. Fix C > 0 and λ > λ1 such that

|det(Df np )| ≥ Cλn

for every p ∈ T
2 and every n ≥ 1. Fix also ε > 0 so that λ1 + ε < λ. Let B be a

(non-empty) open connected subset of Ũ contained in a ball of radius less than one. By
Gelfand’s formula,

‖An‖ < (λ1 + ε)n

for n greater than some n0. By equation 5, we have that h̃(B) is contained in a ball
of radius 1 + κ so that for n > n0, f̃ n(B) is contained in a ball of diameter less than
Ln = 2(1 + κ)(λ1 + ε)n + 2κ . Choose N > n0 so that LN < CλNLeb(B).

Now suppose that n ≥ N and let � be the integer part of Ln. Then

Leb(f̃ n(B)) > �,

so by Blichfeldt’s theorem, there is x̃ ∈ R
2 such that x̃ + f̃ n(B) intersects Z

2 in at least
�+ 1 points. Recall that Ln is an upper bound for the diameter of f̃ n(B) so, upon possibly
adding an element of Z2 to x̃, we may assume that

(x̃ + f̃ n(B)) ∩ Z
2 ⊂ {1, . . . , �}2.
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In other words, the intersection of x̃ + f̃ n(B) with Z
2 consists of at least �+ 1

points and is contained in {1, . . . , �}2. By the pigeon hole principle, there must be a
line {1, . . . , �} × {i} containing two points x̃1, ỹ1 of the intersection. Similarly, there is
a column {j} × {1, . . . , �} containing two points x̃2, ỹ2 of the intersection. The proof
follows by taking p̃i = x̃i − x̃ and q̃i = ỹi − x̃ for i = 1, 2.

LEMMA 3.4. Let f : T2 → T
2 be a partially hyperbolic endomorphism. If f is strongly

volume expanding, then f is dynamically coherent and leaf conjugated to its linear part.

Proof. By Theorem 2.3, it suffices to show that f does not admit a periodic centre
annulus. Lemma 3.1 implies that any open set must become doubly essential after a
sufficient number of iterations. However, no iterate of a periodic centre annulus is doubly
essential.

Remark 3.5. It is proved in [HH22] that the absence of a periodic centre annulus implies
that the eigenvalues λ1 and λ2 of A are distinct real numbers.

In the proof of Theorem A, it will be convenient to reduce the argument to the case
in which f is a skew-product. This can always be done—at least at the cost of sacrificing
differentiability. Indeed, by Lemma 3.4, f is leaf conjugated to its linear part A. Let us
denote the leaf conjugacy by ψ . Then the map g = ψ ◦ f ◦ ψ−1 preserves the foliation of
T

2 into vertical circles (the centre leaves of the map A), and is therefore a skew product. It
is clear that the map hg = h ◦ ψ−1 is a semi-conjugacy from g to A.

Remark 3.6. Although it is not stated explicitly in [HH22], it can be read from the proofs
that the leaf conjugacyψ : T2 → T

2 is homotopic to the identity and g = ψfψ−1 is of the
form g(x, y) = (λ1x, τx(y)), where τx : S1 → S1 is a continuous family of differentiable
maps of degree λ2. Since ψ and h are homotopic to the identity, so is hg .

Proof of Theorem A. Let U ⊂ T
2 be a (non-empty) open set. We shall show that there

is some n such that f n(U) = T
2. We denote π−1(U) by Ũ . Since ψ̃(Ũ ) is open, it

contains an open rectangle R = (x1, x2)× (y1, y2). By Lemma 3.2, there exists k such
that f̃ k(ψ̃−1(R)) contains points that differ by a non-zero multiple of e2. However, then
the same is true for g̃k(R) (see Remark 3.6). We are assuming A to be of the form in
equation (8) so that g̃k(R) is a union of vertical lines. This means that g̃k(R) must contain
a vertical line whose length is larger than one. Since g̃n(R) is open, π(g̃n(R)) contains a
vertical strip, that is, a set of the form I × S1 for some open interval I = (a, b). Iterating
this strip � times by g, where |λ1|�(b − a) > 1, we get the whole torus T

