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Topological stability for homeomorphisms
with global attractor

Carlos Arnoldo Morales and Nguyen Thanh Nguyen

Abstract. We prove that every topologically stable homeomorphism with global attractor of R
n

is topologically stable on its global attractor. The converse is not true. On the other hand, if a
homeomorphism with global attractor of a locally compact metric space is expansive and has the
shadowing property, then it is topologically stable. This extends the Walters stability theorem (Walters,
On the pseudo-orbit tracing property and its relationship to stability. The structure of attractors in
dynamical systems, 1978, pp. 231–244).

1 Introduction

Global attractors hold a pivotal position in the realm of differential equations due to
their prevalence in various significant equations, as emphasized in [16]. They often
play the role of stabilizing factors, demonstrating resilience even in the face of minor
perturbations, as gauged through the Hausdorff distance [14, 16]. Nevertheless, this
stability is not an inherent trait across the board. A case in point is the ordinary
differential equation (ODE) depicted in Chapter 3 of [14], expressed as

ẋ = (1 − x)x2 (∀x ∈ R).(1.1)

Within this ODE, the interval [0, 1] stands as a global attractor. However, when
subjected to perturbation, as illustrated by the modified equation:

ẋ = (1 − x)(x2 + ε) (∀x ∈ R),(1.2)

the global attractor dwindles to the singleton set {1}.
Another compelling illustration lies in the homeomorphism g ∶ R→ R, defined as

g(x) = (1 + e−x2
)x (∀x ∈ R).(1.3)

This homeomorphism features the global repelling fixed point at 0. Consequently,
its inverse, f = g−1 ∶ R→ R, boasts {0} as a global attractor. However, a nuanced
perspective emerges when considering f (0) = 0 and the limit as x tends to infinity:
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limx→∞( f (x) − x) = 0. This revelation opens the door for tailored perturbations,
where by selecting a sufficiently large positive value, denoted as M, a new fixed
point emerges at x = M, with the interval [0, M] assuming the role of the global
attractor.

These intriguing phenomena are often characterized as “implosions” (as seen in
the example (1.1) and its perturbation) and “explosions” (as witnessed in example (1.2)
and its perturbation). Notably, explosions have been the subject of in-depth scrutiny
with regard to both the nonwandering set and the chain recurrent set, as elucidated
in [19] and [4], respectively. Recent research endeavors have delved into explosions
concerning the generalized recurrent set, bearing relevance to the field of Lyapunov
functions. These investigations and their broader implications are well-documented
in [3] and the referenced literature therein.

These examples motivate the search of necessary and sufficient conditions for
the stability of the global attractor under small perturbations. The contemporary
paradigm of stability in dynamical systems is anchored in the realm of topology, a
concept that has evolved to address the fundamental aspects of system behavior. This
innovative perspective on stability was first introduced by Walters, as documented
in his seminal work [23], with the intent of assuming the role traditionally held by
structural stability in topological dynamics [1]. It is worth noting that a many dynam-
ical systems, especially those inhabiting compact manifolds such as Morse-Smale and
Anosov diffeomorphisms, or the broader class of Axiom A diffeomorphisms that
adhere to the strong transversality condition, are inherently topologically stable [13].
Moreover, an interesting observation in the realm of expansive homeomorphisms
within compact metric spaces is that they also exhibit topological stability, a phe-
nomenon commonly referred to as the “Walters stability theorem” [22]. The pursuit
of extending this remarkable theorem to the challenging noncompact domain has
spurred endeavors in multiple directions. Researchers have embarked on ambitious
endeavors to bridge the gap between compact and noncompact settings, with notable
contributions documented in a body of literature that includes works such as [5, 11, 12,
18]. These exploratory undertakings strive to generalize the Walters stability theorem
and unearth the underlying principles governing the stability of dynamical systems
in an increasingly diverse and complex landscape.

