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Abstract

The flow of glacial ice is typically approximated as a nonNewtonian viscous fluid, with the
momentum balance described by (an approximation to) the Stokes equations, and the nonlinear
rheology described by a flow law. The most commonly used rheological law for glacial ice, Glen’s
flow law, yields infinite viscosity in the case of zero deformation, which can be the case at the ice
surface. This poses a problem when solving the momentum balance numerically. We show that
two commonly-used discretisation schemes for the boundary conditions at the ice surface and
base, which yield proper numerical convergence when applied to simpler problems, produce
poor numerical convergence and large errors, when used to solve the momentum balance with
Glen’s flow law. We show that a discretisation scheme based on the concept of ghost nodes,
which substitutes the boundary conditions directly into the momentum balance equations, yields
second-order numerical convergence and errors that can be up to four orders of magnitude
smaller. These results are robust across different momentum balance approximations. We
show that the improved boundary conditions are particularly useful for solving the 3-D
higher-order Blatter-Pattyn Approximation (BPA). In general, this work underlines the import-
ance of thoroughly verifying the numerical solvers used in ice-sheet models, before applying
them to future projections of ice-sheet mass loss.

1. Introduction

Sea-level rise caused by large-scale mass loss of the Greenland and Antarctic ice sheets is one
of the most worrying potential consequences of unmitigated anthropogenic climate change
(Fox-Kemper and others, 2021). Numerical models of ice-sheet flow are the most commonly
used tools to project this mass loss into the future, but these projections contain substantial
uncertainties (Goelzer and others, 2020; Seroussi and others, 2020; Aschwanden and others,
2021). Part of these uncertainties arises from uncertainties in physical properties of the
present-day ice-sheets, such as the temperature and viscosity of the ice (Seroussi and others,
2013; Babaniyi and others, 2021), the subglacial topography (Perego and others, 2014), the
subglacial hydrology (Kazmierczak and others, 2022), the sub-shelf ocean conditions and
melt rates (Favier and others, 2019; Jourdain and others, 2020; Berends and others, 2023a),
and the subglacial friction and sliding law (Sun and others, 2020; Berends and others,
2023b). Another part stems from uncertainty in the future change in climate and mass balance
(Goelzer and others, 2020; Seroussi and others, 2020). However, a substantial contribution to
the uncertainty stems from the way the physics of flowing ice are described mathematically,
and solved numerically. Different approximations to the momentum balance (Pattyn and
others, 2008; Bernales and others, 2017; Rückamp and others, 2022), and different numerical
treatments of basal friction (Feldmann and others, 2014; Leguy and others, 2021) and sub-
shelf melt (Cornford and others, 2020; Leguy and others, 2021; Berends and others, 2023a)
at the grounding line all contribute to the spread in modelled projections of ice-sheet mass
loss. Whereas uncertainties in the physical properties of the ice can be reduced by improving
the quantity and quality of observations, uncertainties in the numerical representation of
physical processes must be reduced by the effort of the ice-sheet modelling community.

The majority of ice-sheet models approximate the flow of glacial ice as a nonNewtonian
viscous fluid, numerically solving (a simplified approximation to) the Stokes equations to cal-
culate the ice velocity. The (nonlinear) relation between the strain rate and the effective viscos-
ity is described by the flow law defining the rheological properties. All the different
approximations to the Stokes equations take the form of an elliptic partial differential equation
(PDE), with one or more of the ice velocity components u, v, w as the unknowns to be solved
for. As the Stokes equations neglect all momentum terms, there is no time dependence in the
equations, so that the velocity of the ice at any point in time depends only on the ice geometry
(disregarding the possible dependence of the viscosity on the ice temperature, impurities, dam-
age, or other quantities). This means that boundary conditions only need to be prescribed at
the geometrical boundary of the ice sheet. At the ice base, englacial temperatures that are well
below the (pressure-corrected) melting point are often assumed to imply that the ice is frozen
to the substrate, i.e. ub = 0, which numerically takes the form of a Dirichlet boundary
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condition. However, at the ice surface and margin, and at the slid-
ing parts of the ice base, a zero-stress boundary condition applies.
Numerically, this boundary condition takes the form of a
Neumann boundary condition, where not the value of the
unknown itself is specified, but that of its gradient. In the case
of sliding at the ice base, possibly the magnitude of the basal vel-
ocity is involved as well, leading to a Robin, or mixed boundary
condition. While several commonly used ice-sheet models pro-
vide the physical equations describing the boundary conditions
to their momentum balance approximation (e.g. Pattyn, 2003;
Lipscomb and others, 2019), as well as discretisation schemes
for the momentum balance itself (e.g. Bueler and Brown, 2009;
Berends and others, 2022), few provide details on the discretisa-
tion scheme for the boundary conditions. As Neumann boundary
conditions can be discretised in different ways, the available litera-
ture is often insufficient to reproduce the numerical solvers used
in these ice-sheet models.

Here, we investigate three different discretisation schemes for
the zero-stress Neumann boundary condition to the momentum
balance. Starting with the simplest possible case, we numerically
solve the shallow ice approximation (SIA) in the vertical column
and compare the results to the analytical solution. We show that
not all discretisation schemes for the Neumann boundary condi-
tion perform equally well. Particularly, the more obvious choice
of using one-sided finite differences to approximate gradients at
the domain boundary, results in large errors and poor numerical
convergence when Glen’s flow law is used to describe the ice
rheology. Instead, a ghost-point scheme, which allows the
Neumann boundary condition to be substituted directly into the
momentum balance equation, produces better results, with numer-
ical convergence of the expected order, and errors that can be up to
four orders of magnitude smaller. We demonstrate that the unin-
tuitively poor performance of the one-sided finite difference
schemes is caused by a singularity in Glen’s flow law, which pre-
dicts viscosities that diverge to infinity as the strain rates approach
zero. When we instead use a simpler flow law, which predicts finite
viscosity everywhere, the one-sided finite difference schemes per-
form as expected. In a next step, we perform a similar set of experi-
ments with the Blatter-Pattyn approximation (BPA), applied to
Experiments A and C of the Ice-Sheet Model Intercomparison
Project for Higher-Order Models (ISMIP-HOM; Pattyn and others,
2008). Here we find the same results: the one-sided finite difference
schemes perform as expected when applied to the simplified flow
law, but fail when applied to Glen’s flow law, whereas the
ghost-point scheme performs well in both cases.

2. Shallow ice approximation

2.1 Physics

The SIA neglects all viscous stresses except the vertical shear stress
(Morland and Johnson, 1980). This approximation holds when
the aspect ratio of the ice-sheet geometry is small, i.e. when the
characteristic length of horizontal features is either very small
or very large with respect to the ice thickness, and when sliding
velocities are small compared to flow velocities due to vertical
shear. This is the case for large areas of the interior of the
Greenland and Antarctic ice sheets.

Choosing an x-coordinate parallel to the ice flow, the SIA
reads:

∂

∂z
h
∂u
∂z

( )
= rg

∂h
∂x

. (1)

The symbols used throughout this work are defined in Table 1.
Glen’s flow law (Paterson, 1994) relates the effective viscosity η

to the effective strain rate 1̇:

h = 1
2
A(T∗)−1/n1̇(1−n)/n, (2)

1̇ = 1
4

∂u
∂z

( )2
[ ]1/2

. (3)

Here, A(T*) is a temperature-dependent flow rate factor.
When choosing a no-slip boundary condition at the ice base
(i.e. u(z = b) = 0), and a zero-stress boundary condition at the
ice surface (i.e. (∂u/∂z)(z = h) = 0), this nonlinear partial differen-
tial equation has the following analytical solution:

u(z) = −2(rg)n
∂h
∂x

∣∣∣∣
∣∣∣∣n−1

∂h
∂x

∫z
b

A(T∗(z′))(h− z′)ndz′. (4)

For the case of isothermal ice, where A(T*(z)) = A, this simplifies
to the widely used:

u(z) = −2(rg)n
∂h
∂x

∣∣∣∣
∣∣∣∣n−1

∂h
∂x

A
n+ 1

(Hn+1 − (h− z)n+1). (5)

2.2 Numerical solution

This analytical solution can be approximated numerically.
As is common practise in many ice-sheet models (e.g. PISM,
Bueler and Brown, 2009; CISM, Lipscomb and others, 2019;
IMAU-ICE, Berends and others, 2022), we use a staggered-grid
approach to solve the momentum balance, where material prop-
erties such as the englacial temperature, flow rate factor, strain
rate, and effective viscosity, are staggered with respect to fluxes
such as the ice velocities. This is illustrated for the SIA, which
only concerns the vertical dimension z, in Figure 1.

