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Remarks on Naimark dilation theorem
Sergiusz Kużel

Abstract. Although Naimark dilation theorem was originally stated in 1940, it still finds many impor-
tant applications in various areas. The objective of this paper is to introduce a method for explicitly
constructing the vectors of complementary frames in the Naimark dilation theorem, specifically in
cases where the initial Parseval frame contains a Riesz basis as a subset. These findings serve as a
foundation for the construction of dual frames.

1 Introduction

Various versions of the Naimark dilation theorem have garnered steady interest in
recent research, with applications in operator theory, signal processing, computer
science, engineering, and quantum information theory (see, e.g., [5, 7, 9, 11, 12]). The
original result, established by Naimark in 1940 for the case of a generalized resolution
of identity [10], was analogized for a Parseval frame (PF) by Han and Larson in 2000
[5] and it states the following theorem.

Theorem 1.1 Let Fe = {e j , j ∈ J} be a PF in a Hilbert space K. Then there exist a
Hilbert space M and a complementary PF Fm = {m j , j ∈ J} in M such that the set of
vectors

Fe⊕m = {e j ⊕m j , j ∈ J}(1.1)

is an orthonormal basis of H =K⊕M. The extension of Fe to an orthonormal basis
Fe⊕m described above is unique up to unitary equivalence.

Generalizations of the Naimark dilation theorem for frames and representation
systems can be found in [4, 14]. It is also worth mentioning that a complementary
PF Fm was described in [5] through the identification of H with �2(J). Such a
description of Fm is not always adequate. Since Theorem 1.1 holds numerous sig-
nificant applications, it becomes crucial to discover a relatively simple representation
of the complementary frame Fm using the original PF Fe . In this paper, we present
a method for explicitly constructing the vectors of Fm in scenarios where the initial
frame Fe includes a Riesz basis as a subset (Section 3). These results are subsequently
utilized in the construction of dual frames in Section 4.
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470 S. Kużel

Throughout the paper, all operators are assumed to be linear and bounded, R(A)
and ker A denote the range and the null-space of an operator A, respectively, while A∣D
stands for the restriction of A to the set D. An operator A acting in a Hilbert space with
scalar product (⋅, ⋅) is called nonnegative (positive) if (Af , f ) ≥ 0 ((Af , f ) > 0, f /= 0).

Let L1 and L2 be closed subspaces of Hilbert spaces H1 and H2, respectively. An
operator of H1 into H2 that maps L1 isometrically onto L2 and annihilates H1 ⊖L1 is
called a partial isometry. Then L1 is called the initial space, and L2 is called the final
space of the partial isometry.

2 Preliminaries

Here, all necessary facts about frames and PFs are presented in a form convenient for
our exposition. More details can found in [2, 3, 6].

Let K be a separable Hilbert space with scalar product (⋅, ⋅) linear in the first
argument. Denote by J a generic countable (finite) index set and by ∣J∣ its cardinality.

PF is a family of vectors Fe = {e j , j ∈ J} in K for which

∣∣ f ∣∣2 = ∑
j∈J
∣( f , e j)∣2 , f ∈K.

The above equality is an analogue to the Parseval equality known for orthonormal
bases. A frame is a family of vectors Fφ = {φ j , j ∈ J} in K which satisfies

A∥ f ∥2 ≤ ∑
j∈J
∣( f , φ j)∣2 ≤ B∥ f ∥2 , f ∈K,

where 0 < A ≤ B. PFs are frames with A = B = 1. A family Fφ is called a frame sequence
if Fφ is a frame for spanFφ .

Each frame Fφ determines a bounded mapping θφ ∶K→ �2(J)

θφ f = {( f , φ j)} j∈J , f ∈K,(2.1)

which is called the analysis operator. By the construction, the image set R(θφ) of θφ
is a subspace of �2(J).

Following [2], we recall that the excess e[Fφ] of a frame Fφ is the greatest integer
n such that n elements can be deleted from the frame Fφ and still leave a complete
set, or∞ if there is no upper bound to the number of elements that can be removed.
In view of [2, Lemma 4.1],

e[Fφ] = dim[�2(J) ⊖R(θφ)].

This means that

∣J∣ = e[Fφ] + dim K.(2.2)

The excess e[Fe] of a PF Fe coincides with the dimension of the complementary
Hilbert space M in Theorem 1.1. The zero excess of a frame Fφ (of a PF Fe ) means
that Fφ is a Riesz basis (Fe is an orthonormal basis) of K.