2. The proof
follows by taking n = k + �.

Remark 3.7. The proof of Theorem A shows that given any open U ⊂ T
2, there exists n

such that f n(U) = T
2. This property, sometimes so called topological exactness or locally

eventually onto, is much stronger than transitivity. In fact, it is straightforward to see that it
implies topological mixing. Hence, Theorem A and Corollary 1 remain valid if we replace
‘transitive’ with ‘mixing’.
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4. Proof of Theorem B
In what follows, we shall fix a specially partially hyperbolic endomorphism f : T2 → T

2

and λ1, λ2 ∈ Z with |λ1| > |λ2| > 1 as the eigenvalues of A. Since the unstable direction
(defined by equation (2)) is independent of the past, f has a non-trivial invariant splitting

TpT
2 = Ec ⊕ Eu, (9)

such that for all p ∈ T
2 and all unit vectors v ∈ Ecp and w ∈ Eup,

‖Df (v)‖ < ‖Df (w)‖ and ‖Df (w)‖ > 1.

Such an endomorphism always has a foliation tangent to the unstable bundleEu. Indeed,
this follows by applying the classical arguments of Hirsh, Pugh and Shub to the lift and
then projecting to the torus (or whatever be the manifold under consideration). Let us
denote by Fu the foliation tangent to Eu and call it the unstable foliation.

Although every specially hyperbolic endomorphism has an unstable foliation, it does
not necessarily have a central one. Indeed, in [HSW19], there is an example of a
dynamically incoherent specially partially hyperbolic endomorphism (whose linear part
is not expanding). However, when the linear part is expanding, the next result follows as a
direct consequence of [HH22, Theorem E].

PROPOSITION 4.1. A specially partially hyperbolic endomorphism with expanding linear
part does not admit a periodic centre annulus.

By Theorem 2.3, f is dynamically coherent and leaf conjugate to A. We fix Fc as
the centre foliation. Let EuA and EcA be the eigenspaces corresponding to λ1 and λ2,
respectively. We denote by Ãu and Ãc the foliations of R2 by lines parallel to these spaces,
and by Au and Ac the foliations they induce on T

2.
We denote by πu the projection to EuA whose whose kernel is EcA and πc is the

projection to EcA whose kernel is EuA. We say that a foliation F in R
2 is at a bounded

distance from Ac (respectively Au) if there is some M > 0 such that the length of πu(L)
(respectively πc(L)) is smaller than M for every L ∈ F .

Since the eigenvalues of A are integers, Au and Ac consist of circles. In particular, we
also have that all the leaves of the centre foliation Fc of f are also circles and, moreover,
the leaves of F̃c are at a bounded distance from the lines of Ãc.

As explained in [Pot12, §4.A], F̃u is at a bounded distance from some (unique) linear
foliation Ã on R

2. We claim that Ã is A-invariant. Indeed, let F be a leaf of F̃u and L be
a leaf of Ã. Then F and L are a bounded distance from each other. Since f̃ is a bounded
distance from A, f̃ (F ) must be a bounded distance from A(L). However, f̃ (F ) belongs
to F̃u and is therefore a bounded distance from F itself. It follows that A(L) is a bounded
distance from L. In other words, A(L) must be parallel to L proving that Ã is A-invariant.
In our setting, there are only two linear A-invariant foliations, namely Ãc and Ãu. We shall
take a closer look at F̃u to see that indeed Ã = Ãu. Similarly, we will show that F̃c is at a
bounded distance from Ãc.
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FIGURE 1. Reeb component.

FIGURE 2. Tannulus.

Two important concepts for understanding foliations on T
2 are Reeb components and

Tannuli. A Reeb component of a foliation F on T
2 is an annulus A such that the restriction

of F to the closure of A is homeomorphic to one of the following:
(1) the foliation on [−1, 1] × S

1 induced by the foliation on [−1, 1] × R given
by the lines {−1} × R and {1} × R, along with the graphs of the functions
x �→ exp(1/(1 − x2))+ y with y ∈ R;

(2) the foliation on T
2 induced by the foliation on S1 × R obtained by identifying

{−1} × R with {1} × R in case (1).
A Tannulus component (or simply tannulus) is defined analogously, replacing the

functions x �→ exp(1/(1 − x2))+ y with x �→ tan(πx/2)+ y. See Figures 1 and 2.
By the classification of foliations on T

2 (see [HH86, Proposition 4.3.2]), if a foliation
does not admit Reeb components, then it is a suspension of a circle homeomorphism. Such
a foliation may or may not contain a tannulus component.