The regular grid, which we shall from here on call the a-grid
(Arakawa and Lamb, 1977), has nz nodes spaced at regular inter-
vals of Δz, with the first (k = 1) and last (k = nz) nodes coinciding
respectively with the ice base and the ice surface, so that:

zka = b+H
k− 1
nz − 1

, (6)

Table 1. Symbols, notation, and units used in this work

Name Description Value Units

A(T*) Temperature-dependent factor in Glen’s flow law Pa−n

yr−1

b Bedrock elevation M
β Basal friction coefficient Pa yr

m−1

1̇ Effective strain rate yr−1

g Acceleration of gravity 9.81 m s−2

h Surface elevation M
H Ice thickness M
η Effective viscosity Pa yr
n Exponent in Glen’s flow law -
ρ Ice density 910 kg m−3

T* Ice temperature relative to pressure-corrected
melting point

K

u Ice velocity vector m yr−1

u, v Horizontal ice velocity components m yr−1

x, y, z Cartesian coordinates M
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Dz = H
nz − 1

. (7)

Many ice-sheet models use an irregular vertical grid, with thinner,
more closely-spaced layers near the ice base to more accurately
capture the higher strain rates there (e.g. PISM, Martin and
others, 2011; Yelmo, Robinson and others, 2019; IMAU-ICE,
Berends and others, 2022). We include some additional experi-
ments in Appendix A where we investigate the effect of such an
irregular grid.

The staggered grid, which we shall from here on call the c-grid,
has nz− 1 nodes, which lie halfway between the a-grid nodes:

zkc =
zka + zk+1

a

2
. (8)

Note that we use the subscript to indicate the grid, and the super-
script to indicate the node index. We approximate the vertical pro-
file of the horizontal ice velocity u(z) by discretising it on the a-grid,
whereas the effective viscosity η is discretised on the c-grid:

uka ≈ u(zka), (9)

hk
c ≈ h(zkc ). (10)

Gathering all the nz values of uka together yields the discretised vel-
ocity vector ua:

ua =
[
uka
] = [

u1a, u
2
a, . . . , u

k−1
a , uka, u

k+1
a , . . . , unz−1

a , unza
]T
. (11)

Similarly, the discretised effective viscosity vector is expressed as:

hc = [hk
c ] = [h1

c , h
2
c , . . . , h

k−1
c , hk

c , h
k+1
c , . . . , hnz−2

c , hnz−1
c ]T .

(12)

To approximate the gradient operators ∂/∂z between the two
grids, we use a two-point central differencing scheme:

∂f
∂z

k

a�c
= f k+1

a − f ka
Dz

, (13)

∂f
∂z

k

c�a
=

f kc − f k−1
c

Dz
, 1 , k , nz

0, otherwise.

⎧⎨
⎩ . (14)

Note that the gradient of ∂fk/∂zc→a is not defined on the first
and last nodes.

These operators can be represented by matrices, which can be
multiplied with the discretised vectors ua and ηc to calculate their
gradients:

Ma�c
∂/∂z =

−1
Dz

1
Dz

0 · · · 0 0 0

0
−1
Dz

1
Dz

· · · 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 · · · −1
Dz

1
Dz

0

0 0 0 · · · 0
−1
Dz

1
Dz

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

Mc�a
∂/∂z =

0 0 0 · · · 0 0 0

−1
Dz

1
Dz

0 · · · 0 0 0

0
−1
Dz

1
Dz

· · · 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 · · · −1
Dz

1
Dz

0

0 0 0 · · · 0
−1
Dz

1
Dz

0 0 0 · · · 0 0 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Note that the size of Ma�c
∂/∂z is (nz-1)-by-nz, while Mc�a

∂/∂z is
nz-by-(nz-1). The discretised approximation to the SIA can now
be expressed as a matrix equation:

Mc�a
∂/∂z D(hc)M

a�c
∂/∂z ua = Aua = b . (17)

Here, D(ηc) is an (nz-1)-by-(nz-1) diagonal matrix with the ele-
ments of ηc on the diagonal. The load vector b is an nz-by-1 vector
with every element having a value of ρg(∂h/∂x). The stiffness
matrix A is equal to the product Ma�c

∂/∂z D(hc)M
c�a
∂/∂z . We can

write out the coefficients of the M-matrices to derive a single
linear equation from this system:

Mc�a
∂/∂z ua =

1
Dz

(ui+1
a − uia), (18a)

D(hc)M
a�c
∂/∂z ua =

hi
c

Dz
(ui+1

a − uia), (18b)

Figure 1. The vertically staggered grid used to solve the SIA. The ice velocity u is
defined on the regular grid (solid circles), while the effective viscosity η is defined
on the staggered grid (open circles). In some literature, the staggered grid would
be indicated by ‘half-indexing’, e.g. ηk−(1/2), ηk+(1/2).
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Mc�a
∂/∂z D(hc)M

a�c
∂/∂z ua =

1
Dz2

[hi
c(u

i+1
a − uia)− hi−1

c (uia − ui−1
a )].

(18c)

The nonlinear dependence of η on the strain rate ∂u/∂z is solved
for by Picard iteration, iteratively solving for u based on the
current estimate of η, and then recalculating η for the new
solution of u. The iteration is stopped when the L2-norm of the
difference between two successive solutions of u is less then
10−8 of the L2-norm of u itself.

We adopt the common practise of adding a small regularisa-
tion term 120 = 10−20 to the effective strain rate in Glen’s flow law:

1̇ = 1
4

∂u
∂z

( )2

+ 120

[ ]1
2

. (19)

This prevents divide-by-zero errors when (∂u/∂z) = 0. In the two-
point one-sided scheme, this is always the case at the last staggered
node below the surface, ∂unz−1/∂zc. Otherwise, this only happens
in the very first viscosity iteration, as we choose an initial guess
of ua = 0; after that, (∂u/∂zc) > 0 everywhere. Alternatively, enforcing
1̇ ≥ 10 (thus changing only the values in the first iteration, or at the
last staggered node) does not affect the results.

2.3 Boundary conditions

The first and last row of the stiffness matrix A and the load vector b
must describe the boundary conditions at the base and surface of the
ice, respectively. The no-slip condition at the base, i.e. u(z = b) = 0, is
a Dirichlet boundary condition, which is represented simply by set-
ting the diagonal element of the first row of A to unity, all other ele-
ments in the row to zero, and the first element of b to zero. The
zero-stress boundary condition at the surface, i.e. (∂u/∂z)(z = h) =
0, is a Neumann boundary condition that is less trivial to implement.

The first option we explore, approximates the vertical shear
strain rate at the ice surface, ∂unz/∂za, with a two-point one-sided
differencing scheme:

∂u
∂z

nz

a
= unz−1

a − unza
Dz

= 0. (20)

Since in this case, the O(Dz2) terms in the Taylor expansion of
∂u/∂z around znza do not cancel out, this scheme is only first-order
accurate (i.e. the truncation error is of order O(Dz)).