For a frame Fφ , the corresponding frame operator S f = ∑ j∈J( f , φ j)φ j is bounded,
positive, and invertible in K. The frame operators for PFs coincide with the identity
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operator. If S is a frame operator for a frame (for a Riesz basis) Fφ , then the set
{S−1/2φ j , j ∈ J} is a PF (is an orthonormal basis) of K.

3 The main results

Assume that a PF Fe = {e j , j ∈ J} contains a Riesz basis F0
e = {e j , j ∈ J0} (J0 ⊂ J) as

a subset and let S0 be the frame operator of F0
e .

The operator I − S0 is nonnegative in K since

((I − S0) f , f ) = ∥ f ∥2 − ∑
j∈J0

∣( f , e j)∣2 = ∑
j∈J1

∣( f , e j)∣2 ≥ 0, f ∈K.(3.1)

Denote M1 = span F1
e , where F1

e = {e j , j ∈ J1} and J1 = J ∖ J0. The relation (3.1)
implies that

ker(I − S0) =K⊖M1 .(3.2)

Hence, M1 coincides with R(I − S0) and it is a reducing subspace for I − S0. Denote
by (I − S0)∣M1 the restriction of I − S0 onto M1. The operator (I − S0)∣M1 is a positive
self-adjoint operator acting in M1. Therefore, the inverse operator

((I − S0)∣M1)−1 ∶M1 →M1

exists.

Lemma 3.1 The following are equivalent:
(i) The range R(I − S0) is a closed set.
(ii) The inverse operator ((I − S0)∣M1)−1 is bounded.
(iii) The family F1

e is a frame sequence.

Proof Items (i) and (ii) are equivalent due to the inverse mapping theorem
[6, p. 75].

(iii)→ (ii). The relation

(I − S0) f = ∑
j∈J
( f , e j)e j − ∑

j∈J0

( f , e j)e j = ∑
j∈J1

( f , e j)e j(3.3)

implies that (I − S0)∣M1 is a frame operator of the frame F1
e in the Hilbert space

M1 =R(I − S0). Hence, the inverse operator ((I − S0)∣M1)−1 is bounded.
(ii) → (iii). Since (I − S0)∣M1 is positive, there exists ((I − S0)M1)1/2 and, for all

f ∈M1,

∑
j∈J1

∣( f , e j)∣2 = ((I − S0) f , f ) ≤ ∥((I − S0)M1)1/2∥2∥ f ∥2 .

Similarly, taking into account that ((I − S0)∣M1)−1 is bounded, we get

∑
j∈J1

∣( f , e j)∣2 = ∥((I − S0)∣M1)1/2 f ∥2 ≥ 1
∥((I − S0)∣M1)−1/2∥2 ∥ f ∥2 ,

which completes the proof. ∎
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Lemma 3.2 Assume that the index set of a PF Fe = {e j , j ∈ J} can be decomposed
J = J0 ∪ J1 in such a way that F0

e = {e j , j ∈ J0} is a Riesz basis of K, while F1
e = {e j , j ∈

J1} is a frame sequence. Let S0 be a frame operator of F0
e . Then the family of vectors

Fex t
e =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

e j ⊕ (I − S0)1/2S−1/2
0 e j , j ∈ J0

e j ⊕ −((I − S0)∣M1)−1/2S1/2
0 e j , j ∈ J1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,(3.4)

is a PF of the Hilbert space K⊕M1, where M1 = spanF1
e =R(I − S0). The excess

e[Fex t
e ] satisfies the relation ∣J1∣ = e[Fex t

e ] + dim M1.

Proof By virtue of Lemma 3.1, M1 = spanF1
e =R(I − S0).

Since S0 is a frame operator of F0
e , the operators S1/2 and S−1/2

0 exist and are
bounded in K. Furthermore, I − S0 is nonnegative in K and, therefore, there exists
(I − S0)1/2. This means that (I − S0)1/2S−1/2

0 is a well-defined operator in K and the
vectors

{(I − S0)1/2S−1/2
0 e j , j ∈ J0}

belong to M1.
Similarly, in view of Lemma 3.1, there exists the bounded operator

((I − S0)∣M1)−1/2. This means that the operator ((I − S0)∣M1)−1/2S1/2
0 ∶M1 →M1 is

well defined and the vectors {((I − S0)∣M1)−1/2S1/2
0 e j , j ∈ J1} belong to M1. Hence,

the right-hand part of (3.4) is well defined.
Denote by L0 and L1 the subspaces of K⊕M1 generated by the vectors

{l 0
j = e j ⊕ (I − S0)1/2S−1/2

0 e j , j ∈ J0},

{l 1
j = e j ⊕−((I − S0)∣M1)−1/2S1/2

0 e j , j ∈ J1},

respectively. The subspaces L0 and L1 are orthogonal since

(l 0
j , l 1

i ) = (e j , e i) − ((I − S0)1/2S−1/2
0 e j , ((I − S0)∣M1)−1/2S1/2

0 e i) =
= (e j , e i) − (e j , e i) = 0, j ∈ J0 , i ∈ J1 .