Within the scope of this paper, we explore the intricate domain of global attractor
stability in the presence of slight perturbations. To begin, we establish that when a
homeomorphism possesses a global attractor in the Euclidean space Rn and exhibits
topological stability, the global attractor remains steadfast in the face of these pertur-
bations. This resilience extends even further, as we observe that the homeomorphism,
in this context, is not only globally stable but also retains its topological stability
specifically on its global attractor. However, it is crucial to note that the converse
of this assertion does not hold, as we shall elucidate. In a distinct line of inquiry,
when a homeomorphism boasts a global attractor within the realm of a locally
compact metric space and also exhibits expansiveness coupled with the shadow-
ing property, it invariably qualifies as topologically stable. Our research endeavors
culminate in a precise statement of these results, underlining the intricate inter-
play between global attractors, topological stability, expansiveness, and shadowing
properties.
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Consider a metric space X. Denote by idX the identity map of X. Define the
C0-distance between maps l , r ∶ X → X by

dC0(l , r) = sup
x∈X

d(l(x), r(x)).

This distance satisfies all requirements of a metric except that it may take infinite value.
It is then referred to as an∞-metric (p. 1014 in [6]).

The following is the classical definition of topologically stable homeomorphisms
[22].

Definition 1.1 A homeomorphism of a metric space f ∶ X → X is topologically
stable if, for every ε > 0, there is δ > 0 such that for any homeomorphism g ∶ X → X
with dC0( f , g) ≤ δ, there is a continuous h ∶ X → X such that dC0(h, idX) ≤ ε and
f ○ h = h ○ g.

The second main definition is the following one. Following [16], given subsets of a
metric space A, B ⊂ X we define

dist(A, B) = sup
a∈A

inf
b∈B

d(a, b).

Now, we remind the following the standard definition [16].

Definition 1.2 A global attractor of a continuous map f ∶ X → X is a nonempty
compact subset A ⊂ X which is invariant (i.e., f (A) = A) and attracts bounded sets
namely

dist( f i(B),A) → 0 as i →∞, for all bounded B ⊂ X .

It is natural to compare this definition with the concept of Conley attractor: a
compact invariant set A ⊂ X exhibiting a closed neighborhood U such that

A = ⋂
n≥0

f n(U).

It is imperative to establish a clear distinction between global attractors and Conley
attractors, as they occupy distinct positions in the realm of dynamical systems. It
is evident that every global attractor automatically qualifies as a Conley attractor,
given their inherent relationship. However, the inverse does not hold, primarily due
to the semilocal nature of Conley attractors. See, for instance, the homeomorphisms
in Figure 1 where the points p and q are Conley attractors, and the segment from
p to q passing through the saddle point s is the global attractor. Notice that this
homeomorphism is topologically stable.

In stark contrast, the global attractor, if it exists, is a unique entity that compre-
hensively encompasses all Conley attractors within its domain. This uniqueness is
easily demonstrated through a straightforward argument: Should there be another
candidate global attractor denoted as A′, the distance between A

′ and the original
global attractor A is shown to approach zero, as expressed by dist( f i(A′),A) → 0.
Consequently, this leads to the conclusion that dist(A′ ,A) is also zero, implying that
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Figure 1: Comparing the global and Conley’s attractors.

A
′ is a subset of A. By virtue of symmetry, the roles of A and A

′ can be reversed,
leading to the conclusion that A and A

′ are, in fact, one and the same: A = A′.
In the context of homeomorphisms with global attractors, it is essential to note

that they encompass all homeomorphisms of compact metric spaces, denoted as
f ∶ X → X, given that the entire space X inherently satisfies the prerequisites specified
in the corresponding definition of a global attractor, namely, it is compact, exhibits
invariance, and effectively attracts all bounded sets. However, it is crucial to under-
score that many such homeomorphisms do not exhibit Conley attractors, with the
identity transformation serving as a prime example.