We also explore three-point, four-point, and five-point one-
sided differencing schemes to approximate the gradient:

∂u
∂z

nz

a
= −1

2Dz
unz−2
a + 4

2Dz
unz−1
a − 3

2Dz
unza = 0, (21)

∂u
∂z

nz

a
= 2

6Dz
unz−3
a − 9

6Dz
unz−2
a + 18

6Dz
unz−1
a − 11

6Dz
unza = 0,

(22)

∂u
∂z

nz

a
= −3

12Dz
unz−4
a + 16

12Dz
unz−3
a − 36

12Dz
unz−2
a

+ 48
12Dz

unz−1
a − 25

12Dz
unza = 0. (23)

It can be shown that these scheme are, respectively, second-order,
third-order, and fourth-order accurate.

The last option we explore uses the concept of a ‘ghost node’.
An in-depth explanation of the concept is provided by Fornberg
(2006). We temporarily construct an additional node (the ‘ghost

node’) on the a-grid outside the domain boundary, such that:

znz+1
a = znza + Dz = h+ Dz. (24)

We then formulate the discretisation of the SIA at the ice
surface, without considering the boundary conditions just yet.
Expanding Eqn (1) using the product rule yields:

∂h

∂z
∂u
∂z

+ h
∂2u
∂z2

= rg
∂h
∂x

. (25)

We discretise the first and second derivatives of u at the ice sur-
face by using standard three-point two-sided differencing schemes:

∂u
∂z

nz

a
= unz+1

a − unz−1
a

2Dz
, (26)

∂2u
∂z2

nz

a
= unz+1

a + unz−1
a − 2unza
Dz2

. (27)

Substituting the zero-stress boundary condition, (∂unz/∂za) = 0,
into Eqn (26) implies that:

unz+1
a = unz−1

a . (28)

Substituting this into Eqn (27) yields:

∂2u
∂z2

nz

a
= 2unz−1

a − 2unza
Dz2

. (29)

Finally, substituting this into Eqn (25), the discretised expres-
sion for the SIA now reads:

hnz−1
c

2unz−1
a − 2unza

Dz2
= rg

∂h
∂x

. (30)

Note that unz+1
a has disappeared from the expression. The

ghost node is merely a tool to derive the expression, and does
not appear in the final numerical solution.

Equation (30) can alternatively be derived by substituting the
boundary condition from Eqn (28) directly into the discretised
form of the SIA. Begin with the general form in Eqn (18c), and
let i = nz:

1
Dz2

[hnz
c (u

nz+1
a − unza )− hnz−1

c (unza − unz−1
a )] = rg

∂h
∂x

. (31)

From Eqn (28), it also follows that hnz
c = hnz−1

c :

1
Dz2

[hnz−1
c (unz−1

a − unza )− hnz−1
c (unza − unz−1

a )] = rg
∂h
∂x

. (32)

This can be rearranged to read:

hnz−1
c

2unz−1
a − 2unza

Dz2
= rg

∂h
∂x

. (33)

Observe that this expression is identical to Eqn (30).
Lastly, it is noteworthy that we could alternatively keep both

the general PDE in Eqn (31) and the boundary condition in
Eqn (28) as separate linear equations, and include the ghost
node as an additional degree of freedom. This means the matrix
equation that must be solved has one additional row and column,
so that we no longer need to manually eliminate the ghost node as
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a degree of freedom. It is trivially easy to write a program that
solves this ‘extended’ matrix equation, and to find that this yields
an identical solution. This illustrates the fundamental difference
between the ghost-node scheme, and the different one-sided
schemes. In the one-sided schemes, the linear equation represent-
ing the boundary condition replaces the linear equation represent-
ing the PDE, while in the ghost-node scheme, both linear
equations are kept, and an additional degree of freedom (the
ghost node) is introduced to allow both of them to be solved
(although it is possible, as we have done here, to manually solve
for the extra degree of freedom beforehand).

2.4 Experiments

We compare the numerical solution to the SIA with Glen’s flow
law to the analytical solution in the test case of an isothermal
slab of ice with a thickness of H = 2000 m, lying on an inclined
plane, sloping downward in the x-direction with a slope of
(∂h/∂x) = −10−2. We perform experiments for three different
flow laws: Glen’s flow law (Section 2.4.1), a linear, nondiverging
flow law (Section 2.4.2), and an over-regularised variant of
Glen’s flow law (Section 2.4.3). We analyse the results of these
experiments in Section 2.4.4.

2.4.1 Glen’s flow law
For Glen’s flow law, we use a uniform flow factor of A = 10−16

Pa−3 yr−1. The analytical solution to the SIA for these parameters
is shown in Figure 2.

We use the discretisation schemes described in Section 2.2 to
solve the SIA numerically. By doing so at increasing numbers of
nodes, we can investigate how quickly the error with respect to the
analytical solution decreases, and determine the rate of conver-
gence. We do this for all three different options for discretising
the Neumann boundary condition at the ice surface, described
in Section 2.3. In order to analyse the convergence behaviour of
the different discretisation schemes, we define the relative error
in the velocity solution at the ice surface:

err u = uk=1 − uanalytical(z = h)

uanalytical(z = h)

∣∣∣∣
∣∣∣∣. (34)

Shown in Figure 3 are the velocity solutions resulting from the
two-point one-sided scheme, for different numbers of grid points.
As can be seen, the significant errors in the solution are not loca-
lised at the ice surface, but instead affect the solution throughout
the ice column. This implies that calculating the error at a differ-
ent point in the vertical column, or even as the L2-norm over the
entire column, yields qualitatively the same results.

2.4.2 Linear flow law
We perform a set of experiments where we solve the SIA with a
different flow law. In this case, we define the effective viscosity
as a simple function of the vertical coordinate z:

h = a+ z. (35)
This expression yields a finite viscosity everywhere, with small

values at the ice base and larger values at the ice surface. Note that
the units in this expression are not consistent. It is not meant to
represent a realistic flow law, but merely serves to create a math-
ematical problem that is qualitatively similar to the SIA, but with-
out the diverging term in the differential equation.

The analytical solution to the SIA, combined with this linear,
nondiverging flow law, and with the respective no-slip and
zero-stress boundary conditions at the base and surface of the
ice, reads:

u(z) = −rg
∂h
∂x

(a+H) log (a+ z)+ rg
∂h
∂x

(z + (a+H) log (a)).

(36)
The values for the different physical parameters of the experi-

ment are provided in Table 2.
The analytical solution to the SIA with this flow law, for these

parameters, is shown in Figure 4.

2.4.3 Over-regularised Glen’s flow law
Here, we perform a set of experiments using Glen’s flow law, but
with a very large value of the regularisation term 120 = 10−1 (see
Eqn (19)). As with the linear flow law, this results in a finite viscos-
ity everywhere, but additionally includes the nonlinearity of Glen’s
flow law. In this case, the analytical solution for the SIA with Glen’s
flow law is invalid. Instead we compare to a numerical solution
with a very high resolution (found by using the ghost-node scheme
with nz = 214 = 16, 384 grid points, which is shown in Fig. 5.

2.4.4 Results
The relative errors in the ice velocity at the surface are shown as a
function of the number of nodes, for the five respective discretisa-
tion schemes (the two-point, three-point, four-point, and five-point
one-sided schemes, and the ghost-node scheme), in Figure 6. We
have used values of the number of grid points nz ranging from
16 to 1024. Typically, large-scale ice-sheet models applied to e.g.
the Antarctic ice-sheet use numbers in the range of 101–102 (e.g.
81 layers for SICOPOLIS and 121 layers for PISM in their respect-
ive ISMIP6 Antarctica set-ups; Seroussi et al., in review).

For the case of Glen’s flow law (Fig. 6a), the two-point, three-
point, and four-point one-sided schemes display first-order

Figure 2. The analytical solution to the SIA with Glen’s flow law.

