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Abstract

Coconut, Cocos nucifera L., is a tree that is cultivated to provide a large number of products, although it is mainly grown for its nutritional

and medicinal values. Coconut oil, derived from the coconut fruit, has been recognised historically as containing high levels of saturated

fat; however, closer scrutiny suggests that coconut should be regarded more favourably. Unlike most other dietary fats that are high in

long-chain fatty acids, coconut oil comprises medium-chain fatty acids (MCFA). MCFA are unique in that they are easily absorbed and

metabolised by the liver, and can be converted to ketones. Ketone bodies are an important alternative energy source in the brain, and

may be beneficial to people developing or already with memory impairment, as in Alzheimer’s disease (AD). Coconut is classified as a

highly nutritious ‘functional food’. It is rich in dietary fibre, vitamins and minerals; however, notably, evidence is mounting to

support the concept that coconut may be beneficial in the treatment of obesity, dyslipidaemia, elevated LDL, insulin resistance and hyper-

tension – these are the risk factors for CVD and type 2 diabetes, and also for AD. In addition, phenolic compounds and hormones (cytokinins)

found in coconut may assist in preventing the aggregation of amyloid-b peptide, potentially inhibiting a key step in the pathogenesis of AD.

The purpose of the present review was to explore the literature related to coconut, outlining the known mechanistic physiology, and to discuss

the potential role of coconut supplementation as a therapeutic option in the prevention and management of AD.
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In line with the global predictions for the prevalence

of Alzheimer’s disease (AD), Australia declared AD as the

ninth National health priority in 2012. Alzheimer’s is a com-

plex disease that progresses over many years, such as

diabetes, heart disease and other chronic conditions. The

gradual accumulation of the pathology of cerebral extra-

cellular AD known as amyloid, which is mostly composed of

aggregated amyloid-b (Ab) peptides(1), as well as the

accumulation of intracellular neurofibrillary tangles, appears

to start up to 17–20 years before a clinically observable

disease(2). A number of factors may increase or decrease an

individual’s chances of developing the disease. These risk

factors include age, genetics, environment, lifestyle and meta-

bolic diseases.
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Diet may play an important role in preventing AD. As many

studies have linked AD risk to diet-modifiable conditions such

as type 2 diabetes, hypertension and CVD, dietary approaches

to AD prevention involving palatable, low risk, inexpensive

substances are attracting great attention, as a method to

ameliorating deficits concomitant with ageing and neurode-

generation. In particular, recent literature has suggested that

the use of coconut oil (extra virgin/virgin), coconut water

and coconut cream may have significant positive effects on

the lowering of plasma cholesterol, blood pressure (BP) con-

trol and blood glucose levels, all of which are risk factors

associated with AD. Coconut has also been identified as a

potential cognitive strengthener(3,4) associated with AD. The

present review reported the evidence for coconut oil con-

sumption, with a particular emphasis on virgin coconut oil

(VCO), outlining the potential risks and benefits in relation

to AD prevention and/or management.

The scientific name for coconut is Cocos nucifera, and the

plant is a member of the Arecaceae family(5–10). Among the

components of coconut, coconut oil is of the most interest

related to human health. Of note, coconut oil is principally

composed of SFA (about 92 %), with 62–70 % being

medium-chain TAG (MCT)(4,11,12), making coconut oil

unique among dietary fats. A few clinical trials and animal

studies using a formulation of MCT have reported significant

improvement of cognition in AD patients. While research on

Alzheimer’s and MCT is still in its infancy, the science

behind MCT is that MCT can be rapidly metabolised to

induce metabolic ketosis and ketogenic, which could be

employed as a therapy for a variety of brain disorders, includ-

ing epilepsy and neurodegeneration. Anecdotes via the media

and word-of-mouth have promoted great interest in the action

of ketones and, thus, coconut oil.

Recent studies have investigated the possibility of using

trans-zeatin and phyto-oestrogen and other sex hormone-

like substances present in coconut water and young coconut

juice in reducing the risk of AD(13,14). In contrast, experimental

studies have suggested that coconut/coconut cream consump-

tion can cause hyperlipidaemia and atherosclerosis, which are

risk factors for AD. In contrast, several studies have reported

that hyperlipidaemia and heart diseases are uncommon

among high coconut consuming populations(15,16).

In view of the interest in the potential of coconut oil, coco-

nut water and coconut cream as a dietary supplement that

could ameliorate the symptoms of neurodegeneration, we

analysed the literature to understand the influence of coconut

on the pathology of AD and risk factors for AD. Adding

complexity to this discussion is the various forms of coconut

available, and also the method of extraction used to produce

the end product.

Coconut oil

Coconut oil is extracted by either hot or cold pressed tech-

niques, and the method used is reported to influence the

quality and grade of the oil, although agreement on which

method is best has not been achieved. Both wet and dry

methods are used, and some approaches also involve solvents

for the final extraction, if using coconut expeller cake(4). VCO,

manufactured using controlled temperature (hot or cold)

methods are thought to be the most effective methods if

aiming to retain the highest levels of biologically active com-

ponents such as tocotrienols, squalene (hydrocarbon, import-

ant for animal steroid formation), tocopherols and sterols

(phytosterols)(3). This is in contrast to copra oil (derived

from the dried coconut meat or kernel) that is processed

with no temperature control(3,17). VCO is natural, chemically

unrefined and considered safe for human consumption(4).

Thus, in addition to being used as a cooking oil, VCO can

also be considered as a functional food supplement. The

total phenolic content of VCO (7·78–29·18 mg gallic acid

equivalents/100 g oil) is significantly higher than that of

refined coconut oil (6·14 mg gallic acid equivalents/100 g

oil)(4,18). However, there is no significant difference in fatty

acid content among VCO, Copra and refined coconut oil, all

containing 92 % SFA, 6 % MUFA and 2 % PUFA. However,

VCO has shown greater beneficial effects than copra oil in

lowering lipid levels in serum and tissues and in reducing

LDL oxidation by physiological oxidants. This property of

VCO may be attributed to the biologically active polyphenol

components present in the oil(19)
.