The realm of homeomorphisms with global attractors extends to a diverse array
of scenarios, including contractions on complete metric spaces, the time-1 map of the
equation (1.1), the inverse of the homeomorphism (1.2), the Lorenz equation, solenoid
diffeomorphisms withinR

3, the illustrative example presented in (1.3), and an array of
other instances. In the case of contractions, the global attractor is given by the Banach
contracting principle whereas the solenoid is the well-known example of a chaotic
hyperbolic attractor suggested by Smale in his seminal paper [20]. For a more detailed
exploration of the dynamics and characteristics of such homeomorphisms, one can
refer to the extensive insights offered in [16] or consult the comprehensive analysis
in [17].

Given a metric space X, we define the Hausdorff distance between subsets
A, B ⊂ X by

D(A, B) =max{dist(A, B), dist(B, A)}.

The following alternate notion of stability is related to the A-stability (p. 25 in [8]) or
Definition 1.1 (p. 4 in [10]). We denote iA ∶ A→ X the inclusion map.

Definition 1.3 A homeomorphism with global attractor of a metric space f ∶ X → X
is topologically stable on its global attractorA if, for every ε > 0, there is δ > 0 such that
for any homeomorphism g ∶ X → X with dC0( f , g) ≤ δ, there are Ag ⊂ X compact
and a continuous map hg ∶ Ag → A (often called topological semiconjugacy) such
that:
• Ag is a global attractor of g;
• D(A,Ag) < ε;
• dC0(hg , iAg) < ε and f ∣A ○ hg = hg ○ g∣Ag .
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The Hausdorff distance D(A,Ag) in the above definition is used to quantify the
extent of implosion or explosion experienced by the global attractor when subjected
to minor perturbations (this is not possible with dist(A,Ag) only). This measure
provides a crucial gauge for assessing the dynamic response of the global attractor
in the face of external influences, enabling us to discern the degree of stability or
vulnerability exhibited in the system.

On the other hand, not every homeomorphism with a global attractor is topo-
logically stable on its global attractor. A simple counterexample is the time one map
of (1.1).

With these definitions, we can state the following result.

Theorem 1.4 Every topologically stable homeomorphism with global attractor of an
Euclidean space Rn is topologically stable on its global attractor.

We do not know whether, conversely, the topological stability on the global
attractor implies the topological stability of the homeomorphism. At first glance, we
could believe that a counterexample is the inverse f ∶ R→ R of the homeomorphism
g ∶ R→ R described in (1.3). However, this f is not topologically stable on its global
attractor {0}, because, arbitrarily small perturbation of f may have [0, M] as a global
attractor for some M > 1 and then D(0, [0, M]) = M > 1. We thank the anonymous
referee who pointed this out to us.

An anonymous referee raised an inquiry regarding the potential extension of the
theorem presented above from R

n to noncompact manifolds. It appears that the
affirmative holds, and we intend to explore this matter in our upcoming investigations.

Next, we give sufficient conditions for the topological stability of a given homeo-
morphism with global attractor. Recall that a homeomorphism f ∶ X → X is expansive
if there is e > 0 such that if x , y ∈ X and d( f n(x), f n(y)) ≤ e for every n ∈ Z, then
x = y. This concept is due to Utz [21]. Given δ > 0, a bi-infinite sequence (x i)i∈Z
is called δ-pseudo orbit if d( f (x i), x i+1) ≤ δ for all i ∈ Z. We say that the sequence
can beδ-shadowed if there is x ∈ X such that d( f i(x), x i) ≤ δ for every i ∈ Z. A
homeomorphism f ∶ X → X has the shadowing property if, for every ε > 0, there is
δ > 0 such that every δ-pseudo orbit can be ε-shadowed.

The previously mentioned Walters stability theorem (Theorem 4, p. 236 in [22])
asserts that every expansive homeomorphism with the shadowing property of a
compact metric space is topologically stable. We would like to extend this theorem
to homeomorphisms with global attractors on metric spaces. To do that we need an
extra hypothesis on the space. Recall that a metric space is locally compact if every
point has a compact neighborhood.

Theorem 1.5 Let f ∶ X → X be a homeomorphism with global attractor of a locally
compact metric space. If f is expansive and has the shadowing property, then f is
topologically stable.