Figure 3. Velocity solutions resulting from the two-point one-sided scheme for the
combination of the SIA with Glen’s flow law, for nz = 8 (red), nz = 16 (blue), nz = 32
(green), and nz = 64 (yellow), compared to the analytical solution (solid black line).
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convergence of the error with number of nodes. The five-point
one-sided scheme and the ghost-node scheme display
second-order convergence. The first-order convergence of the
two-point one-sided scheme, and the second-order convergence
of the ghost-point scheme, are to be expected from the order of
accuracy of these respective schemes. However, the three- one-
sided scheme is second-order accurate. The fact that this scheme
still yields first-order convergence is therefore unexpected. The four-
point and five-point one-sided schemes are, respectively, third-order
and fourth-order accurate. However, as the discretisation of the SIA
in the ice column (Eqn (18c)) is only second-order accurate, the
total error will be dominated by the second-order term. For the five-
point scheme, this is reflected in the results (which show
second-order convergence), whereas the four-point scheme, like
the three-point scheme, displays only first-order convergence.

For the case of the linear flow law (Fig. 6b), the two-point
one-sided scheme still displays first-order convergence, while
the five-point scheme and the ghost-node scheme still display
second-order convergence. However, the three-point and four-
point one-sided schemes now display second-order convergence.

For the case of the over-regularised variant of Glen’s flow law
(Fig. 6c), the results are qualitatively the same as for the linear
flow law, with all schemes except the two-point scheme displaying
second-order convergence. The only difference between this
experiment and Glen’s flow law, is that here there is no more sin-
gularity in the effective viscosity at the ice surface. This illustrates
that it is likely the presence of this singularity that poses a prob-
lem to the different numerical solvers. The experiments with
Glen’s flow law also included a regularisation term, albeit with a
much smaller value of 120 = 10−20, which should prevent the
effective viscosity from becoming infinite. In Appendix A, we pre-
sent a number of simulations where we vary the value of 120 and
study the resulting velocity errors and convergence rates of the
different discretisation schemes. In summary, values of 120 that
are small enough not to cause any significant viscous deformation
in the upper part of the ice column, still yield high enough effect-
ive viscosities to cause issues with the different one-sided discret-
isation schemes. The ghost-node scheme, on the other hand,
robustly produces small errors and second-order convergence
for all values of 120 = 10−10; for larger values, (unphysical) viscous
deformation in the upper part of the ice column becomes
noticeable.

3. Blatter-Pattyn approximation

3.1 Physics and numerical solution

The Blatter-Pattyn approximation (BPA; Pattyn, 2003) is a
so-called higher-order approximation to the Stokes equations.
It includes all viscous stresses except for those involving the ver-
tical component of the ice velocity, which is still assumed to be
negligibly small. Making no assumptions about the direction of
the ice flow, the BPA reads:

∂
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Relative to the SIA, several additional terms now appear in the
effective strain rate 1̇, which were previously neglected:
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The zero-stress boundary condition at the ice surface now
reads:
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The boundary condition for sliding ice at the base reads:
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Table 2. Physical parameters used in the SIA experiment with the artificial flow
law

Name Description Value Units

a Constant term in linear flow law 100 -
∂h
∂x Surface slope in x-direction −10−5 -
H Ice thickness 2,000 m

Figure 4. The analytical solution to the SIA with the artificial flow law.

Figure 5. The high-resolution solution to the SIA with the over-regularised Glen’s flow
law.
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For the case of ice that is frozen to the bedrock, preventing any
basal sliding, the boundary condition is simply u = v = 0. This set
of coupled, nonlinear partial differential equations has no known
analytical solutions. The discretisation of the BPA and its bound-
ary conditions follows the same general approach as that of the
SIA, and is described in detail in Appendix A.

3.4 Experiments

3.4.1 Glen’s flow law
We perform ISMIP-HOM experiment A and C (Pattyn and
others, 2008) to investigate the different discretisations. These
experiments concern an infinite slab of isothermal ice lying on
an inclined plane. In experiment A, the ice is frozen to the
base, and undulations in both horizontal directions are superim-
posed on the sloping bed, leading to nonnegligible horizontal
stretch/shear strain rates. In experiment C, the bed is a simple
flat, sloping plane, but basal sliding is allowed, with periodic spa-
tial variations in the basal friction coefficient. Pattyn and others
(2008) showed that the BPA yields results that are nearly identical
to those of the Stokes equations in these settings, while later work
(e.g. Berends and others, 2022) showed that the SIA, the hybrid
SIA/shallow shelf approximation (Bueler and Brown, 2009), and
the depth-integrated viscosity approximation (Goldberg, 2011)
deviate significantly from the Stokes solution.

The geometry of experiment A is given by the following
equations:

h(x, y) = 2000− x tan u, (41)

H(x, y) = 1000+ 500 sin
2px
L

( )
sin

2py
L

( )
, (42)

b(x, y) = h(x, y)− H(x, y). (43)

At the lateral domain boundaries, periodic boundary condi-
tions apply, and a no-slip boundary condition is prescribed at
the ice base. The parameters of the experiment are listed in
Table 3.

For experiment C, Eqn (42) is replaced by a uniform ice thick-
ness of 1000 m, so that Eqn (43) yields a flat, sloping bed. The sur-
face/bedrock slope θ is assigned a lower value of 0.1 degrees. The
following expression describes the basal friction coefficient β:

b(x, y) = 1000+ 1000 sin
2px
L

( )
sin

2px
L

( )
. (44)

No analytical solutions exist for these experiments. Instead,
model verification is done by comparing against the ensemble
results by Pattyn and others (2008). We perform these experi-
ments with three different discretisation schemes for the
zero-stress boundary at the ice surface: the two-point scheme, the
three-point scheme, and the ghost-node scheme. Implementations
of the four-point and five-point schemes consistently failed to con-
verge during the iteration over the nonlinear effective viscosity. We
use a square grid of 40 by 40 nodes in the horizontal plane (iden-
tical to the models in the ensemble from Pattyn and others, 2008),
and nz∈ [8, 32] nodes in the vertical column. Our discretisation of
the BPA, and of the three different schemes to discretise the surface
and basal boundary conditions, are derived in Appendix A. The
results of our simulations are compared to the Pattyn and others
(2008) ensemble in Figures 7 and 8.

In experiment C (Fig. 8), there is no visible difference between
the three-point one-sided scheme and the ghost-node scheme,
with both giving very accurate solutions even at coarse vertical
resolutions. We suspect this is because the ice flow in experiment
C is dominated by sliding rather than by vertical shearing, so that
the horizontal velocities are nearly uniform in the vertical, imply-
ing that the errors in the velocity solution are dominated by the
horizontal shearing terms.

We have additionally performed experiment A with a length
scale of L = 5 km. The results of these simulations are shown in
Figure 9.

Since no analytical solutions exist, we instead compare to high-
resolution numerical solutions to perform a convergence analysis.
For the high-resolution solution, we use the same horizontal reso-
lution (as we are only interested in the convergence with the ver-
tical resolution), but a vertical grid of nz = 128 layers. These are
calculated with all three schemes separately. Based on the conver-
gence analysis, the errors in the high-resolution solution should
be at least an order of magnitude smaller than those in any of
the other numerical solutions, small enough to not significantly
affect the error estimates or the convergence analysis. The conver-
gence analyses for all three experiments are shown in Figure 10.

The results of these experiments are less straightforward to
interpret than those of the 1-D SIA experiments. In the 1-D
case, the strain rate is zero at the ice surface, and the effective vis-
cosity diverges to infinity. In the 3-D case of the ISMIP-HOM

Figure 6. Convergence of the relative error in the surface velocity with the number of nodes, for the combination of the SIA with (A) Glen’s flow law, (B) the linear
flow law, and (C) the over-regularised variant of Glen’s flow law. The different graphs show the results for the five different ways of discretising the zero-stress
boundary condition at the ice surface: the two-point (blue), the three-point (red), the four-point (green), the five-point (yellow) one-sided schemes, and the ghost-
node scheme (purple). Log-linear curves (solid lines) are fitted to each set of experiments to calculate the order of convergence R, which is displayed in the legend.

