
Bull. Aust. Math. Soc. 108 (2023), 459–463
doi:10.1017/S0004972723000059

REVERSED HARDY–LITTLEWOOD–PÓLYA INEQUALITIES
WITH FINITE TERMS

HAIYAN HAN and YUTIAN LEI �

(Received 2 November 2022; accepted 23 December 2022; first published online 3 February 2023)

Abstract

We prove a reversed Hardy–Littlewood–Pólya inequality with finite terms. We also give the limit of the
best constant.
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1. Introduction

Let ai, bi ≥ 0 (i = 1, 2, . . .). The Hardy–Littlewood–Pólya inequality [3, Theorem 381,
page 288] states that

∞∑
i,j=1, i�j

aibj

|i − j|λ ≤ Kp,q

( ∞∑
i=1

ap
i

)1/p( ∞∑
i=1

bq
i

)1/q
, (1.1)

where p, q > 1, 1/p + 1/q > 1, λ = 2 − (1/p + 1/q). In 2015, Huang, Li and Yin used
the Hardy–Littlewood–Sobolev inequality [7] to generalise (1.1) to the case of higher
dimensions. In addition, they also proved that the best constant can be approximated
by the corresponding functional with finite terms [4].

In 2015, Dou and Zhu in [2] established a reversed Hardy–Littlewood–Sobolev
inequality:∣∣∣∣∣
∫
Rn

∫
Rn

f (x)g(y) dx dy
|x − y|λ

∣∣∣∣∣ ≥ C‖ f ‖Lp(Rn)‖g‖Lq(Rn) for all f ∈ Lp(Rn), g ∈ Lq(Rn),

where n ≥ 1 and p, q ∈ (n/(n − λ), 1) satisfy 1/p + 1/q + λ/n = 2. In addition, they
proved the best constant is attained. From this inequality, a reversed discrete inequality
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in higher dimensions was also deduced in [5]:

∑
i,j∈Zn

| fi||gj|
|i − j|λ +

∑
j∈Zn

| fj||gj| ≥ C‖ f ‖lp‖g‖lq for all ( f , g) ∈ lp(Zn) × lq(Zn),

where f = ( fi)i∈Zn , g = (gj)j∈Zn , λ < 0, n/(n − λ) < p, q < 1 and 1/p + 1/q + λ/n ≤ 2.
When n = 1 and replacing Zn by N, we denote the best constant by

Lp,q,λ := inf
{ ∞∑

i,j=1

| fi||gj|
|i − j|λ +

∞∑
j=1

| fj||gj| : ‖ f ‖lp = ‖g‖lq = 1
}
. (1.2)

In 2011, Li and Villavert [6] proved the Hardy–Littlewood–Pólya inequality with
finite terms:

N∑
i,j=1, i�j

aibj

|i − j| ≤ KN

( N∑
i=1

a2
i

)1/2( N∑
i=1

b2
i

)1/2
, (1.3)

where the constant KN satisfies

2 ln N − 2 ≤ KN ≤ 2(ln N − ln 2) + 2.

Comparing (1.3) with (1.1) for p = q = 2 shows that (1.3) is an inequality in the critical
case. In contrast to the estimate of KN above, the best constant for the upper-critical
inequality is bounded with respect to N [4, Lemma 2.2]. The bounds for the best
constant are helpful in giving a better understanding of the Coulomb energy in the
Thomas–Fermi model describing electron gas and N-body systems [8]. The results in
higher dimensions can be found in [1].

In this paper, we always assume ai, bi ≥ 0 (i = 1, 2, . . . , N). We will prove the
following reversed Hardy–Littlewood–Pólya inequality with finite terms.

THEOREM 1.1. Let λ < 0 and p, q ∈ (0, 1) satisfy 1/p + 1/q ≤ 2 − λ. Then we can find
a constant L > 0 which only depends on p, q, λ, N such that

N∑
i,j=1, i�j

aibj

|i − j|λ +
N∑

i=1

aibi ≥ L
( N∑

i=1

ap
i

)1/p( N∑
i=1

bq
i

)1/q
. (1.4)

Denote the best constant in (1.4) by

Lp,q,λ,N := min
{ N∑

i,j=1, i�j

aibj

|i − j|λ +
N∑

i=1

aibi :
N∑

i=1

ap
i =

N∑
i=1

bq
i = 1

}
. (1.5)

THEOREM 1.2. Let λ < 0 and p, q ∈ ((1 − λ)−1, 1) satisfy 1/p + 1/q ≤ 2 − λ. Then
Lp,q,λ,N → Lp,q,λ when N → ∞.
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2. Proof of Theorems 1.1 and 1.2

PROOF OF THEOREM 1.1. Write a = (a1, a2, . . . , aN) and b = (b1, b2, . . . , bN). Set

J(a, b) =
N∑

i,j=1, i�j

aibj

|i − j|λ +
N∑

i=1

aibi − Lp,q,λ,N

( N∑
i=1

ap
i

)1/p( N∑
i=1

bq
i

)1/q
.

Clearly, J(a, b) ≥ 0 for all a, b ∈ RN
+ := {x = (x1, x2, . . . , xN) : xi ≥ 0, i = 1, 2, . . . , N}.