Not surprisingly, the high levels of saturated fat have gener-

ally deterred those who are more health conscious from using

coconut oils, cream or milk. Furthermore, low-fat diets have

been considered to be the best approach to reduce the risk

of AD, in particular the Mediterranean diet(20,21). Therefore,

promoting coconut oil as a food would appear counter-

intuitive. However, closer scrutiny of the chemical properties,

digestion and uptake may suggest that this concern may not

be well founded. Coconut oil is rich in medium-chain

fatty acids (MCFA), which are metabolised differently to the

long-chain fatty acids (LCFA) commonly found in human

diets. In addition, coconut oil offers anti-ageing and anti-

oxidant properties(22,23). Coconut oil in food has a long

history, and is very popular in South Asia and has a prominent

place in Ayurvedic medicine.

Coconut oil consists mostly of medium-chain fatty acids

Coconut oil is principally composed of SFA (about 92 %), with

62–70 % being MCFA(4,11,12) (Table 1), making coconut oil

Table 1. Fatty acid composition of coconut oil, showing percentage of
total fat

Name % Total fat
Saturated/
unsaturated

MCFA/
LCFA

Caproic acid (6 : 0) 0·6 Saturated MCFA
Caprylic (8 : 0) 0·8 Saturated MCFA
Capric (10 : 0) 6·4 Saturated MCFA
Lauric (12 : 0) 48·5 Saturated MCFA
Myristic (14 : 0) 17·6 Saturated MCFA
Palmitic acid (16 : 0) 8·4 Saturated MCFA
Stearic acid (18 : 0) 2·5 Saturated LCFA
Linoleic acid (18 : 1) 6·5 Unsaturated LCFA
Linolenic (18 : 2) 1·5 Unsaturated LCFA

MCFA, medium-chain fatty acids; LCFA, long-chain fatty acids.
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unique among dietary fats(3,11). The difference between MCFA

and LCFA is the length of the fatty acid carbon chain. MCFA

have a chain length of six to twelve carbons(3,24) (Table 1),

whereas LCFA contain fourteen or more carbons(11,24). The

length of the carbon chain determines the physical and chemi-

cal properties of the fats as well as their metabolism in the

human body(24). Soya oil contains 60 % PUFA, 24 % MUFA

and 16 % SFA(25). In contrast, palm oil contains 50 % MUFA

and 50 % SFA. This high level of PUFA of soya oil can improve

the blood lipid profile status(26). In addition, with its high

content of tocopherols, soya oil is known to exhibit various

antioxidant actions against lipid peroxidation.

Metabolism of medium-chain fatty acids

MCFA are broken down almost immediately by enzymes in

the saliva and gastric juices, without the need for pancreatic

fat-digesting enzymes(27); furthermore, this process involves

relatively moderate energy consumption. Therefore, the

metabolism of coconut oil is significantly different from that

of other fatty acids commonly found in the diet(18).

Medium-chain fatty acid absorption

In the case of most other fatty acids and cholesterol, the

intestines play a major role in absorption(28); yet unfortunately,

pancreatic function declines with age, and therefore malabsorp-

tion problems can occur in patients who suffer from digestive

and metabolic conditions. In other words, as the pancreatic

output of digestive enzymes reduces, the efficiency of the

small intestine in the absorption of nutrients diminishes(27–30).

This is important, as vitamin and mineral deficiencies are recog-

nised as a global health issue(31), and age-related changes

and select disease processes exacerbate this problem(29,32,33).

As weight loss and malnutrition are recognised as frequent

companions and contributors to AD, dietary supplementation

with coconut oil may help prevent weight loss and increase

the intake of certain vitamins and minerals.

The concern that coconut oil may increase plasma lipid

levels and adversely affect health is a point of contention.

MCFA are partially hydrolysed from dietary TAG by lingual

lipase in the stomach and completely digested by pancreatic

lipase within the intestinal lumen(27). Therefore, MCFA are

absorbed directly from the intestines into the portal vein and

sent straight to the liver(27,33). Unlike MCFA, other fats such

as cholesterol, as well as saturated fat, monounsaturated fat

and polyunsaturated fat containing LCFA, combine with pro-

teins and form lipoproteins(24,27,33,34). These lipoproteins

enter the bloodstream via the lymphatic system, thus mostly

bypassing the liver(27,33). As lipoproteins circulate in the

blood, their fatty components are dispersed to tissues(35),

therefore contributing to the accumulation of fat in such

body tissues, as part of normal fat storage. However, in the

process, some of these fats congeal within the artery walls,

increasing the risk of hypertension and adding to the cardio-

vascular risk factors, and both known to increase AD risk(21).

In contrast to LCFA that are easily esterified and bind strongly

to fatty acid binding proteins(36,37), MCFA are not easily

esterified and resist binding. Thus, MCFA are less likely to

contribute to such fat deposits, and thus have reduced

impact on the cardiovascular system, including BP(34,35,38,39).

However, recent research with VCO has demonstrated that

repeatedly heated VCO causes an elevation in BP. BP

elevation has been associated with a significant increase

in the inflammatory biomarkers (vascular cell adhesion

molecule-1, intercellular adhesion molecule-1 and C-reactive

protein), thromboxane A2 and a significant reduction in the

plasma PGI2 level(40). Repeatedly heated soya oil and palm

oil also elevated BP(41,42).

Medium-chain fatty acid breakdown

Similar to the absorption differences mentioned above, the

human body metabolises MCFA and LCFA via different path-

ways(33,43). SCFA are transported in the blood as NEFA,

while longer-chain NEFA are combined with albumin(11).