Assume that h = k ⊕m ∈K⊕M1 is orthogonal to L0 ⊕L1. Then, for every
l 0

j ∈L0,

0 = (l 0
j , h) = (e j , k) + ((I − S0)1/2S−1/2

0 e j , m) = (e j , k + S−1/2
0 (I − S0)1/2m).

Hence, k = −S−1/2
0 (I − S0)1/2m (since {e j , j ∈ J0} is a complete set in K). The last

relation means that k ∈M1 and m = −((I − S0)∣M1)−1/2S1/2
0 k. Therefore, the vector

h = k ⊕m = k ⊕−((I − S0)∣M1)−1/2S1/2
0 k(3.5)

belongs to L1 and, simultaneously, h is orthogonal to L1. This means that h = 0 and
L0 ⊕L1 =K⊕M1.
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Further, we analyze the sets {l 0
j , j ∈ J0} and {l 1

j , j ∈ J1} in detail. Since {S−1/2
0 e j ,

j ∈ J0} is an orthonormal basis of K,

(l 0
j , l 0

i ) = (e j , e i) + ((I − S0)S−1/2
0 e j , S−1/2

0 e i) = (S−1/2
0 e j , S−1/2

0 e i) = δ ji ,

for j, i ∈ J0. Therefore, {l 0
j , j ∈ J0} is an orthonormal basis of L0.

On the other hand, the family {l 1
j , j ∈ J1} is a PF in L1. Indeed, each vector h ∈L1

has the form (3.5), where k ∈M1. Hence,

(h, l 1
j) = (k, e j) + ((I − S0)∣M1)−1/2S1/2

0 k, ((I − S0)∣M1)−1/2S1/2
0 e j) =

= (k, [I + S1/2
0 ((I − S0)∣M1)−1S1/2

0 ]e j) = (k, [I + S0((I − S0)∣M1)−1]e j) =

= (k, ((I − S0)∣M1)−1e j) = (((I − S0)∣M1)−1/2k, ((I − S0)∣M1)−1/2e j).

Since {((I − S0)∣M1)−1/2e j , j ∈ J1} is a PF for M1, we get

∑
j∈J1

∣(h, l 1
j)∣2 = ∑

j∈J1

∣(((I − S0)∣M1)−1/2k, ((I − S0)∣M1)−1/2e j)∣2 =

= ∥((I − S0)∣M1)−1/2k∥2 = ∥h∥2 ,

for all h ∈L1 (see (3.5)). Hence, {l 1
j} is a PF of the Hilbert space L1.

Summing up the above results: the set Fex t
e defined by (3.4) consists of the

orthonormal basis {l 0
j , j ∈ J0} of L0 and the PF {l 1

j , j ∈ J1} of L1. Here, L0 and
L1 are orthogonal subspaces of K⊕M1 and L0 ⊕L1 =K⊕M1. This means that
Fex t

e is a PF in the Hilbert space K⊕M1 and its excess e[Fex t
e ] coincides with the

excess of the PF {l 1
j , j ∈ J1} in L1. Using (2.2) with K =L1, J = J1, Fφ = {l 1

j , j ∈ J1}
and taking into account that dim L1 = dim M1 by the definition of M1, we obtain
∣J1∣ = e[{l 1

j}] + dim M1 = e[Fex t
e ] + dim M1 that completes the proof. ∎

Remark 3.3 A similar result for a particular case of finite excess was proved in [9]
by other methods.

Theorem 3.4 Assume that the assumptions of Lemma 3.2 are satisfied and, addition-
ally, F1

e is a basis of M1. Then the Hilbert space M in the Naimark dilation theorem
can be chosen as M1, the PF Fex t

e in (3.4) coincides with the orthonormal basis Fe⊕m
of H =K⊕M, and vectors of the complementary PF Fm = {m j , j ∈ J} are defined as
follows:

m j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(I − S0)1/2S−1/2
0 e j , j ∈ J0 ,

−((I − S0)∣M1)−1/2S1/2
0 e j , j ∈ J1 .