This result can be applied to Examples 2.3 and 2.5. The paper is organized as
follows: In Section 2, we give some preparatory lemmas. In Section 3, we use these
lemmas to prove the theorems.
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2 Preliminary lemmas

To prove Theorem 1.4, we will use the following lemma. It was extracted from Theorem
1.8 (p. 39 in [9]; and seemed well known). Denote by B[x , r], the closed r-ball centered
at x.

Lemma 2.1 For every n ∈ N and every compact A ⊂ Rn , there is ρ > 0 such that if
h ∶ Rn → R

n is continuous and dC0(h, idRn) < ρ, then A ⊂ h(Rn).

Proof We can assume that A = B[0, γ] for some γ > 0. Denote B = B[0, 2γ] and
∂B the boundary of B. Choose ρ > 0 small enough such that for every z ∈ B[0, γ],
every x ∈ ∂B and y ∈ Rn with ∥x − y∥ < ρ it is true that the line traced from z to y
intersects ∂B at some point u with ∥u − x∥ < 4γ. Suppose by contradiction that there
is h ∶ Rn → R

n continuous such that

dC0(h, idRn) < ρ and B[0, γ] /⊂ h(Rn).

Choose z ∈ B[0, γ] ∖ h(Rn). Define H ∶ B → ∂B by H(x) = u, where u is as above
with y = h(x). Then, H is continuous and because ∥h(x) − x∥ < 4γ (∀x ∈ ∂B) we
also have H(x) ≠ −x for every x ∈ ∂B. From this, we can construct a homotopy from
H∣∂B ∶ ∂B → ∂B to id∂B through the minimal circle arc in ∂B from H(x) to x. This
would imply that ∂B is a retract of B which is impossible by the Brouwer fixed point
theorem. ∎

To prove Theorem 1.5, we need two lemmas. The first is a generalization of Walters’s
stability theorem to certain metric spaces including the compact ones. To motivate
the definition, we recall that a metric space X is proper when every closed ball of X is
compact (see Gromov [7]). Every compact metric space is proper but not conversely.
Noncompact examples are the closed subset of the Euclidean spaceRn , image of those
sets under bi-Lipschitz maps, complete Riemannian manifolds, complete Finsler
manifolds, complete sub-Riemannian or sub-Finsler manifolds or finite products of
these spaces.

Actually, we will consider a little more general metric spaces defined as follows. A
metric space X is uniformly locally compact if there is 0 < β < ∞ such that every closed
β-ball of X is compact. These spaces were first considered by A. Weil in his study of
uniform spaces [24].

Lemma 2.2 Every expansive homeomorphism with the shadowing property of a
uniformly locally compact metric space is topologically stable.

Proof Let f ∶ X → X be an expansive homeomorphism with the shadowing prop-
erty of a uniformly locally compact metric space X. Let β be the positive number given
by the uniform local compactness of X. Let e be an expansivity constant of f. Fix ε > 0,
0 < ε′ < 1

8 min{ε, e , β} and take δ > 0 from the shadowing property of f for this ε′.
Let g ∶ X → X be a homeomorphism with dC0( f , g) < δ. Given x ∈ X, we have that

d( f (g i(x)), g i+1(x)) = d( f (g i(x)), g(g i(x))) ≤ dC0( f , g) < δ, ∀i ∈ Z.
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Then, {g i(x)}i∈Z is a δ-pseudo orbit and so, by the shadowing property, there is y ∈ X
such that

d( f i(y), g i(x)) ≤ ε′ , ∀i ∈ Z.

We have that there is only one y satisfying the above inequalities (for the given x).
Indeed, if there were another y′ ∈ X satisfying

d( f i(y′), g i(x)) ≤ ε′ ∀i ∈ Z,

we would have

d( f i(y), f i(y′)) ≤ 2ε′ < e , ∀i ∈ Z.