The metabolism of fatty acids is initiated on the outer

mitochondrial membrane and is catalysed by acyl-CoA synthe-

tase(43) as shown in Fig. 1. This step is required partly to

enable the transport of the fatty acids into the mitochondrial

matrix. First, the fatty acid forms an acyl-adenylate; then

while still tightly bound to the enzyme, acyl-adenylate is con-

verted to acyl-CoA (medium-chain acyl-CoA or long-chain

acyl-CoA) and AMP(43). Acyl-CoA can then be transported

into the mitochondria using different pathways depending

on the fatty acid chain length(43). Long-chain acyl-CoA

molecules conjugate with carnitine (L-3-hydroxy-4-aminobu-

tyrobetaine or L-3-hydroxy-4-N-trimethylaminobutanoic acid,

and its acyl-esters (acylcarnitines)(43,44) to form acylcarnitine,

and this reaction is catalysed by carnitine acyltransferase

I(43). In contrast, MCFA enter the mitochondria independently

of the carnitine transport system(45), and therefore do not

depend on the activity of the carnitine acyltransferase-1

enzyme, as with LCFA(43). Medium-chain fatty acyl-CoA

molecules easily transfer into the mitochondria and can then

be converted into acetoacetate (AcAc) and b-hydroxybutyrate,

mainly by medium-chain fatty acyl-CoA-dehydrogenase(45).

These two products can be metabolised further in the liver

to produce CO2, H2O and energy(29,33,45).

Benefits of medium-chain fatty acids compared with
long-chain fatty acids

The result of the quicker metabolic conversion of MCFA is that

instead of being deposited as fat, the energy generated from

MCFA is very competently converted into fuel for immediate

use by organs and muscles. Furthermore, MCFA produce

34·7 kJ/g (8·3 kcal/g) ingested, whereas LCFA will produce

38·5 kJ/g (9·2 kcal/g) ingested(4). Thus, MCFA provide about

10 % less energy than LCFA. Although the difference sounds

insignificant, this is just one of the many advantages of

Fatty acids + ATP Acyl adenylate+PPi

Acyl adenylate +HS-CoA Acyl CoA +AMP  

Fig. 1. Formation of acyl-CoA.
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MCFA, as it will reduce obesity to some degree, and obesity is

an independent risk factor for hypertension, hyperlipidaemia

and diabetes, which are, in turn, the risk factors associated

with AD(46).

Differences between LCFA and MCFA metabolism may also

help in other more indirect ways in controlling obesity, and

differences in the metabolism as well as the metabolic

effects of LCFA and MCFA have been demonstrated in both

animal and human studies(47–49): for example, increases in post-

prandial energy expenditure (EE) as well as the attenuation of

weight accretion have been demonstrated, after short- or

longer-termMCFAconsumption, and these arediscussedbelow.

In early clinical studies, Flatt et al.(50) compared diets rich in

either MCFA, LCFA or low in fats, and found that low-fat diets

were most efficient for weight loss; however, they also found

that MCFA-rich diets may be better than LCFA-rich diets; this

was supported by Hill et al.(51) who reported that higher EE

was achieved through MCFA intake over 7 d when consumed

in liquid formulation. This study demonstrated that excess

dietary energy as MCFA motivated thermogenesis to a higher

degree than did excess energy as LCFA. This higher EE

induced by MCFA is most likely due to increased metabolic

rates and thermogenesis. In a trial involving six participants,

Scalfi et al.(52) introduced meals containing 30 % fat, in the

form of maize oil and animal fat, or MCFA oil (56 % octanoate

and 40 % decanoate), to evaluate EE. They found that EE after

consumption of MCFA (compared with LCFA) was 48 %

greater in lean individuals, and 65 % greater in obese individ-

uals. Dulloo et al.(53) compared the effects of low-to-moderate

amounts of MCFA and LCFA consumption in eight healthy

adult men. Subjects were given MCFA and LCFA (30 g total)

at (g:g) ratios of 0:30, 5:25, 15:15 and 30:0, and their EE

were measured. Increases in EE of 45, 135 and 265 kJ were

reported following 5, 15 and 30 g of MCFA in the diet, respect-

ively, suggesting an approach to altering body fat composition

and metabolism. White et al.(54), however, cautioned that the

anti-obesity effect of MCFA results could be transient, as

they found that short-term feeding of MCFA-enriched diets

increased temporary EE, yet with longer intake, this benefit

was reduced. Encouragingly, however, a double-blind con-

trolled trial in men and women (n 78) over a 12-week

period demonstrated a greater reduction in body weight and

fat following the daily ingestion of 60 g/d of MCFA compared

with 60 g/d LCFA(35), with other major dietary parameters not

being significantly different. Furthermore, several studies have

now shown that EE is higher when diets contain MCFA rather

than LCFA; thus, MCFA are more conducive to weight

loss(47,55–58). The above studies are encouraging, yet may

need to be repeated in larger cohorts to give the results further

validation. However, a recent study in 2010 has concluded that

there is no evidence that fatty acid chain length has an effect

on the measures of appetite and food intake when assessed

following a single high-fat test meal in lean participants. This

study failed to observe any differences between SCFA (dairy

fat), MCFA (coconut oil) and LCFA (beef tallow) when

energy is held constant at a test meal(59). Hamsi et al.(40)

showed that heating of VCO repeatedly, which is a common

practise in order to save the cost, could have detrimental

effects on the body weight. This study demonstrated that

rats fed with VCO, repeatedly heated one, five and ten

times, resulted in higher weight gain than the non-heated

oil-fed group. This finding is not unique to coconut oil, but

is in line with earlier animal studies, which showed that

heated palm oil and soya oil resulted in greater body weight

gain compared with the control group(41,42).