Table 3. Parameters of the ISMIP-HOM A experiment with Glen’s flow law

Name Description Value Units

A Factor in Glen’s flow law 10−16 Pa−3 yr−1

θ Surface angle in x-direction 0.5 degrees
L Length scale of undulations 160 km
n Exponent in Glen’s flow law 3 -
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experiments, the lateral variations in the geometry result in add-
itional horizontal strain rates, so that the effective strain rate is
never zero (although it can still become very small), and the
effective viscosity is never infinite (although it can still become
very large). This effect is more pronounced in experiment C,
where the vertical shear strain rates are actually smaller than
the horizontal stretch/shear strain rates. Furthermore, in experi-
ment C there is an additional Neumann boundary condition at
the ice base, which is discretised using the same scheme as that
at the surface. As the effective viscosity at the ice base is much
smaller, the convergence behaviour of the three-point scheme is
likely different too. Additionally, due to the coordinate transform-
ation, the vertical resolution also has a small effect on the accuracy
of the discretisation of the horizontal strain rates, further compli-
cating the analysis. And lastly, because of the bedrock undulations
in experiment A, the constant number of vertical layers implies a
different vertical resolution in different parts of the domain,
which is further complicated by the fact that the horizontal and
vertical strain rates are also laterally varying.

The difference in performance between the three-point, one-
sided scheme and the ghost-node scheme is less clear than in
the 1-D SIA experiments. For both flow laws, the ghost-node
scheme produces smaller errors than the three-point scheme,
with a more pronounced difference in experiment A (where the
effective strain rates at the surface can still be very small) than
in experiment C (where the horizontal strain rates are more
pronounced).

The results for experiment A with a horizontal length scale of
L = 5 km are qualitatively similar to those with L = 160 km. The
convergence rate of the ghost-node scheme is still slightly higher
than that of the three-point scheme, and the errors are

approximately an order of magnitude smaller. Note that, because
of the smaller horizontal length scale, the horizontal stretch and
shear strain rates are much larger than before, so that the effective
viscosity is much smaller. This likely explains why there is now
less difference between the three-point scheme and the ghost-
node scheme.

3.4.2 Linear flow law
As with the SIA, we performed an additional set of experiments
where we replace Glen’s flow law with an expression that does
not depend on the strain rates. In order to maintain a uniform,
high value of the effective viscosity at the ice surface, we here
define the following expression:

h(x, y, z) = a+ z + 1500− h(x, y). (45)

We have only performed simulations with the artificial flow
law for experiment A with a length scale of L = 160 km. The para-
meters for this new experiment are listed in Table 4.

The results of these experiments are shown in Figure 11.
As before, we perform a convergence analysis by comparing to

numerical solutions with nz = 128 vertical layers. The results of
this analysis are shown in Figure 12.

Although the linear flow law removes some of the complexity
from the experiment, it is still not straightforward to interpret. As
before, the accuracy of the discretisation of the horizontal strain
rates is affected by the vertical resolution because of the coordin-
ate transformation, and both the horizontal and vertical strain
rates, as well as the vertical resolution, are all laterally varying.

The two-point scheme still shows approximately first-order
convergence. Both the three-point scheme and the ghost-node

Figure 7. Results of ISMIP-HOM Experiment A with the BPA, using Glen’s flow law, with a horizontal length scale of L = 160 km. The ensemble results of Pattyn and
others (2008) for the participating higher-order models (green) and full-Stokes models (blue) are shown by the shaded areas, with the solid line indicating the
ensemble mean. The coloured lines show the results of our model at different numbers of vertical layers (see legend in Panel B), for the two-point one-sided
scheme (panel A), the three-point one-sided scheme (panel B), and the ghost-point scheme (panel C). The small subpanels zoom in on the thin, slow-moving
ice around x = L/4.

Figure 8. Results of ISMIP-HOM Experiment C with the BPA, using Glen’s flow law, with a horizontal length scale of L = 160 km. The ensemble results of Pattyn and
others (2008) for the participating higher-order models (green) and full-Stokes models (blue) are shown by the shaded areas, with the solid line indicating the
ensemble mean. The coloured lines show the results of our model at different numbers of vertical layers (see legend in Panel B), for the two-point one-sided
scheme (panel A), the three-point one-sided scheme (panel B), and the ghost-point scheme (panel C). The small subpanels zoom in on the thin, slow-moving
ice around x = L/4.

8 Constantijn J. Berends and others

https://doi.org/10.1017/jog.2024.45 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2024.45


scheme show approximately second-order convergence, with the
ghost-node scheme now producing slightly larger errors than
the three-point scheme.

4. Conclusions and discussion

We have presented results of experiments solving the SIA and the
BPA for ice sheets with idealised geometries. We have investigated
different schemes for discretising the zero-stress boundary condi-
tion at the ice surface, and combined these schemes with different
flow laws: Glen’s flow law, which diverges to infinite viscosity
when the strain rates approach zero, a linear, nondiverging flow
law that predicts finite viscosities everywhere, and an over-
regularised variant of Glen’s flow law that is nonlinear, but no
longer contains a singularity. We find that the two different one-
sided finite difference schemes that we tested produce the
expected convergence behaviour when combined with the differ-
ent nondiverging flow laws. However, excepting the five-point
scheme, they all produce much larger errors when Glen’s flow
law is used instead, while being reduced to linear convergence.
A ghost-node scheme, which retains both the linear equations
for the momentum balance and for the boundary conditions, per-
forms well with all flow laws. These results hold for both the SIA
and the BPA, with the caveat that the results of the BPA are less
straightforward to interpret for a number of reasons (see Section
3.4.1). A solid mathematical explanation for why the different
one-sided schemes perform poorly when the flow law contains

a singularity, while the ghost-point scheme does not, remains
elusive.

While the five-point one-sided scheme performed well with
Glen’s flow law in the 1-D SIA experiment, an implementation
of this scheme (as well as one with the four-point scheme) in
the BPA solver failed to converge in the nonlinear viscosity iter-
ation. We cannot explain why this would be the case. However, as
the ghost-node scheme produces similar good results in the SIA
experiment, and also works well in the BPA, we do not find it
important right now to investigate this issue further. It is worth
mentioning here that the number of Picard iterations required
to solve for the nonlinear effective viscosity is not significantly dif-
ferent for the different discretisation schemes, nor does there
appear to be a significant difference in computation time, in
any of the experiments presented here.

We have investigated the ghost-node scheme for the boundary
conditions at the ice surface and the ice base. In realistic applica-
tions, similar boundary conditions need to be applied at the float-
ing ice front. However, due to the water pressure on the

Figure 9. Results of ISMIP-HOM Experiment A with the BPA, using Glen’s flow law, with a horizontal length scale of L = 5 km. The ensemble results of Pattyn and
others (2008) for the participating higher-order models (green) and full-Stokes models (blue) are shown by the shaded areas, with the solid line indicating the
ensemble mean. The coloured lines show the results of our model at different numbers of vertical layers (see legend in Panel B), for the two-point one-sided
scheme (panel A), the three-point one-sided scheme (panel B), and the ghost-point scheme (panel C). The small subpanels zoom in on the thin, slow-moving
ice around x = L/4.

Figure 10. Convergence of the relative error in the surface velocity with the number of nodes, for the combination of the BPA with Glen’s flow law, for (A)
ISMIP-HOM experiment A with a horizontal length scale of L = 160 km, (B) experiment C with a length scale of L = 160 km, and (C) experiment A with a length
scale of L = 5 km. The different graphs show the results for the three different ways of discretising the zero-stress boundary condition at the ice surface: the two-
point one-sided scheme (blue), the three-point one-sided scheme (red), and the ghost-node scheme (green). Log-linear curves (dashed lines) are fitted to each set
of experiments to calculate the order of convergence R, which is displayed in the legend.