Since e is an expansivity constant, y = y′ proving the assertion.
Then, by making y = h(x), we obtain a map h ∶ X → X satisfying

d( f i(h(x)), g i(x)) ≤ ε′ , ∀i ∈ Z.(2.1)

By replacing i = 0 above, we obtain d(h(x), x) ≤ ε′ < ε for all x ∈ X, hence

dC0(h, idX) ≤ ε′ and so dC0(h, idX) < ε.(2.2)

Also, by replacing i by i + 1 and x by g(x) in (2.1), we obtain, respectively, that

d( f i( f (h(x))), g i+1(x)) ≤ ε′ and d( f i(h(g(x))), g i+1(x)) ≤ ε′ ,

∀i ∈ Z. Then, the triangle inequality implies

d( f i( f (h(x))), f i(h(g(x)))) ≤ 2ε′ < e , ∀i ∈ Z.

Since e is an expansivity constant, we conclude that f (h(x)) = h(g(x)) for all x ∈ X
proving

f ○ h = h ○ g .

It remains to prove that h is continuous. The argument is similar to one used in [2].
By contradiction, suppose that it is not. Then, there is a convergent sequence xn → x
such that h(xn) /→ h(x) as n →∞. Then, up to passing to a subsequence if necessary,
we can assume that there is Δ > 0 such that

d(h(xn), h(x)) ≥ Δ, ∀n ∈ N.(2.3)

Next, since xn → x, up to discarding some finite set of this sequence, we can assume

d(xn , x) ≤ β
4

, ∀n ∈ N.

Since

d(h(xn), h(x)) ≤ d(h(xn), xn) + d(xn , x) + d(h(x), x)
(2.2)
≤ 2ε′ + sup

n∈N
d(xn , x)

<
β
4
+

β
4
=

β
2

, ∀n ∈ N,
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we conclude that h(xn) is contained in the closed β-ball centered at h(x) for
every n ∈ N. From this, we have that {h(xn)}n∈N has a convergent subsequence. For
simplicity, we assume that the sequence itself is convergent, namely h(xn) → z for
some z ∈ X.

Now, (2.1) implies

d( f i(h(xn)), g i(xn)) ≤ ε′ , ∀i ∈ Z, n ∈ N.

Then, since f and g are continuous, by fixing i and letting n →∞ above, we obtain

d( f i(z), g i(x)) ≤ ε′ , ∀i ∈ Z.

By (2.1) once more, we have

d( f i(h(x)), g i(x)) ≤ ε′ , ∀i ∈ Z,

hence

d( f i(z), f i(h(x))) ≤ 2ε′ < e , ∀i ∈ Z.

Since e is an expansivity constant, we obtain h(x) = z. However, by letting n →∞
in (2.3), we get d(z, h(x)) ≥ Δ > 0 that’s absurd. This contradiction proves that h is
continuous and finishes the proof. ∎

This lemma can be applied to the following examples.

Example 2.3 Any expansive homeomorphism with the shadowing property of
a compact metric space (more precisely, under the conditions of Walters stability
theorem).

Example 2.4 Any hyperbolic linear homeomorphism of Rn (or any other finite
dimensional Banach space).

In particular, all such operators are topologically stable (an outline of the proof of
this fact was done by Robbin [15]).

Example 2.5 The family of homeomorphisms f ∶ R→ R defined by f (x) = x + x3n ,
∀x ∈ R and n ∈ N.

The examples in this family are expansive with the shadowing property but not
uniformly expansive. Then, we deduce their topological stability not from [22] (or
[12]) but from Lemma 2.2.

Now, recall that a continuous map of a metric space f ∶ X → X is dissipative if it
possesses a compact absorbing set C; that is, for any bounded B ⊂ X there is n0(B) ∈
N ∪ {0} such that

f n(B) ⊂ C , ∀n ≥ n0(B).

This is the discrete version of the corresponding definition for semigroups (Definition
10.2, p. 264 in [16]).
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Lemma 2.6 Let X be a metric space. If there is a dissipative homeomorphism
f ∶ X → X, then X is proper and so uniformly locally compact.

Proof Let C be the compact absorbing set. Since any closed ball B is bounded one
has f n(B) ⊂ C for some n. Since f is a homeomorphism, f n(B) is closed and so
compact since it is contained in C. Since f is a homeomorphism, B = f −n( f n(B))
is also compact proving the result. ∎

The corollary below follows from Lemmas 2.2 and 2.6.