PUFA play wide range of roles in cell metabolism, signalling

and inflammation. Of the PUFA, very-long-chain EPA and

DHA found principally in fish play key roles in metabolism

and inflammation. Some studies have suggested that

MCFA can enhance the positive effects of other dietary lipids

such as PUFA. Conjugated linoleic acid, such as fish oil, is

a popular dietary supplement marketed for its role in

enhancing fat metabolism(60). Conjugated linoleic acid is

purported to have several physiological functions, including

appetite suppression, increased fat mobilisation and

increased fatty acid oxidation(61), and in one study(37) of

mice fed conjugated linoleic acid, it has been found that the

addition of MCFA (through dietary coconut oil)is associated

with improved lipolysis (breakdown of TAG into glycerol

and NEFA) compared with diets containing conjugated linoleic

acid supplemented with soya oil. However, discrepancies exist

across publications; for example, a number of studies have

linked coconut oil to higher levels of LDL(13,18,19), higher

risks for CVD(18,19) and impairments in memory(15,16,18,19)

as well as in hippocampus morphology(16,18).

Medium-chain fatty acids can be converted to
ketone bodies

MCT or MCFA can act as a non-carbohydrate fuel source by

enhancing the formation of ketones or ketone bodies in the

body which are AcAc, 3-b-hydroxybutyrate (3HB) and

acetone(24) (see Fig. 2). The first two molecules are used for

energy production, whereas acetone is a breakdown product

of AcAc. Fatty acids cannot pass the blood–brain barrier

(BBB); thus, the human brain primarily depends on glucose.

However, it can utilise alternative fuels such as mono-

carboxylic acids, lactate and ketones to maintain energy

homeostasis(62,63), and ketone bodies are used extensively as

an energy source during glucose deficiency (ketosis)(64,65).

AcAc and 3HB are short-chain (four-carbon) organic acids

(ketone bodies) that can cross cell membranes freely(64), and

cross the BBB through proton-linked, monocarboxylic acid

transporters(64).

Ketone bodies are absorbed by cells and converted back to

acetyl-CoA, which enters the citric acid cycle (Krebs cycle) and

is oxidised in the mitochondria to provide ATP(66) and also

OHOH

β-hydroxybutyrate
(3 hydroxybutyrate, 3HB)

Acetoacetate Acetone

O O

O

O

O

Fig. 2. Ketone bodies.
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precursors of acetylcholine(62) in neurons. Alternatively,

ketone bodies can be converted to acetyl-CoA in the brain

for the purpose of synthesising LCFA(62,64,67).

Ketogenic diets

Diets that comprise very low carbohydrate levels, substantial

amounts of protein and high fat levels have a capacity to

result in the production of high levels of ketone bodies

(3HB, AcAc and acetone) and are often known as ketogenic

diets (KD)(68). A KD has been found to be one of the most

effective therapies for drug-resistant epilepsy; it has also pro-

vided specific benefits in conditions such as GLUT protein I

(GLUT-I) deficiency, pyruvate dehydrogenase deficiency,

myoclonic astatic epilepsy (Doose syndrome), tuberous scler-

osis complex, Rett syndrome and severe myoclonic epilepsy

in infancy (Dravet syndrome)(69–74). Despite being used for

many decades, the mechanism whereby a KD can reduce epi-

lepsy is not understood. Recent research has suggested keto-

sis, reduced glucose, elevated fatty acid levels and enhanced

bioenergetics reserves, as well as neuron-specific effects

such as modulation of ATP-sensitive potassium channels,

enhanced neurotransmission, increased brain-derived neuro-

trophic factor expression due to glycolytic restriction and

reduced neuroinflammation may be involved.

Rats maintained on a KD display an altered influx of nutri-

ents to the brain, due to the up-regulation of both ketone

transporters and GLUT type 1(75–77). However, in early

studies, it has also been found that the classic KD leads to

a higher risk of atherosclerosis(78), a condition known to

increase the risk of AD. More recent studies have indicated

that the fatty acid content of the KD influences this risk of

atherosclerosis: the classic KD contains a 4:1 or 3:1 ratio (by

weight) of fat to combined protein and carbohydrate(79),

with most of this fat being LCFA. Later studies have found

that altered KD that are rich in MCFA, sometimes known as

the MCT-KD, are more nutritionally adequate than classic

KD, and are still effective in treating epilepsy disorders yet

reduce cardiac risk(80,81). The MCT-KD countenances more

fruits and vegetables, more food choices and causes lesser

incidence of kidney stones, hypoglycaemia, constipation,

low bone density and growth retardation(81).

The MCT-KD contains less fat overall, as it includes

MCFA (from coconut oil) that can provide a greater amount

of ketone bodies per gram of fat and thus allows more

carbohydrate and protein in the diet, making the diet more

palatable than the classic KD. KD rich in MCFA have signifi-

cant effects on lowering the cholesterol:HDL ratio compared

with the classic KD(80).

The use of glucose for energy is vital in the brain; yet, this

system is impaired in AD, partly due to disruption of the insu-

lin signalling mechanism(82). Low glucose utilisation has been

demonstrated in many studies by fluoro-2-deoxy-D-glucose

positron emission tomography imaging in AD subjects. Impor-

tantly, this has also been detected in elderly people who later

develop AD(83). In fact, the strikingly reduced expression in

the central nervous system of genes encoding insulin, insulin

like growth factor I (IGF-I ) and insulin like growth factor II

(IGF-II ), as well as the insulin and IGF-I receptors, suggests

that AD may represent a neuroendocrine disorder, which

has been termed ‘Type 3 diabetes’. Since energy provision

via glucose appears to be inadequate in emergent (pre-clini-

cal) AD as well as established AD, it has been suggested

that an enhanced supply of ketone bodies may be beneficial

due to the resultant enhanced ATP output of mitochon-

dria(69,76,84). In type 1 diabetic patients, who would also

benefit considerably from sources of energy other than glu-

cose to maintain brain energy homeostasis, an elevation in

3HB levels in plasma(63) has been observed when coconut

oil has been consumed.