Table 4. Parameters for ISMIP-HOM experiment A with the linear flow law

Name Description Value Units

a Constant term in linear flow law 100
θ Surface angle in x-direction 10−5 degrees
L Length scale of undulations 160 km
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submerged part of the front, the ice front is not stress-free, so that
the strain rates will not tend to zero, and the effective viscosity will
not diverge to infinity. While it would be interesting to investigate
this further in future work, based on our findings here we do not
expect the discretisation scheme there to have as much of an effect
on the solution as it does at the ice surface.

The available literature on existing ice-sheet models (including
both reviewed publications and unreviewed model documenta-
tion) rarely provides the discretisation scheme used for the
boundary conditions to the momentum balance. However, the
one-sided discretisation schemes are much more common in lit-
erature on numerical mathematics than the ghost-node scheme,
which we have not seen mentioned in any literature on ice-sheet
modelling. Our results show that the one-sided schemes, even
though they might be expected a priori to produce acceptably
small errors at modest numbers of vertical layers, do not always
produce such results when combined with a diverging flow law,
such as Glen’s flow law. Depending on the vertical resolution
used by a particular model, this can lead to significant biases in
the velocity solution, which could then lead to biases in e.g. esti-
mates of future sea-level contributions. This is especially import-
ant because the results of higher-order ice-sheet models, which
must include these boundary conditions, are often used as bench-
marks for simpler, vertically-integrated ice-sheet models, which
do not. We hope these findings will motivate ice-sheet modellers
to take extra care in verifying the numerical solvers used in their
models, and to publish the results of these efforts.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2024.45.

Code and data availability. The Matlab code for performing the experi-
ments and creating the figures presented here, is available in the
Supplementary Material.
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Appendix A – Irregular vertical grid

Many numerical ice-sheet models use an irregular vertical grid, with the layers
being more closely-spaced near the ice base, to more accurately capture the
high strain rates there. We found that the discretisation issues presented in
this work are present regardless of whether the vertical grid is regular or
irregular, and so we chose to use a regular grid in the main work, as the equa-
tions are slightly simpler. Here, we demonstrate that using an irregular grid
does not improve the results – in fact, for the two-point and three-point one-
sided schemes, it arguable leads to even less accurate results.

For these experiments, we replace Eqn (6) with the following expression:

zka = b+ H 1− R(k−1)/nz−1 − 1
R− 1

( )
. (A1)

Here, the grid ratio R approximates the ratio between the first and last grid
spacings:

z2a − z1a
znza − znz−1

a
≈ R. (A2)

For example, for R = 0.1, the grid points at the ice base are spaced approxi-
mately 10 times closer than those at the ice surface. Shown in Fig. 13 are the
relative velocity errors at the ice surface in the 1-D SIA experiment with Glen’s
flow law, for different values of R, for the two-point and three-point one-sided
schemes, and the ghost-node scheme (we did not derive the expressions for the
four-point and five-point one-sided schemes on an irregular grid). All solu-
tions were calculated with nz = 1, 024 grid points.

For the two-point and three-point one-sided schemes, the velocity error
actually increases for smaller values of R. This is because, for the same number
of grid points, using a smaller spacing at the ice base implies using a larger
spacing at the ice surface. Therefore, the errors in the discretisation of the sur-
face boundary condition, which dominates the total error, gets larger with
decreasing values of R. The ghost-node scheme shows a less clear behaviour,
with increasing errors for both large and small values of R, and a tentative
optimum around R = 1 (i.e. a regular grid). This suggests that there is no
added value in using an irregular grid to solve the momentum balance. Of
course, this might be very different for e.g. a thermodynamical model,
which typically also has the strongest gradients near the ice base, and does
not have any singularities in the solution, so that an irregular grid might
well be of added value there.

Shown in Fig. 14 is the convergence of the velocity error with the grid reso-
lution for the SIA experiment with Glen’s flow law, for the two-point one-
sided scheme, the three-point one-sided scheme, and the ghost-node scheme,
for different values of the grid ratio R. This shows that the convergence differ-
ences between the different discretisation schemes remain qualitatively
unchanged when using an irregular grid.

Appendix B – The regularisation term in Glen’s flow law

It is common practice for numerical ice-sheet models to add a small regular-
isation term to the computation of the effective strain rate, so that it never
becomes zero, and the effective viscosity therefore never becomes infinite.
Here, we investigate the effect of changing the value of the regularisation
term 120 in Eqn (19). Shown in Fig. 15 are the relative velocity errors at the
ice surface in the 1-D SIA experiment, for different values of 120, for the five
different discretisation schemes, all calculated with nz = 1,024 grid points.
Using a smaller number (e.g. nz = 64) yields qualitatively the same results,
with all errors becoming uniformly larger.

The convergence rates for the different schemes as a function of the regu-
larisation term are shown in Fig. 16.

The ghost-node scheme and the three-point and four-point schemes yield
relative errors that are independent of the regularisation term as long as
120 , 10−18. In this range, they display first-order convergence. For larger
values of 120, they initially seem to produce better results and higher-order con-
vergence, before the errors start to increase again when 120 . 10−10. This is
because, for small values of 120, these schemes underestimate the velocities.
When 120 . 10−10, the lower effective viscosity values start producing unphys-
ical viscous deformation in the upper part of the ice column, increasing the
velocity. This physical error compensates the discretisation error, apparently
reducing the total error. The two-point scheme displays increasing errors
when 120 , 10−30, accompanied by a breakdown in the convergence rate.
This is likely due to round-off errors, as the effective viscosity increases at
the last staggered gridpoint becomes many orders of magnitude larger than
elsewhere in the ice column. Interestingly, the five-point scheme shows almost
the opposite behaviour, with small errors and second-order convergence when
120 , 10−30, and large errors and poor/no convergence for larger values. It is
unclear exactly why this should be the case. Lastly, the ghost-node scheme
robustly produces small velocity errors and second-order convergence for all
values of 120 , 10−10. For larger values, the physical errors introduced by
the reduced effective viscosity become apparent, just as for the other schemes.
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Appendix C – Solving the Blatter-Pattyn approximation

C.1 Terrain-following coordinate transformation

In order to solve the BPA, it is desirable that the ice base and ice surface both
coincide with a node. This not possible to achieve with a Cartesian coordinate
system for any 3-D ice-sheet geometry. We solve this problem by introducing a
terrain-following coordinate transformation:

x̂(x, y, z) = x, (C1a)

ŷ(x, y, z) = y, (C1b)

z(x, y, z) = h(x, y)− z
H(x, y)

. (C1c)

With this transformation, ζ = 0 at the ice surface, and ζ = 1 at the ice base.
Applying the transformation to the gradient operators ∂/∂x, ∂/∂y, ∂/∂z yields:

∂

∂x
= ∂

∂x̂
+ ∂z

∂x
∂

∂z
, (C2a)

∂

∂y
= ∂

∂ŷ
+ ∂z

∂y
∂

∂z
, (C2b)

∂

∂z
= ∂z

∂z
∂

∂z
. (C2c)

Applying the chain rule to Eqns (C1a-c), the gradients ∂ζ/∂x, ∂ζ/∂x, ∂ζ/∂x
of ζ are:

∂z

∂x
= 1

H
∂h
∂x

− z
∂H
∂x

( )
, (C3a)

∂z

∂y
= 1

H
∂h
∂y

− z
∂H
∂y

( )
, (C3b)

∂z

∂z
= −1

H
. (C3c)

C.2 Discretising the BPA

We solve the BPA on a 3-D grid, which is constructed by vertically extruding a
square horizontal grid. In the horizontal plane, we consider a regular a-grid,
and a b-grid that is staggered in both the x- and y-directions relative to the
a-grid. In the vertical dimension, we consider a regular k-grid, and a staggered
ks-grid. Of the four possible combinations this offers, we use three: the ak-grid
(horizontally regular, vertically regular), the bk-grid (horizontally staggered,
vertically regular), and the bks-grid (horizontally staggered, vertically stag-
gered). This is illustrated in Fig. 17. Note that the index k is oriented positive
in ζ, so that k = 1 now lies at the ice surface, and k = nz at the ice base.