Remark 4.2. A foliation on T
2 may have infinitely many tannuli, but it can have at most

finitely many Reeb components. See [HH86].

A main ingredient is the following very general topological lemma.

LEMMA 4.3. Let f : T2 → T
2 be a self-cover. If there exists an annulus A and n ≥ 1 such

that A = f−n(A), then the linear part of f has an eigenvalue ±1.

Since we are assuming that f has expanding linear part, Lemma 4.3 implies that there
cannot be a backwards invariant annulus.

The proof of Lemma 4.3 follows by the arguments used in [And16, Ran17]. In short, if
A is a periodic annulus with f−n(A) = A, then the restriction of f n to A is a self-cover
of degree λn1 · λn2. At the same time, if i : A → T

2 is the inclusion map, then i� sends the
fundamental group of A to a subgroup of Z2 of the form G = {kv : k ∈ Z} ⊂ Z

2, where
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v ∈ Z
2 is an eigenvalue of the linear part of f. The action f on G produces a subgroup

whose index is on the one hand equal to λn1 · λn2, and on the other equal to λni , where λi is
the eigenvalue associated to v. Hence, the other eigenvalue must be ±1.

Next, it is showed that Fu is necessarily a suspension.

LEMMA 4.4. The unstable foliation Fu has no Reeb component.

Proof. Suppose by contradiction that Fu contains a Reeb component A ⊆ T
2. Then, by

[HSW19, Lemma 2.2], there is an integer n > 0 such that f−n(A) = A. However, that is
impossible according to Lemma 4.3, since we are assuming that f has expanding linear
part.

As we mentioned above, it follows from the classification of foliations on T
2 that Fu is

a suspension. Moreover, F̃u has rational slope since its leaves are a bounded distance from
an eigenspace of A. Thus by the classification of foliations on T

2, either Fu has a tannulus
or all the leaves of Fu are circles.

LEMMA 4.5. Let F be a foliation of T2 in which every leaf is a circle. Then every leaf of
F represents the same non-zero element v in Z

2 (the fundamental group of T
2). Suppose,

moreover, that γ is a closed C1 curve transverse to F . Then [γ ] is not a multiple of v.

Proof. Let L be a leaf of F and write v = [L]. That v is non-zero can be deduced from
the Poincaré–Benedixon theorem (a foliation of R2 cannot have a compact leaf). If L′ is
another leaf, then [L′] must be equal to v, for otherwise, L and L′ would intersect. Fix
some lift γ̃ : [0, 1] → R

2 of γ and extend it periodically to 
̃ : R → R
2. We claim that L

intersects (the image of) 
̃. Indeed, this also follows from the Poincaré–Benedixon theorem
since if it were not true, then the vector field tangent to F̃ would exhibit a singularity.

We now observe that 
̃(t + k) = 
̃(t)+ k[γ ] for every k ∈ Z
2 so that the image of 
̃

is invariant under translation by [γ ]. Similarly, L is invariant by translation of v. Hence,
[γ ] cannot be a multiple of v, for if it were, then L and 
̃ would have infinitely many
intersections.

LEMMA 4.6. The lifts F̃c and F̃u are a bounded distance from Ãc and Ãu, respectively.

Proof. Recall that every leaf of F̃u is a bounded distance from a translation of an
eigenspace of A. Since Fu has a tannulus or all its leaves are circles, it is known that
in both cases, there is a circle as a leaf. Then, as such a circle of Fu is transverse to Fc, we
can conclude by Lemma 4.5 that this eigenspace cannot be EcA. So it has to be EuA.