The effectiveness of KD diets in raising ketone body levels

is measurable in plasma, as has been shown, for example, by

measuring increased 3HB levels in rat plasma(75). Significantly,

some clinical studies of AD or mild cognitive impairment

patients(63,75,85,86) have reported positive effects on cognitive

performance after consuming MCFA-rich foods, while also

observing significant increases in blood 3HB levels after treat-

ment (P ¼ 0·007)(85). However, in this last study, the cognitive

improvement has not been seen in ApoE-14 allele carriers

(carriage of ApoE-14 alleles increases AD risk). Later studies

investigating KD diets in AD patients have shown that KD

diets raised mean serum 3HB levels from about 0·1 mmol/l

to about 0·4 mmol/l in these patients(87). In this trial, AD

patients have demonstrated improvement in cognition when

measured at 45 and 90 d post ketone supplementation. How-

ever, the benefits were seen only in ApoE4-14 allele-negative

patients and resulted in adverse events including diarrhoea,

flatulence and dyspepsia. Additional research is important to

determine the therapeutic benefits of MCT for patients with

AD and how ApoE-14 status may mediate b-OHB efficacy.

Barañano & Hartman(84) supported the concept that KD can

enhance the mitochondrial production of ATP, and prevent the

development of AD via numerous other pathways. Together

with ATP production, mechanisms proposed include altered

brain pH affecting neuronal excitability, direct inhibitory

effects on ion channels, increasing levels of both ketone trans-

porters and GLUT-1, increasing capillary density or improving

the regulation of sirtuins, a family of proteins that play a major

role in mediating anti-ageing effects of energy restriction.

In AD, the deposition of aggregated Ab peptides in the

brain is recognised as a hallmark feature of AD, and while

it is known that Ab is formed by proteolytic cleavage of the

amyloid precursor protein (APP) by various proteases,

the mechanisms that cause the peptide to accumulate in the

brain, aggregate and cause neuronal toxicity are not fully

understood(88). By providing an alternative energy source to

glucose, ketones may be able to sustain neuronal viability.

In support of this, a dual-tracer positron emission tomography

imaging study of rats on a KD showed that the diet caused

increases in brain uptake of the two tracers 11C-AcAc and
18F-fluorodeoxyglucose S(89). Later studies by the same

group have shown that a 14-d KD could increase the

cerebral metabolic rate of AcAc and glucose by 28 and 44 %,

respectively, in aged (24-month) rats(90). Another recent pilot

study(91), which investigated the effects of coconut oil

supplementation directly on cortical neurons treated with
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amyloid-(A) peptide in vitro, has indicated that neuron

survival in cultures co-treated with coconut oil and Ab is

rescued compared with cultures exposed only to Ab. Coconut

oil co-treatment also attenuated Ab-induced mitochondrial

alterations. The results of this pilot study have provided a

basis for further investigation of the effects of coconut oil, or

its constituents, on neuronal survival, focusing on the mechan-

isms that may be involved(91). There are some contrasting

results among the Animal studies. Van der Auwera et al.(92)

reported a decrease of Ab in the brain of young transgenic

AD mice over expressing the London APP mutation fed with

KD for 1·5 months, while study with aged dogs that has

reported the effect of KD on Ab is restricted to the parietal

lobe of the brain(93). Kashiwaya et al.(94) observed that long-

term (8 months) feeding of a ketone ester in middle-aged

mice (8·5 months old) improved cognition and reduced Ab

and t pathology. Another study(95) has demonstrated that

AD mice model fed with a high-fat, low-carbohydrate KD

shows improved motor function but without changes in Ab.

Providing further support for the benefits of high dietary

MCFA levels against AD, an in vitro study demonstrated that

the addition of ketone bodies (b-hydroxybutyrate) protects

the hippocampal neurons from Ab toxicity, thus suggesting

possible therapeutic roles for KD on mitochondrial defects

related to AD(69). Few studies have demonstrated that KD

could significantly improve glucose homeostasis, reducing

metabolic dysregulation and insulin resistance (IR), which is

important to reduce the pathology of AD(96–98).

Morris et al.(99) suggested that a high intake of unsaturated,

unhydrogenated fats may be protective against AD, proposing

that coconut oil may also be protective against AD. Despite

the positive effect of KD, how the KD affects b-amyloid

levels and whether this effect could be disease modifying in

AD requires further study.

Adverse effects of ketones

There is a paucity of data on the adverse effects of ketone

administration in the literature. A study has reported signifi-

cant rise in the mean blood cholesterol level to over

2500 mg/l following a prolonged intake of a KD(100). This

effect, in turn, may be atherogenic, leading to lipid deposition

in blood vessels. Some researchers have observed dilated car-

diomyopathy in patients on the KD, due to the toxic effects of

elevated plasma NEFA. Further, an increased incidence in

nephrolithiasis as well as increases in serum uric acid

levels has been reported(101,102). Some side effects are

common following administration of ketone bodies, such as

dehydration and hypoglycaemia. However, growth retar-

dation, obesity, nutrient deficiency, decreased bone density,

hepatic failure and immune dysfunction are also observed,

but not frequently(81,87).

Hiraide et al.(103) reported a significant increase in pH

and Na concentrations following the administration of a 20 %

solution of Na b-hydroxyl butyrate (BHB) to severe trauma

patients. Also, reduction in glucose cerebral metabolism and

the increase in cerebral blood flow were observed by Hassel-

balch et al.(104) during the administration of intravenous BHB.

The long-term consequences of these deviations are not yet

known.

KD with high-protein diets may cause possible kidney

damage due to high levels of N excretion during protein

metabolism(105). However, several researches have reported

that even high levels of protein in the diet do not damage

renal function(106). KD with very low carbohydrate can

cause a regression of diabetic nephropathy due to acido-

sis(107). As the concentration of ketone bodies never rises

above 8 mmol/l, this risk is minimum with normal insulin

function subjects(108).