(3.6)

Proof If F1
e = {e j , j ∈ J1} is a basis of M1, then the PF {l 1

j} j∈J1 of L1 turns out be
an orthonormal basis of the Hilbert space L1. In this case, the PF Fex t

e in (3.4) is
an orthonormal basis of K⊕M1. Setting M =M1 in Theorem 1.1, we complete the
proof. ∎
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Assume now that a PF Fe = {e j , j ∈ J} has a finite excess e[Fe]. Then Fe contains
a Riesz basis [8] and assumptions of Lemma 3.2 are satisfied. By virtue of Lemma
3.2, ∣J1∣ = e[Fex t

e ] + dim M1. Moreover, it follows from definition of excess that
∣J1∣ = e[Fe]. Therefore,

e[Fe] = e[Fex t
e ] + dim M1 .

This means that 0 ≤ e[Fex t
e ] ≤ e[Fe]. Let us consider two edge cases:

(i) If e[Fex t
e ] = 0, then a PF Fex t

e in K⊕M1 turns to be an orthonormal basis.
(ii) If e[Fe] = e[Fex t

e ], then dim M1 = 0. In this case, Fe coincides with Fex t
e

and it has a trivial structure: the orthonormal basis {e j , j ∈ J0} of K and
the zero part {e j = 0, j ∈ J1}. The complementary PF Fm in Theorem 1.1 is
constructed in a trivial manner: m j = 0 for j ∈ J0 and {m j , j ∈ J1} is an arbitrary
orthonormal basis in a Hilbert space M with dim M = ∣J1∣.

It is important that if 0 < e[Fex t
e ] < e[Fe], then applying Lemma 3.2 finite times,

we obtain one of the previous cases (i) or (ii).
Summing up: for each PF with finite excess, Lemma 3.2 allows one to determine a

complementary PF Fm in the Naimark dilation theorem.

4 Construction of dual frames

A frame Fψ = {ψ j , j ∈ J} is called a dual frame for a PF Fe = {e j , j ∈ J} if

f = ∑
j∈J
( f , e j)ψ j = ∑

j∈J
( f , ψ j)e j , f ∈K.

There are multiple techniques for constructing dual frames, as outlined in [3]. In
particular, the method proposed in [9] uses the concept of a complementary PF Fm =
{m j , j ∈ J} from the Naimark dilation theorem. The next statement refines the results
derived in [9].

Theorem 4.1 Each dual frame Fψ = {ψ j , j ∈ J} of a PF Fe = {e j , j ∈ J} consists of
the elements

ψ j = e j + (S − I)1/2Ωm j , j ∈ J,(4.1)

where m j are the elements of a Hilbert space M that form the PF Fm in the Naimark
dilation theorem, Ω is a partial isometry of M into the Hilbert space K with final space
R(S − I), and a self-adjoint operator S in K satisfies the conditions

S − I ≥ 0, dim R(S − I) ≤ dim M.(4.2)

Proof An arbitrary frame Fψ in K can be represented as follows (see, e.g., [9,
Proposition 1]):

Fψ = S1/2Fe′ ,(4.3)

where S is a positive self-adjoint operator with bounded inverse (the frame operator
of Fψ) and Fe′ is a PF in K. The operator S and the PF Fe′ are determined uniquely
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by the frame Fψ . If Fψ is dual for Fe , one should specify S and Fe′ . In particular, as
was shown in [9, Theorem 6], the operator S must satisfy the additional conditions:

S − I ≥ 0 and dim R(S − I) ≤ e[Fe] = dim M.(4.4)

Let us analyze Fe′ in (4.3) assuming that Fψ is a dual frame for Fe . First of all,
we note that the excess of Fe′ coincides with e[Fe] (it follows from [1, Theorem 2.2]
and [9, Lemma 3]). This means that the complementary Hilbert spaces M and M′

for PFs Fe and Fe′ in the Naimark dilation theorem have the same dimension and,
therefore, these spaces can be identified.