A consequence of Lemma 4.6 is that the restriction of πc (respectively πu) to
F̃c(p̃) (respectively F̃u(p̃)) is onto, so F̃c(p̃) and F̃u(p̃) intersect each other. By the
Poincaré–Bendixson theorem, we conclude that they intersect each other exactly once. In
other words, F̃c and F̃u have global product structure and are quasi-isometric. That is,

there exists a, b > 0 such that dF̃∗(p̃, q̃) ≤ a‖p̃ − q̃‖ + b, (10)

where dF̃∗(p̃, q̃) denotes the distance between p̃ and q̃ along a leaf of F̃∗ for ∗ = c, u.
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LEMMA 4.7. The map h̃ sends leaves of F̃c onto leaves of Ãc and leaves of F̃u onto leaves
of Ãu.

Proof. Since F̃c is at a bounded distance from Ãc, there is a constant R > 0 such that
for every p̃ ∈ R

2, we can find a line L ∈ Ãc such that the leaf F̃c(p̃) is contained in the
R-neighbourhood of L, which is an R-vertical strip. By equation (5), we have that ‖An ◦
h̃−f̃ n‖ < κ for each integer n and, thus,An(h̃(F̃c(p̃))) is contained in an (R + κ)-vertical
strip.

Now, suppose that q̃ ∈ F̃c(p̃) and that h̃ sends p̃ and q̃ to (x1, x2) and (y1, y2) in
R

2 = EuA ⊕ EcA, respectively, with x1 �= y1. (Recall that we are assuming A to be of the
form in equation (8), so that Ac consists of vertical lines.) Then

|πu(An(x1, x2))− πu(An(y1, y2))| = |λ1|n|x1 − y1|
gets arbitrarily large as n grows, contradicting that An(h̃(F̃c(p̃))) is contained in an
(R + κ)-vertical strip. That proves that h̃ sends leaves of F̃c to lines in Ãc. The case
of F̃u is identical.

LEMMA 4.8. The map h̃ sends distinct leaves of F̃c to distinct lines of Ãc.

Proof. We argue by contradiction. Suppose there are distinct leaves, say F1 and F2, of F̃c

which are sent to the same line by h̃. Then for every q̃1 ∈ F1 and every q̃2 ∈ F2, we have
πu(h̃(q̃1)) = πu(h̃(q̃2)) and so ‖πu(f̃ n(q̃1))− πu(f̃ n(q̃2))‖ is bounded for n ≥ 0. By the
global product structure, we can choose q̃1 and q̃2 in the same leaf of F̃u. Since F̃u is at
a bounded distance from Ãu, we have that ‖πc(f̃ n(q̃1))− πc(f̃ n(q̃1))‖ is also bounded
for n ≥ 0. Hence, ‖f̃ n(q̃1)− f̃ n(q̃2)‖ is bounded for n ≥ 0. However, that is impossible
since q̃1 and q̃2 are in the same unstable leaf which is quasi-isometric.

A consequence of Lemma 4.8 is that φ̃(p̃) is contained in F̃c(p̃) for every p̃ ∈ R
2.

Proposition 2.1 then implies that φ̃(p̃) must be either a point or a compact line segment in
F̃c(p̃).

LEMMA 4.9. Suppose that Fu has no tannulus. If φ(p) �= {p}, then the interior of
h−1(Au(h(p))) is an annulus which is either wandering or periodic for f.

Proof. Since Fu has no tannulus, the leaves of Fu are circles so we may consider fibres
of a trivial bundle π : T2 → S1 whose fibres are the leaves of Fu. The set φ(p) is a
transversal segment to the fibres and h sends Fu(x) to Au(h(p)) for every x ∈ φ(p).
Hence, h−1(Au(h(p)) is equal to π−1(π(φ(p))).

Proof of Theorem B. The implication (b) �⇒ (a) is obvious. To see why (a) �⇒ (c), first
note that a transitive map may not have a wandering open set of any kind. Suppose that
f has a periodic annulus A = f n(A) for some n ≥ 1. Then, by transitivity of f, we must
have f−n(A) = A. Indeed, if it were not so, f−n(A) would consist of a union of several
annuli, some of which would be wandering. However, Lemma 4.3 says that it is impossible
to have a backwards invariant annulus when the linear part is expanding.
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It remains to show the implication (c) �⇒ (b). Note that h is a conjugacy between f and
A if and only if φ(p) = {p} for every p ∈ T

2. (A continuous bijection on a compact space
is a homeomorphism.) Thus, by Lemma 4.9, it suffices to show that if f does not admit a
wandering or periodic annulus, then Fu does not admit a tannulus. Suppose it does admit
a tannulus A. Then f n(A) would be a tannulus for every n ≥ 0. Moreover, A and f n(A)
must either coincide or be disjoint. Hence, A must be either wandering or periodic.