Coconut oil as a source of antioxidants

Antioxidants are substances of natural and synthetic origin that

have a high potential to scavenge free radicals(109–111). The

development of AD has been linked to oxidative stress, and

studies have suggested that antioxidant-rich natural diets

may protect against AD. Although studies on the benefits for

AD have not been conclusive(109,110,112), many suggest that

combinations of (rather than individual) antioxidants are ben-

eficial(113). Coconut oil has a high percentage of phenolic

acids, and these are phytochemicals, sometimes also referred

to as a polyphenols. Phenolic acids are recognised for their

antioxidant properties. p-Coumaric acid, ferulic acid, caffeic

acid and catechin acid are the major phenolic acids found in

coconut oil(22). The hydroxyl group of phenolic compounds

may be able to reduce the toxicity of the Alzheimer’s Ab pep-

tide(114–118). In vitro studies that have investigated flavonoids

indicate that the hydroxyl groups could trap hydrogen bonds

of Ab, which is important as this may reduce Ab aggrega-

tion(114). It has also been shown that phenolic compounds

can bind Ab fibrils with their long axis parallel to the long

axis of Ab fibrils(119). Several other phenolic compounds

have been shown to prevent Ab aggregation and/or toxicity

such as resveratrol, catechin and curcumin(120,121). However,

despite the encouraging studies mentioned above, the exact

mechanisms by which the phenolic group affects Ab toxicity

is not currently clear. While data from AD studies(80–83) have

suggested the beneficial effects of phenolic compounds on

Ab-related pathology, some discrepancies still exist. For

example, recent work has demonstrated a significant inhi-

bition of Ab oligomers as well as higher growth of Ab

fibrils(122) by phenolic compounds. These controversial results

should be investigated further(123).

Ferulic acid (4-hydroxy-3-methoxycinnamic acid) is a

phenolic compound that has potent antioxidant and anti-

inflammatory activities(124,125). Ferulic acid, in particular, is

one of the phenolic compounds demonstrated to have

strong anti-Ab aggregation properties(126). Researchers have

found that the chronic administration of ferulic acid can

reduce cortical levels of Ab1-40 and Ab1-42 as well as IL-1b

levels in APP/PSI AD-model transgenic mice(127). Ferulic acid

has also been shown to inhibit Ab deposition in the

brain(127). However, another study has found that ferulic

acid could not prevent the formation of Ab fibrils, but

could reduce the length of the fibrils(128). It appears that

ferulic acid may be able to interrupt the elongation process
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by binding to the Ab fibrils(129). In other mouse studies, the

long-term administration of ferulic acids could suppress the

increase in glial fibrillary acidic protein and IL-1b immuno-

reactivity in the hippocampus that is induced by Ab 1–42

treatment(130).

p-Coumaric acid is another compound found in coconut oil

that has high antioxidant capacity(131). Maltolyl p-coumarate

had been found to attenuate cognitive deficits in rat models

and to cause a reduction in apoptotic cell death in the hippo-

campus of Ab1–42-infused rats. All these studies have

suggested that coconut oil contains many antioxidants with

the potential to reduce the development of AD pathology.

Coconut oil in insulin resistance and control of
plasma lipids

There are currently no effective AD treatments, and there is

currently no cure on the immediate horizon. As mentioned

earlier in this review, health issues, such as IR and obesity,

similar to CVD, disrupted cholesterol metabolism, type 2 dia-

betes and hypertension, are all risk factors for AD(132,133).

Recent studies, many of which have already been mentioned,

have shown that including coconut oil in the diet can reduce

the risk of these factors, and due to the major disruption in

insulin function that appears to happen early in the patho-

genesis of AD, this aspect has gained particular attention.

IR is a condition where cells fail to respond to the normal

actions of the hormone insulin(134). This results in hyperinsuli-

naemia that can eventually be diagnosed as type 2 diabetes.

Insulin and insulin receptors have been reported to be enriched

in brain areas where memory functions take place(134). There-

fore, impaired insulin regulation results in cognitive and

memory shortfalls, such as those observed in AD patients as

well as people with mild cognitive impairment(135). Insulin is

also an important regulator of proteins involved in the pathol-

ogy of AD, namely the APP, and t(136). Poor insulin action

leads to poor regulation of brain glucose levels, which, in

turn, can lead to an acceleration of neurodegeneration, due to

oxidative stress and increased Ab production from APP, both

of which are key steps in the pathogenesis of AD(88).

A higher rate of diabetes has developed in India and South

Pacific Islands following dietary changes from traditional fats

such as ghee and coconut oil to polyunsaturated fats such as

sunflower or safflower oils(137). Conversely, researchers have

observed that a diet rich in coconut oil shields against IR

in diabetic rats(138). Furthermore, a more recent study has

found that rats fed with LCFA and n-6 PUFA for 8 weeks

induce IR, and increased the expression of liver X-receptors

(LXRa), carbohydrate response element binding protein and

LCFA elongase-6 in the liver and white adipose tissue(139). In

contrast, the rats fed MCFA (from coconut oil) had reduced

LXRa, carbohydrate response element binding protein and

LCFA elongase-6 expression as well as improved insulin

signalling and less IR. In an in vitro study that compared

LCFA and MCFA effects in myotubes, it has been found

that MCFA-treated cells displayed less lipid accumulation, and

MCFA increased the intrinsic respiratory capacity of mitochondria

without increasing oxidative stress (less reactive oxygen species

generation)(140). Furthermore, in studies of thiazolidinediones,

ligands that increase insulin sensitivity in type 2 diabetes via

the PPARg, it has been found that certain MCFA such as those

in coconut oil (C8–C10) are low-potency agonists, yet without

the deleterious side effects(141). Such studies are beginning

to characterise the mechanisms involved in the insulin

signalling-protective effects of MCFA-containing diets. How-

ever, not all studies agree; for example, one study of male rats

on a MCFA-rich diet has found that the diet causes increases

in body adiposity and hyperinsulinaemia and reduces insulin-

mediated glucose uptake in the skeletal muscle(142), indicating

that further research is required to understand the metabolism

and effects of different MCFA.

The major components in coconut oil that are believed to

be involved in reducing IR are fatty acids (such as lauric

acid (45–50 %) and capric acid) and phenolic compounds

(such as ferulic acid and p-coumaric acid)(143,144). Levels of

the beneficial components are believed to be higher in

VCO, which, as mentioned earlier, is prepared via a cold or

low-heat-based extraction method. This oil contains higher

levels of phenolic acids than copra or refined coconut oil(4).