Denote by Fe⊕m = {e j ⊕m j , j ∈ J}, Fe′⊕m′ = {e′ j⊕m′ j , j ∈ J} the correspond-
ing orthonormal bases of H =K⊕M and consider the unitary operator W in H
acting on Fe⊕m as W ∶ e ⊕m → e′ ⊕m′. It follows from the definition of W that

Fe′ = P{e′j ⊕m′j , j ∈ J} = PW{e j ⊕m j , j ∈ J},(4.5)

where P is an orthogonal projection in H onto K.
With respect to the decomposition H =K⊕M, the operator W admits the matrix

presentation

W = [W11 W12
W21 W22

] ,(4.6)

where W11 ∶K→K, W22 ∶M→M, W21 ∶K→M, and W12 ∶M→K. By virtue of
(4.5) and (4.6),

Fe′ = {W11e j +W12m j , j ∈ J}.(4.7)

In other words: if Fψ in (4.3) is a dual frame, then S satisfies (4.2) and the
corresponding PF Fe′ coincides with (4.7), where W11 and W12 are parts of (4.6).

Since Fψ defined by (4.3) is dual for Fe , for all f ∈K,

f = ∑
j∈J
( f , e j)ψ j = S1/2∑

j∈J
( f , e j)e′j = S1/2PW∑

j∈J
( f , h j)h j = S1/2W11 f ,

where {h j = e j ⊕m j} is an orthonormal basis of H. Hence, W11 = S−1/2. In this case,
the unitarity of W and (4.6) imply that W21W∗

21 = I −W∗
11 W11 = I − S−1 and W12W∗

12 =
I −W11W∗

11 = I − S−1 . Hence, the polar decomposition of operators W21 , W∗
12 ∶K→

M have the form

W21 = U2(I − S−1)1/2 , W∗
12 = U1(I − S−1)1/2 ,

where U1 , U2 ∶K→M are partial isometries with initial space1 R(I − S−1) =
R(S − I) [13, Theorem 7.2].

A simple analysis other relations between counterparts Wi j of the unitary operator
W leads to the conclusion that W22 = −U2S−1/2U∗1 . Therefore, the unitary operator W
in (4.6) has the form

1Such kinds of isometries exist because dim R(S − I) ≤ dim M.

https://doi.org/10.4153/S0008439523000899 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000899


476 S. Kużel

W = [ S−1/2 (I − S−1)1/2U∗1
U2(I − S−1)1/2 −U2S−1/2U∗1

] ,(4.8)

where U∗1 is a partial isometry of M into K with final space R(S − I).
By substituting the derived expressions of W11 , W12 into (4.5), one gets

Fe′ = {S−1/2e j + (I − S−1)1/2U∗1 m j , j ∈ J}.
Recalling (4.3),

Fψ = S1/2Fe′ = {ψ j = e j + S1/2(I − S−1)1/2U∗1 m j , j ∈ J}.

Denoting U∗1 as Ω, taking into account that S1/2(I − S−1)1/2 = (S − I)1/2, we derive
(4.1). ∎

The operator S and the partial isometry Ω play a role of parameters describing the
set of all dual frames Fψ for Fe . The parameter S coincides with the frame operator
of Fψ . If S is given, then partial isometries Ω describe all possible dual frames having
the same frame operator S.

The dual-frame formula (4.1) requires knowledge of the vectors m j from the
complementary PF Fm . The results presented in Section 3 offer a solution to address
this problem. Specifically, the following statement holds true.

Corollary 4.1 Assume that the index set of a PF Fe = {e j , j ∈ J} can be decomposed
J = J0 ∪ J1 in such a way that F0

e = {e j , j ∈ J0} is a Riesz basis of K with the frame
operator S0 and F1

e = {e j , j ∈ J1} is a Riesz basis of span F1
e . Each dual frame Fψ of

Fe is described by the formula2

ψ j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(I + (S − I)1/2Ω(S−1
0 − I)1/2)e j , j ∈ J0 ,

(I − (S − I)1/2Ω(S−1
0 − I)−1/2)e j , j ∈ J1 ,

where Ω is a partial isometry of M =R(S0 − I) into the Hilbert space K with final
space R(S − I) and a self-adjoint operator S in K satisfies the conditions

S − I ≥ 0, dim R(S − I) ≤ dim R(S0 − I).

Proof Follows immediately from Corollary 3.2 and Theorems 3.4 and 4.1. ∎

For instance, if S = S−1
0 , then R(S − I) =R(S0 − I) and the partial isometry Ω

turns out to be an unitary operator on R(S0 − I). In this case, choosing Ω = I, we
obtain the dual frame

Fψ = {
S−1

0 e j , j ∈ J0
0, j ∈ J1

}

that corresponds to the biorthogonal Riesz basis for F0
e = {e j , j ∈ J0}.

2for simplicity of notation, we consider (S−1
0 − I)−1/2 as an operator on M i.e., (S−1

0 − I)−1/2 e j =

(I − S0)∣M)
−1/2 S1/2

0 )e j for e j ∈M.
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