5. An example
Here we present a non-trivial example of an endomorphism satisfying the hypotheses
of Theorem A. More precisely, we construct a C∞ local diffeomorphism f : T2 → T

2

satisfying:
(1) the linear part of f is A = ( 5 0

0 2 );
(2) det Df (x, y) > 5 for every (x, y) ∈ T

2;
(3) f is partially hyperbolic; and
(4) f has a hyperbolic fixed point with stable index 1 and is therefore C1 persistently not

conjugated to A.
By Theorem A, f is robustly transitive. The example is a skew-product, but all properties
are robust, so the construction leads implicitly to examples which are not skew-products.
They are, however, topologically conjugated to skew-products. However, that is unavoid-
able according to [HH22] (see Theorem 2.3).

Here is the construction. Let α : T → T and β : T2 → T be given by

α(x) = 5x + sin(2πx)
2π

, (11)

β(x, y) = 2y − (1 + ε) cos2(πx)
sin(2πy)

2π
(12)

and take f (x, y) = (α(x), β(x, y)). Clearly, f is a well-defined C∞ map on T
2 homotopic

to A. That it is a local diffeomorphism will follow as soon as we have proved item (2)
above. The derivative of f at (0, 0) is given by(

6 0
0 1 − ε

)
,

which is hyperbolic with stable index 1 for every ε > 0. This property persists under C1

perturbations and guarantees that neither f nor its neighbours are conjugated to A. To see
why item (2) holds, note that the Jacobian

J (x, y) = |det Df (x, y)| = (5 + cos(2πx))(2 − (1 + ε) cos2(πx) cos(2πy))

is C∞ on T
2 and that

∂yJ = 2π(1 + ε)(5 + cos(2πx)) cos2(πx) sin(2πy)

vanishes only on x = 1
2 , y = 1

2 and y = 0. It therefore suffices to check that J is greater
than 5 along these three curves.
• On x = 1

2 , we have J ( 1
2 , y) ≡ 8.

• On y = 1
2 , we have J (x, 1

2 ) = (5 + cos(2πx))(2 + (1 + ε) cos2(πx)) ≥ 8.
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• On y = 0, we have

J (x, 0) = (5 + cos(2πx))(2 − (1 + ε) cos2(πx))

= 6 + 2 sin2(πx)(2 − sin2(πx))− ε cos2(πx)(5 + cos(2πx))

≥ 6 − 6ε,

which is greater that 5 for every ε < 1
6 . That proves item (2).

Finally, let us verify that f is partially hyperbolic. For that, fix some p ∈ T
2 and let

(u1, u2) = Dfp(1, 1), (w1, w2) = Dfp(1, −1). We claim that

u1 = w1 ≥ 4, (13)

1 − ε ≤ u2 ≤ 3 + ε, (14)

and

−3 − ε ≤ w2 ≤ 1 + ε. (15)

Once that is shown, it follows that the cone

S = {(v1, v2) ∈ R
2 \ {(0, 0)} : |v1| ≥ |v2|}

is strictly Dfp-invariant at every p ∈ T
2 as long as ε < 1. The estimate in equation (13)

also shows that vectors in S are expanded by Dfp by a factor of at least 2
√

2. This is
because

max
0≤t≤1

‖t (1, 1)+ (1 − t)(1, −1)‖ = √
2,

while

min
0≤t≤1

‖tDfp(1, 1)+ (1 − t)Dfp(1, −1)‖ ≥ 4

for every p, and every v ∈ S is a multiple of a vector of this type.
It remains to prove equations (13), (14) and (15). For that, let us write p = (x, y). Then

inequality in equation (13) is immediate, as

u1 = w1 = ∂xα(x) = 5 + cos(2πx). (16)

The inequalities in equation (14) follow by rewriting u2 as

u2 = ∂xβ(x, y)+ ∂yβ(x, y)

= (ε + 1) sin (πx) sin (2πy) cos (πx)

+ 2 − (ε + 1) cos2 (πx) cos (2πy)

= 2 − (cos(2πy)+ cos(2π(x + y)))/2

− ε cos(πx) cos(π(x + 2y)).