Coconut oil and lipid metabolism

The addition of VCO to the diet has also been associated with

a decrease in plasma LDL-cholesterol (LDL-C) and TAG levels

and an increase in HDL-cholesterol levels(19). In this rat study,

Nevin & Rajamohan(19) demonstrated that VCO has a higher

capacity to reduce serum LDL levels than copra oil, and to

reduce LDL oxidation by physiological oxidants. Another

study has concluded that coconut oil can lower cholesterol

synthesis in human subjects, possibly due to lower production

rates of apoB-containing lipoproteins(145).

Abnormal metabolism of lipoproteins such as lipoprotein

(a)/Lp(a) and their variants has been associated with periph-

eral artery disease, stroke, atherosclerosis, cerebrovascular

disease as well as AD(146,147). Coconut oil has been shown

to help reduce Lp (a) levels, and the addition of coconut oil

to the diet may improve cholesterol metabolism. In a study

of twenty-five women, it has been observed that lipopro-

tein(a) levels are 13 % lower after the women had consumed

a high-fat diet containing coconut oil (38·4 % of energy from

fat)(23). The same study has found that the postprandial

plasma concentration of tissue plasminogen activator antigen

(tPA antigen, often abnormally high in diabetes/IR)(148), has

dwindled when the women consumed the high-fat coconut

diet, when compared with women who had consumed a

diet high in unsaturated fat. Another study of women has

noted that dietary coconut oil intake has been positively

associated with HDL-cholesterol levels, especially among

pre-menopausal women; the study has also found that coco-

nut oil consumption did not cause a significant increase in

LDL-C or TAG levels(149). A meta-analysis(150) of prospective

epidemiological studies has demonstrated that dietary satu-

rated fat is not associated with an increased risk of CHD or

CVD. In contrast to these positive studies, Tsai et al.(151)

reported that both MCT and lauric acid raised serum LDL-C

concentrations compared with the more polyunsaturated
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baseline diet. Cater et al.(152) also showed that MCT have

one-half the potency that palmitic acid has at raising total

and LDL-C concentrations. Interestingly, in 2004, Tholstrup

et al.(34) observed that MCFA had a hypercholesterolaemic

effect. One study has noted that soya oil reduces cholesterol

to a greater degree than coconut oil with no influence

on HDL-cholesterol(153), and addition of Psyllium fibre

supplementation lowers serum cholesterol regardless of satur-

ation level of dietary fat(153). As cholesterol metabolism and

AD pathology have been shown to be linked(147), further clini-

cal research is required to understand the contribution of

coconut oil to cholesterol metabolism and AD. Nevertheless,

due to the many likely benefits of VCO, most researchers

would recommend the inclusion of coconut oil in the diet;

however, researchers are yet to decide how much coconut

oil is required for optimal health. Two studies have rec-

ommended a daily intake of 3·5 tablespoons of VCO for a

72 kg man(154,155). This was based on the quantity of MCFA

present in human breast milk. Interestingly, VCO and

human breast milk have more saturated fats than mono- or

poly-unsaturated fats, and in both cases, the main fat is

lauric acid, with VCO containing the most, at about

50 %(155). However, coconut dosage to enhance the memory

of impaired people has not been concluded.

Apart from the benefits already mentioned above, both

lauric acid, the main fatty acid in coconut, and phenolic com-

pounds have anti-microbial or anti-bacterial properties. Thus,

these compounds are considered to be protective against low-

grade infections often associated with IR(127,130). Interestingly,

specific fractions of coconut oil, extracted under hot con-

ditions, have been shown to reduce blood glucose, cholesterol

and lipid peroxidation, and some polyphenolic compounds

appear to reduce liver lipid peroxidation(156,157).

Coconut oil and blood–brain barrier

The blood–brain barrier (BBB) is a brain endothelial structure

of the fully differentiated neurovascular system(158) that pro-

tects the brain from foreign substances. It is noted that more

than 98 % of all small-molecule drugs, and approximately

100 % of all large-molecule drugs or genes, do not cross the

BBB(159). Thus, it is very difficult to develop effective new

neurotherapeutics for AD that permeate the BBB. However,

there is literature that indicates that circulating D-b-3hydroxy-

butyrate ketone body, which is formed out of MCFA, crosses

the BBB and enters the mitochondria where it is metabolised

to AcAc and converted to acetyl-CoA, which enters into the

Krebs cycle(160). One in vivo study with mice has identified

the capacity of caprylic acid, a constituent of coconut oil, to

cross the BBB. This study indicates that as a result of crossing

the BBB, caprylic acid demonstrated anti-convulsant and a

neuroprotective effect(161).

Coconut water

In countries where coconuts are a primary produce, coconut

water is a common beverage. Coconut water contains a

range of beneficial ingredients, including vitamins, minerals,

antioxidants, amino acids, enzymes, growth factors and other

nutrients(162). Cytokinins, a class of plant growth hormones

(phytohormones) present in coconut water, influence plant

cell division, and are considered to have anti-ageing proper-

ties(163,164). There are two types of cytokinins: adenine-type

cytokinins (kinetin, zeatin and 6-benzylaminopurine) and

phenylurea-type cytokinins (diphenylurea and thidiazuron).

Recent studies have investigated the possibility of using

trans-zeatin as a treatment drug for neuronal diseases including

AD. Zeatin has demonstrated antioxidant and cell protective

effects against Ab-induced neurotoxicity in cultures of neuronal

PC12 cells, and in experiments of mice treated with scopola-

mine to induce amnesia, pretreatment of the mice with zeatin

caused a reduction in the level of induced amnesia, according

to the passive avoidance test and Y maze test(165). Interestingly,

another study has found that trans-zeatin could inhibit

acetylcholinesterase(166,167). This indicates that cytokinin

could have therapeutic value, as levels of the neurotransmitter

acetylcholine are reduced in AD, and acetylcholinesterase

inhibitors are currently used to ameliorate the symptoms of AD.