The ice thickness H, the bedrock elevation b, and the surface elevation h
are defined on the ak-grid; the horizontal ice velocity components u, v
are defined on the bk-grid; and the strain rates ∂u/∂x, ∂u/∂y, ∂u/∂z, ∂v/∂x,
∂v/∂y, ∂v/∂z and the effective viscosity η are defined on both the ak-grid
and the bks-grid.

The discretised approximation to the BPA contains one linear equation for
every degree of freedom, meaning that there are 2nxnynz linear equations. Note

Figure 13. Relative velocity error at the ice surface for different values of the irregular grid ratio R, for (A) the two-point one-sided scheme, (B) the three-point
one-sided scheme, and (C) the ghost-node scheme.

Figure 14. Convergence of the velocity error with the grid resolution for the SIA experiment with Glen’s flow law, for (A) the two-point one-sided scheme, (B) the
three-point one-sided scheme, and (C) the ghost-node scheme, for different values of the grid ratio R (red: R = 0.1, green: R = 1, blue: R = 10).
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that both the a-grid and the b-grid have nx by ny nodes, which is necessary to
implement the horizontal periodic boundary conditions of the ISMIP-HOM
experiment. If a simple Dirichlet or Neumann boundary condition were to
be used at the lateral domain borders, then the a-grid would have nx by ny
nodes, whereas the b-grid would have (nx-1) by (ny-1) nodes, and there
would be 2(nx− 1)(ny− 1)nz linear equations to solve for u, v.

We first define the discretised velocity vector υbkq, and the discretised
effective viscosity vectors ηak and ηbks:

ybkq = [y
rbkq(i,j,k,q)
bkq ]. (C4a)

y
rbkq(i,j,k,q)
bkq = urbk(i,j,k)bk , q = 1,

vrbk(i,j,k)bk , q = 2,

{
(C4b)

hak = [hrak(i,j,k)
ak ], (C5)

hbks = [hrbks(i,j,ks)
bks ]. (C6)

Here, rbkq(i, j, k, q), rak(i, j, k), and rbks(i, j, ks) are functions that produce a
one-to-one mapping between the grid indices i∈ [1, nx], j∈ [1, ny], k∈ [1, nz],
ks∈ [1, nz− 1], the velocity component index q∈ [1, 2], and the matrix row
index r. We choose the following mapping functions:

rak(i, j, k) = nynz(i− 1)+ nz( j− 1)+ k, (C7a)

rbk(i, j, k) = nynz(i− 1)+ nz( j− 1)+ k, (C7b)

rbks(i, j, ks) = ny(nz − 1)(i− 1)+ (nz − 1)( j− 1)+ ks. (C7c)

rbkq(i, j, k, q) = 2nynz(i− 1)+ 2nz( j− 1)+ 2(k− 1)+ q. (C7d)

Note though that the choice of these mapping functions does not affect the
subsequent discretisation or solving scheme in any way, as long as the map-
ping is one-to-one, and one is careful to ensure the mapping is applied con-
sistently everywhere.

Using these definitions of the vector forms, we can define the matrices
representing the gradient operators in terrain-following coordinates. For
example, the coefficients of the matrixMak�bk

∂/∂x̂ , representing the gradient oper-
ator ∂/∂x̂ going from the ak-grid to the bk-grid, are given by:

Mak�bk
∂/∂x̂ (rbk(ibk, jbk, kbk), rak(iak, jak, kak))

=

−1
2Dx

, ibk = iak, jbk = jak, kbk = kak,

−1
2Dx

, ibk = iak + 1, jbk = jak, kbk = kak,

1
2Dx

, ibk = iak, jbk = jak + 1, kbk = kak,

1
2Dx

, ibk = iak + 1, jbk = jak + 1, kbk = kak,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C8)

This represents a simple two-sided differencing scheme. All other gradient
operator matrices are similarly defined. Mapping operators between the differ-
ent grids are likewise represented by matrices. For example, the coefficients of
the matrix Mak�bk

map , which represents the mapping operation from the ak-grid
to the bk-grid, are given by:

Mak�bk
map (rbk(ibk, jbk, kbk), rak(iak, jak, kak))

=

1
4
, ibk = iak, jbk = jak , kbk = kak,

1
4
, ibk = iak + 1, jbk = jak , kbk = kak,

1
4
, ibk = iak, jbk = jak + 1, kbk = kak,

1
4
, ibk = iak + 1, jbk = jak + 1, kbk = kak,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C9)

Figure 15. Relative error at the ice surface vs the regularisation term 120, for the five
different discretisation schemes.

Figure 16. Convergence rates with the vertical resolution vs the regularisation term
120, for the five different discretisation schemes.

Figure 17. The different staggered 3D-grids. Note that the ‘real’ vertical dimension is
displayed pointing upwards; because ζ = 0 at the ice surface, this means that vertical
layer k + 1 lies below layer k.
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All other mapping operator matrices are similarly defined. Lastly, we
define mapping operators that map the velocity components u and v between
the bkq-grid and the bk-grid. For example, the coefficients of the matrix
Mbku�bk

map , which can be multiplied with the vector υbkq (which contains the
values of both u and v on the bk-grid) to give ubk, are given by:

Mbku�bk
map (rbk(ibk, jbk, kbk), rbkq(ibk , jbk, kbk, q)) = 1, q = 1,

0, otherwise.

{
(C10)

The different velocity components can be mapped between the bkq-grid
and the bk-grid by the following matrix multiplications:

ubk = Mbku�bk
map ybkq, (C11a)

vbk = Mbkv�bk
map ybkq, (C11b)

ybkq = Mbk�bku
map ubk +Mbk�bkv

map vbk. (C11c)

In order to solve the BPA, we need matrices representing the gradient
operators in Cartesian coordinates ∂/∂x, ∂/∂y, ∂/∂z. These can be constructed
by combining the matrices representing the gradient operators in terrain-
following coordinates ∂/∂x̂, ∂/∂ŷ, ∂/∂z, with the gradients of ζ, to represent
the coordinate transformations given in Eqn (A3). For example, the matrix
Mak�bk

∂/∂x , representing the gradient operator ∂/∂x going from the ak-grid to
the bk-grid, is obtained by:

Mak�bk
∂/∂x = Mak�bk

∂/∂x̂ + D
∂z

∂xbk

( )
Mak�bk

∂/∂z . (C12)

All other matrices representing the gradient operators in Cartesian coordi-
nates are obtained similarly. Using these definitions, the discretisation of the
BPA is represented by the following matrix equation:

Aeq1 =Mak�bk
∂/∂x [2D(hak)(2M

bk�ak
∂/∂x Mbku�bk

map +Mbk�ak
∂/∂y Mbkv�bk

map )]

+Mak�bk
∂/∂y [D(hak)(M

bk�ak
∂/∂y Mbku�bk

map +Mbk�ak
∂/∂x Mbkv�bk

map )]

+Mbks�bk
∂/∂z [D(hbks)M

bk�bks
∂/∂z Mbku�bk

map ].