However,

S(N) :=
{
(a, b) :

N∑
i=1

ap
i =

N∑
i=1

bq
i = 1

}

is compact in RN
+ × RN

+ and hence the minimisation problem (1.5) has solutions in
S(N). Thus, we can find (a(N), b(N)) ∈ S(N) such that J(a(N), b(N)) = 0. We call
(a(N), b(N)) the minimiser of J. Therefore, both the partial derivatives of J are equal
to zero at (a(N), b(N)). Namely,

[ d
dt

J(a(N) + ta, b(N))
]

t=0
=

[ d
dt

J(a(N), b(N) + tb)
]

t=0
= 0

for any (a, b) ∈ RN
+ × RN

+ . From this result, by simple calculation, we see that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lp,q,λ,N a(N)p−1
i =

N∑
j=1

b(N)j

|i − j|λ + b(N)i

Lp,q,λ,N b(N)q−1
i =

N∑
j=1

a(N)j

|i − j|λ + a(N)i.

(2.1)

Noting (a(N), b(N)) � (0, 0) (because (a(N), b(N)) ∈ S(N)), from (2.1) we see that

min{a(N)i, b(N)i} > 0 for 1 ≤ i ≤ N.

Therefore, Lp,q,λ,N > 0.
Next, we prove that Lp,q,λ,N has a positive lower bound which is independent of N.

Multiplying (2.1)1 by a(N)i and summing from 1 to N gives

Lp,q,λ,N

N∑
i=1

a(N)p
i =

N∑
i,j=1

a(N)ib(N)j

|i − j|λ +

N∑
i=1

a(N)ib(N)i. (2.2)

Write ⎧⎪⎪⎨⎪⎪⎩
ā(N) = (a(N)1, a(N)2, . . . , a(N)N , 0, . . .),
b̄(N) = (b(N)1, b(N)2, . . . , b(N)N , 0, . . .).

Since (a(N), b(N)) ∈ S(N),

(ā(N), ā(N)) ∈ S := {(a, b) : ‖a‖lp = ‖b‖lq = 1}.
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From (2.2) and (1.2), it follows that

Lp,q,λ,N = Lp,q,λ,N

N∑
i=1

a(N)p
i =

∞∑
i,j=1

ā(N)ib̄(N)j

|i − j|λ +

∞∑
i=1

ā(N)ib̄(N)i ≥ Lp,q,λ. (2.3)

Therefore, Lp,q,λ,N > 0 with the lower bound (2.3). This proves (1.4). �

REMARK 2.1. We claim that

lim
N→∞

min
1≤i≤N
{a(N)i, b(N)i} = 0.

Without loss of generality, we can assume a(N)1 = min1≤i≤N{a(N)i, b(N)i}. From (2.1),

Lp,q,λ,N = a(N)1−p
1

( N∑
j=2

b(N)j

( j − 1)λ
+ b(N)i

)

≥ a(N)2−p
1

( N∑
j=2

1
( j − 1)λ

+ 1
)
= a(N)2−p

1

( N−1∑
j=1

j−λ + 1
)

≥ a(N)2−p
1

( ∫ N

1
(r − 1)−λ dr + 1

)
= a(N)2−p

1

( (N − 1)1−λ

1 − λ + 1
)
. (2.4)

However, since S(N) ⊂ S(N + 1), it follows that Lp,q,λ,N is nonincreasing with respect
to N. Therefore, Lp,q,λ,N ≤ Lp,q,λ,1. Taking a1 = b1 = 1, we see that (a1, b1) ∈ S(1) and
hence Lp,q,λ,1 ≤ a1b1 = 1. This gives the upper bound

Lp,q,λ,N ≤ 1. (2.5)

Combining (2.5) with (2.4) yields

a(N)2−p
1 = O(Nλ−1) (N → ∞).

This implies our claim.

PROOF OF THEOREM 1.2. By (1.2), we can find a minimising sequence (a(m), b(m)) ∈ S
such that

∞∑
i,j=1, i�j

a(m)
i b(m)

j

|i − j|λ +
∞∑

i=1

a(m)
i b(m)

i ≤ Lp,q,λ +
1
m

.

The convergence of this series implies

∞∑
i,j=1, i�j

a(m),Nm
i b(m),Nm

j

|i − j|λ +

∞∑
i=1

a(m),Nm
i b(m),Nm

i ≤ Lp,q,λ +
2
m

(2.6)

when Nm > m is sufficiently large. Here,⎧⎪⎪⎨⎪⎪⎩
a(m),Nm

i = a(m)
i when i ≤ Nm,

a(m),Nm
i = 0 when i > Nm,
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and b(m),Nm
i is defined by the same truncation. Since (a(m), b(m)) ∈ S,

‖a(m),Nm‖plp ≥ 1 − 1
m

, ‖b(m),Nm‖qlq ≥ 1 − 1
m

, (2.7)

when Nm > m is sufficiently large. Therefore, noting that
( a(m),Nm

‖a(m),Nm‖lp
,

b(m),Nm

‖b(m),Nm‖lq

)
∈ S(Nm),

from (1.5), (2.6) and (2.7), we deduce

Lp,q,λ,Nm ≤
(
Lp,q,λ +

2
m

)(
1 − 1

m

)−(1/p+1/q)

for large Nm. Letting m→ ∞ and combining with (2.3) completes the proof. �
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