One can rewrite w2 in a similar fashion to obtain equation (15).

https://doi.org/10.1017/etds.2024.36 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.36


16 M. Andersson and W. Ranter

Acknowledgements. We would like to thank Rafael Potrie and Enrique Pujals as well
as the anonymous referee for their fruitful comments and suggestions. M.A. was sup-
ported by CNPq/MCTI/FNDCT project 403041/2021-0, Brazil. W.R. was supported by
CNPq/MCTI/FNDCT project 409198/2021-8, Brazil.

REFERENCES

[And16] M. Andersson. Transitivity of conservative toral endomorphisms. Nonlinearity 29(3) (2016),
1047–1055.

[BD96] C. Bonatti and L. J. Díaz. Persistent nonhyperbolic transitive diffeomorphisms. Ann. of Math. (2)
143(2) (1996), 357–396.

[BDP03] C. Bonatti, L. J. Díaz and E. Pujals. A C1-generic dichotomy for diffeomorphisms: weak forms of
hyperbolicity or infinitely many sinks or sources. Ann. of Math. (2) 158(2) (2003), 355–418.

[Bli14] H. F. Blichfeldt. A new principle in the geometry of numbers, with some applications. Trans. Amer.
Math. Soc. 15(3) (1914), 227–235.

[CVa23] M. Cantarino and R. Varão. Anosov endomorphisms on the two-torus: regularity of foliations and
rigidity. Nonlinearity 36(10) (2023), 5334–5357.

[DPU99] L. J. Díaz, E. Pujals and R. Ures. Partial hyperbolicity and robust transitivity. Acta Math. 183(1)
(1999), 1–43.

[Fra70] J. Franks. Anosov diffeomorphisms. Global Analysis (Proceedings of Symposia in Pure Mathemat-
ics, Vol. XIV, Berkeley, CA, 1968). Ed. S. Smale. American Mathematical Society, Providence, RI,
1970, pp. 61–93.

[HH86] G. Hector and U. Hirsch. Introduction to the Geometry of Foliations, Part A: Foliations on Compact
Surfaces, Fundamentals for Arbitrary Codimension, and Holonomy (Aspects of Mathematics, 1),
2nd edn. Vieweg, Braunschweig, 1986.

[HH22] L. Hall and A. Hammerlindl. Classification of partially hyperbolic surface endomorphisms. Geom.
Dedicata 216(29) (2022), 1572–9168.

[HH23] L. Hall and A. Hammerlindl. Dynamically incoherent surface endomorphisms. J. Dynam. Differen-
tial Equations 35 (2023), 3651–3663.

[HSW19] B. He, Y. Shi and X. Wang. Dynamical coherence of specially absolutely partially hyperbolic
endomorphisms on T 2. Nonlinearity 32(5) (2019), 1695–1704.

[Pot12] R. Potrie. Partial hyperbolicity and attracting regions in 3-dimensional manifolds. PhD Thesis,
PEDECIBA, Universidad de La Republica, Uruguay, 2012.

[Ran17] W. Ranter. About transitivity of surface endomorphisms admitting critical points. PhD Thesis,
Instituto de Matemática Pura e Aplicada, 2017.

[Ran18] W. Ranter. Transitive endomorphisms with critical points. Proc. Amer. Math. Soc. 146 (2018),
125–136.

[RHUY22] J. Rodriguez Hertz, R. Ures and J. Yang. Robust minimality of strong foliations for DA dif-
feomorphisms: cu-volume expansion and new examples. Trans. Amer. Math. Soc. 375(6) (2022),
4333–4367.

https://doi.org/10.1017/etds.2024.36 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.36

	1 Introduction
	1.1 Specially partially hyperbolic endomorphisms

	2 Some preliminaries
	2.1 Dynamical coherence
	2.2 Changing coordinates

	3 Proof of Theorem A
	4 Proof of Theorem B
	5 An example
	Acknowledgements
	References