Coconut water has also been shown to have beneficial

effects on serum and tissue lipid parameters, when given to

rats concurrently fed a high-cholesterol containing diet(168).

Another study has investigated the positive effect of regular

consumption of two tropical food drinks, coconut (C. nuci-

fera) water and mauby (Colubrina arborescens), on the control

of hypertension(169). The combined products were found to be

almost twice as effective as the products in isolation.

Other coconut food products

Apart from coconut water and extracted coconut oil, the coco-

nut has a number of other culinary uses. The fleshy part of the

seed, the coconut meat, can be used fresh or dried in cooking.

Coconut cream and coconut milk are made by pressing the

flesh to extract fluid, and these are used in many countries

in cooking; for example, coconut milk is a component of

many curries in India, Sri Lanka and other Asian countries.

Desiccated coconut and coconut flour are also used in cook-

ing and baking. Other products include coconut chips and

flakes. Each of these products has a lipid (MCFA) component,

and may also contain high levels of both soluble and insoluble

fibre, as well as varying levels of the antioxidants and other

beneficial components already mentioned above. Research

has shown that many of these coconut products can improve

lipid profiles as well as provide other benefits. For example,

one study(170) has shown that the consumption of coconut

milk does not elevate serum lipid levels, and another

study(171) has found that a coconut milk porridge fed to

sixty healthy people 5 d a week for 8 weeks caused a decrease

in LDL levels and an increase in HDL levels. Further studies

should be carried out to help validate these significant benefits

of consuming coconut milk and cream, and to determine

whether such benefits are counteracted by any unfavourable

changes to serum lipid profiles. In another study(172), coconut

flakes have been shown to reduce total cholesterol as well as

LDL-C and serum TAG levels. Coconut residue after fluid

extraction has a high percentage of soluble (3·41 g/100 g)

W. M. A. D. B. Fernando et al.8

B
ri

ti
sh

Jo
u
rn

al
o
f

N
u
tr

it
io

n
https://doi.org/10.1017/S0007114515001452  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/S0007114515001452


and insoluble (34·0 g/100 g) dietary fibre(173), and such high

fibre content has been suggested to contribute to many of

coconut’s health benefits as in the coconut flake study

mentioned above.

Salil et al.(174) demonstrated an improvement in diabetic

indicators following the consumption of coconut flesh; in

this case, it is believed to be due to the protein content of

coconut(175). The coconut kernel protein is rich in arginine,

and the observed anti-diabetic activity of coconut flesh has

been suggested to be due to the provision of arginine,

which has been shown to influence pancreatic b cell regener-

ation(174,175). Similarly, another study has found that coconut

water has a blood glucose-lowering effect and that coconut

milk has a regenerative effect on the pancreatic cells damaged

by diabetes(87). Arginine is a precursor of NO, produced by

the endothelial isoform of NO synthase, and NO is a signalling

molecule that has a direct influence on insulin sensitivity.

Maintaining NO production is also thought to be important

in reducing cardiovascular complications of diabetes: arginine

availability impacts on NO production, which can expand

the blood vessels, allowing for the BP in the patients to be

reduced(176).

Conclusions

The consumption and use of coconut in its various forms has a

long and established history in medicinal, scientific and nutri-

tional arenas. While consumed prolifically in regions engaged

in coconut primary production, Western cultures have tended

to highlight the fatty acid content, particularly the saturated fat,

and therefore limited its culinary usage.

The lipid content of coconut, being mostly MCFA, offers an

energy source that bypasses the usual glucose pathway, in the

form of ketone bodies, and without the associated fat depo-

sition often caused by LCFA. Despite the positive effect of a

KD, whether the KD influences b-amyloid levels and protects

against AD requires further study. The dosage of ketones and

the duration relevant to the AD also needs to be investigated.

At this time, it is not clear whether ketone bodies produced

from coconut oil has a direct effect on AD, specifically in

relation to slowing or clearance of Ab and t pathologies –

and if so, under what conditions. Furthermore, research

needs to be conducted to quantify the yield of ketones from

VCO, and support the ability of coconut derivatives to cross

the BBB, to establish likely efficacy.

However, evidence to suggest that coconut may lower total

and LDL-C, reduce systolic BP and ameliorate IR is of particu-

lar interest, in relation to AD risk reduction. A small number of

clinical trials and animal studies using a formulation of MCT

have reported significant improvement of cognition in AD

patients. At the same time, studies in which the diet has

been supplemented with SFA, particularly hydrogenated coco-

nut oil, have reported deleterious effects on hippocampal

morphology and behaviour, and increased plasma LDL levels.

Evidence suggests that despite coconut being a saturated

fat, it may not pose the usual negative effects on lipid profiles;

however, the influence on neuronal function and survival, as

well as cardiovascular effects remains unknown. While the

nutritional components of coconut are well accepted, incon-

sistencies in the data, it is suggested that further research

needs to be undertaken before broadly advocating the use

of coconut oil in addition to existing fat consumption or in

substitution.

Coconut is, however, widely available, inexpensive, non-

toxic and highly palatable, and consuming a regular intake

of good quality coconut oil or another coconut product may

become a simple yet important dietary change that may be

shown in the future to reduce the risk of AD. However,

research has suggested that the extraction method used to

obtain VCO appears to affect the quality of coconut oil and

may directly affect the efficacy. If specific extraction methods

are essential to achieve efficacy, only particular preparations

may confer benefit. Once this is known, further analysis

needs to be undertaken regarding the absorption process,

recommended dose, and whether it should be taken in

combination with other food groups or in isolation.

It must be emphasised that the use of coconut oil to treat

or prevent AD is not supported by any peer-reviewed

large cohort clinical data; any positive findings are based

on small clinical trials and on anecdotal evidence; however,

coconut remains a compound of interest requiring further

investigation.
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