(C13)

Aeq2 =Mak�bk
∂/∂y [2D(hak)(2M

bk�ak
∂/∂y Mbkv�bk

map +Mbk�ak
∂/∂x Mbku�bk

map )]

+Mak�bk
∂/∂x [D(hak)(M

bk�ak
∂/∂x Mbkv�bk

map +Mbk�ak
∂/∂y Mbku�bk

map )]

+Mbks�bk
∂/∂z [D(hbks)M

bk�bks
∂/∂z Mbkv�bk

map ]. (C14)

A = Mbk�bku
map Aeq1 +Mbk�bkv

map Aeq2. (C15)

b = Mbk�bku
map rg

∂h
∂x

( )
bk

+Mbk�bkv
map rg

∂h
∂y

( )
bk

. (C16)

Aybkq = b. (C17)

In order to compute the stiffness matrix A, the effective viscosity η and the
strain rates need to be computed on both ak-grid and the bks-grid. The hori-
zontal stretch/shear strain rates ∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y are computed on the
ak-grid, and then mapped to the bks-grid:

∂u
∂xak

= Mbk�ak
∂/∂x Mbku�bk

map ybkq, (C18)

∂u
∂xbks

= Mak�bks
map

∂u
∂xak

. (C19)

The vertical shear strain rates ∂u/∂z, ∂v/∂z are computed on the bks-grid,
and then mapped to the ak-grid:

∂u
∂zbks

= Mbk�bks
∂/∂z Mbku�bk

map ybkq, (C20)

∂u
∂zak

= Mbks�ak
map

∂u
∂zbks

. (C21)

The effective viscosity η is then calculated separately on both grids, using
Eqn (31).

C.3 Boundary conditions to the BPA

As with the SIA, we explore three different ways to implement the zero-stress
surface boundary conditions at the ice surface and base, which differ in the
way they discretise the vertical shear strain rate ∂u/∂z: a two-point one-sided
scheme, a three-point one-sided scheme, and a ghost-point scheme. Recall
that the first equation of the zero-stress boundary condition at the ice surface
reads:

2
∂h
∂x

2
∂u
∂x

+ ∂v
∂y

[ ]
+ ∂h

∂y
∂u
∂y

+ ∂v
∂x

[ ]
− ∂u

∂z
= 0. (C22)

Transforming the vertical shear strain rate ∂u/∂z to terrain-following coor-
dinates, the two-point one-sided scheme is discretised as follows (leaving out
the discretisation of the horizontal stretch/shear strain rates for readability):

2
∂h
∂x

2
∂u
∂x

+ ∂v
∂y

[ ]
+ ∂h

∂y
∂u
∂y

+ ∂v
∂x

[ ]
− ∂z

∂z

urbk(i,j,2)bk − urbk(i,j,1)bk

Dz
= 0. (C23)

The three-point one-sided scheme reads:

2
∂h
∂x

2
∂u
∂x

+ ∂v
∂y

[ ]

+ ∂h
∂y

∂u
∂y

+ ∂v
∂x

[ ]
− ∂z

∂z
−3
2Dz

urbk(i,j,1)bk + 4
2Dz

urbk(i,j,2)bk + −1
2Dz

urbk(i,j,3)bk

[ ]
= 0.

(C24)

For the ghost-point scheme, we first expand the vertical shear stress term
in the BPA, using the product rule:

∂

∂x
2h 2

∂u
∂x

+ ∂v
∂y

( )[ ]
+ ∂

∂y
h

∂u
∂y

+ ∂v
∂x

( )[ ]
+ ∂h

∂z
∂u
∂z

+ h
∂2u
∂z2

= rg
∂h
∂x

. (C25)

As with the SIA, we discretise ∂u/∂z and ∂2u/∂z2 using standard three-
point two-sided schemes:

∂u
∂z

( )rbk(i,j,k)

bk

= ∂z

∂z

urbk(i,j,k+1)
bk − urbk(i,j,k−1)

bk

2Dz

( )
. (C26)

∂2u
∂z2

( )rbk(i,j,k)

bk

= ∂z

∂z

( )2 urbk(i,j,k+1)
bk + urbk(i,j,k−1)

bk − 2urbk(i,j,k)bk

Dz2

( )
. (C27)

Substituting Eqn (C26) into Eqn (C22) yields the following expression for
the value urbk(i,j,k−1)

bk of u at the ghost node at k− 1 (note that, because of the
terrain-following coordinate transformation, the ice surface now lies at the
first node, rather than the last, as was the case for the SIA):

urbk(i,j,k−1)
bk = urbk(i,j,k+1)

bk

− 2Dz
(∂z/∂z)

2
∂h
∂x

2
∂u
∂x

+ ∂v
∂y

[ ]
+ ∂h

∂y
∂u
∂y

+ ∂v
∂x

[ ]( )
. (C28)
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Substituting Eqn (C28) into Eqn (C27) to eliminate the ghost node yields the following expression for ∂2u/∂z2 at the ice surface:

∂2u
∂z2

( )rbk(i,j,k)

bk

= ∂z

∂z

( )2 2

Dz2
urbk(i,j,k+1)
bk −urbk(i,j,k)bk − 2Dz

(∂z/∂z)
2
∂h
∂x

2
∂u
∂x

+∂v
∂y

[ ]
+∂h
∂y

∂u
∂y

+∂v
∂x

[ ]( )[ ]
. (C29)

Substituting Eqns (A22 and A29) into the BPA yields:

∂

∂x
2h 2

∂u
∂x

+ ∂v
∂y

( )[ ]
+ ∂

∂y
h

∂u
∂y

+ ∂v
∂x

( )[ ]
+ ∂h

∂z
2
∂h
∂x

2
∂u
∂x

+ ∂v
∂y

[ ]
+ ∂h

∂y
∂u
∂y

+ ∂v
∂x

[ ][ ]

+ ∂z

∂z

( )2 2h

Dz2
urbk(i,j,2)bk − urbk(i,j,1)bk − 2Dz

(∂z/∂z)
2
∂h
∂x

2
∂u
∂x

+ ∂v
∂y

[ ]
+ ∂h

∂y
∂u
∂y

+ ∂v
∂x

[ ]( )[ ]
= rg

∂h
∂x

.

(C30)

The boundary condition for nonfrozen ice at the ice base reads:

2
∂b
∂x

2
∂u
∂x

+ ∂v
∂y

[ ]
+ ∂b

∂y
∂u
∂y

+ ∂v
∂x

[ ]
− ∂u

∂z
+ b

h
u = 0. (C31)

Discretising the vertical shear strain rate using the two-point one-sided scheme yields:

2
∂b
∂x

2
∂u
∂x

+ ∂v
∂y

[ ]
+ ∂b

∂y
∂u
∂y

+ ∂v
∂x

[ ]
− ∂z

∂z

urbk(i,j,nz)bk − urbk(i,j,nz−1)
bk

Dz
+ b

h
urbk(i,j,nz)bk = 0. (C32)

Similarly, the three-point one-sided scheme yields:

2
∂b
∂x

2
∂u
∂x

+ ∂v
∂y

[ ]
+ ∂b

∂y
∂u
∂y

+ ∂v
∂x

[ ]
− ∂z

∂z
3

2Dz
urbk(i,j,nz )bk − 4

2Dz
urbk(i,j,nz−1)
bk + 1

2Dz
urbk(i,j,nz−2)
bk

[ ]
+ b

h
urbk(i,j,nz)bk = 0. (C33)

Lastly, the ghost-point scheme yields:

∂

∂x
2h 2

∂u
∂x

+ ∂v
∂y

( )[ ]
+ ∂

∂y
h

∂u
∂y

+ ∂v
∂x

( )[ ]
+ ∂h

∂z
2
∂b
∂x

2
∂u
∂x

+ ∂v
∂y

[ ]
+ ∂b

∂y
∂u
∂y

+ ∂v
∂x

[ ][ ]
+ ∂z

∂z

( )2 2h

Dz2

urbk(i,j,nz−1)
bk − urbk(i,j,nz)bk + 2Dz

(∂z/∂z)
2
∂b
∂x

2
∂u
∂x

+ ∂v
∂y

[ ]
+ ∂b

∂y
∂u
∂y

+ ∂v
∂x

[ ]( )
+ b

h
urbk(i,j,nz)bk

[ ]
= rg

∂h
∂x

.

(C34)
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