Corollary 2.7 Every dissipative expansive homeomorphism with the shadowing prop-
erty is topologically stable.

3 Proof of the theorems

First, we prove Theorem 1.4.

Proof Let f ∶ Rn → R
n be a topologically stable homeomorphism with global

attractor. Let ρ > 0 be given by Lemma 2.1 for A. Fix 0 < ε < ρ, and let δ be given by
the topological stability of f for this ε. Take a homeomorphism g ∶ Rn → R

n such that
dC0( f , g) < δ. Then, the topological stability of f provides h ∶ Rn → R

n continuous
such that dC0(h, idRn) < ε and f ○ h = h ○ g. By Lemma 2.1, we have that A ⊂ h(Rn).
In particular, one hasAg = h−1(A) ≠ ∅. Let us prove that this set satisfies the required
properties.

Since h is continuous, Ag is closed. Also for all y, y′ ∈ Ag , one has h(y) = x and
h(y′) = x′ for some x , x′ ∈ A. So,

d(y, y′) ≤ d(y, h(y)) + d(x , x′) + d(h(y′), y′) ≤ 2ε + diam(A),

where diam(C) = sup{d(c, c′) ∶ c, c′ ∈ C} is the diameter of C, and d(p, q) = ∥p − q∥
is the Euclidean distance. Since A is compact, diam(A) < ∞ hence diam(Ag) < ∞
and so Ag is bounded. Therefore, Ag is compact.

Also if y ∈ Ag (and then h(y) = x ∈ A for some x ∈ A), one has h(g(y)) =
f (h(y)) = f (x) ∈ A so g(y) ∈ Ag , thus g(Ag) ⊂ Ag . Likewise, h(g−1(y)) =
f −1(h(y)) = f −1(x) ∈ A, thus y ∈ g(Ag) proving g(Ag) = Ag that is Ag is an
invariant set of g.

Finally, we prove that Ag attracts bounded sets of Rn under g. It suffices to prove
that it attracts compact sets B ⊂ Rn . Suppose by contradiction that this is not true.
Then, there is a compact B ⊂ Rn such that dist(g i(B), h−1(A)) /→ 0 as i →∞. Up to
passing to a subsequence if necessary, we can assume that there are a sequence b i ∈ B
and Δ > 0 such that

dist(g i(b i), h−1(A)) ≥ Δ, ∀i ∈ N.(3.1)

However, h(B) is compact (hence bounded) so

dist( f i(h(B)),A) → 0 as i →∞.
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Since h(b i) ∈ h(B), the above limit implies dist( f i(h(b i)),A) → 0 as i →∞. In
particular, f i(h(b i)) is bounded and so we can assume that f i(h(b i)) → w is
convergent. Clearly, w ∈ A. Since

∥g i(b i))∥ ≤ d(g i(b i), h(g i(b i))) + ∥ f i(h(b i))∥

for all i we have that g i(b i) is also bounded. Therefore, we can assume that g i(b i) → z
is convergent too. But then h(g i(b i)) → h(z) so h(z) = w ∈ A, hence z ∈ h−1(A).
Nevertheless, by letting i →∞ in (3.1), we get dist(z, h−1(A)) ≥ Δ that’s is absurd.
Therefore, Ag attracts bounded subsets of Rn under g. Since dC0(h, idRn) < ε and
A ⊂ h(Rn), we get D(A,Ag) < ε. Finally, by taking hg = h∣Ag , we get hg ∶ Ag → A

such that dC0(hg , iAg) ≤ dC0(h, idRn) < ε and f ∣A ○ hg = hg ○ g∣Ag completing the
proof. ∎

Finally, we prove Theorem 1.5.

Proof Let f ∶ X → X be a homeomorphism with global attractor of a locally
compact metric space. Suppose that f is expansive and has the shadowing property.
Since X is locally compact and f has a global attractor, f is dissipative. Then, f is
topologically stable by Corollary 2.7. ∎
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