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Abstract

The deepest arithmetic invariants attached to an algebraic variety defined over a num-
ber field F are conjecturally captured by the integral part of its motivic cohomology.
There are essentially two ways of defining it when X is a smooth projective vari-
ety: one is via the K-theory of a regular integral model, the other is through its
�-adic realization. Both approaches are conjectured to coincide. This paper initiates the
study of motivic cohomology for global fields of positive characteristic, hereafter named
A-motivic cohomology, where classical mixed motives are replaced by mixed Anderson
A-motives. Our main objective is to set the definitions of the integral part and the good
�-adic part of the A-motivic cohomology using Gardeyn’s notion of maximal models as
the analogue of regular integral models of varieties. Our main result states that the
integral part is contained in the good �-adic part. As opposed to what is expected in
the number field setting, we show that the two approaches do not match in general.
We conclude this work by introducing the submodule of regulated extensions of mixed
Anderson A-motives, for which we expect the two approaches to match, and solve some
particular cases of this expectation.

1. Introduction

1.1 The number field picture
The idea of mixed motives and motivic cohomology has been gradually formulated by Deligne,
Beilinson and Lichtenbaum and aims to extend Grothendieck’s philosophy of pure motives. Before
discussing the function fields side, the subject of this paper, let us first present the classical setting
to derive some motivations.

The theory, mostly conjectural, starts with a number field F . The hypothetical landscape
portrays a Q-linear Tannakian category MMF of mixed motives over F , equipped with several
realization functors having MMF as source (see [Del89, § 1]). Among them, the �-adic real-
ization functor V�, for a prime number �, takes values in the category of continuous �-adic
representations of the absolute Galois group GF = Gal(F̄ |F ), given a fixed algebraic closure F̄
of F .

It is expected that reasonable cohomology theories factor through the category MMF . For
instance, the �-adic realization should recover the étale cohomology of algebraic varieties with
coefficients in Q� in the following way: for all integer i, one foresees the existence of a func-
tor hi, from the category of algebraic varieties over F to MMF , making the following diagram
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Q. Gazda

of categories commute.

According to Deligne [Del89, § 1.3], the category MMF should admit a weight filtration in the
sense of Jannsen [Jan90, Definition 6.3], which would coincide with the classical weight filtration
of varieties. The weights of a mixed motive M would then be defined as the breaks of its weight
filtration.

From the Tannakian formalism, MMF admits a tensor operation extending the fiber product
on varieties. We fix 1 a neutral object. Let M be a mixed motive over F . According to Beilinson
[Bei86, § 0.3] (see also [And09, Definition 17.2.11]), the motivic cohomology of M is defined as
the complex

RHomMMF
(1, M)

in the derived category of Q-vector spaces. Its ith cohomology is the Q-vector space
Exti

MMF
(1, M), the space of i-fold extensions of 1 by M in MMF . We quote from [Sch91,

§ 2] and [Del89, § 1.3], respectively.

Conjecture. We expect that:

(C1) for i �∈ {0, 1}, Exti
MMF

(1, M) = 0;
(C2) if w denotes the smallest weight of M and w � 0, then Ext1MMF

(1, M) = 0.

Let us focus on the Q-vector space of 1-fold extensions Ext1MMF
(1, M). A subspace thereof

of fundamental importance is the space of extensions having everywhere good reduction. In the
literature, we encounter two definitions which are expected to give the same result. First let us
describe its local constructions.

Via the �-adic realization. Let Fp be the local field of F at a finite place p, and let Mp be a mixed
motive over Fp. Let Gp be the absolute Galois group of Fp, and let Ip be its inertia subgroup.
Given a prime number �, one predicts that the �-adic realization V� is an exact functor. This
allows one to construct a Q-linear morphism, called the �-adic realization map of Mp,

rM,�,p : Ext1MMFp
(1p, Mp) −→ H1(Gp, V�Mp),

which maps the class of an exact sequence [Ep] : 0→Mp→ Ep→ 1p→ 0 in MMFp to the class
of the continuous cocycle c : Gp→ V�Mp associated to the class of the exact sequence [V�Ep] :
0→ V�Mp→ V�Ep→ V�1p→ 0 in RepQ�

(Gp).
Suppose � does not divide p. Following Scholl [Sch91], we say that [Ep] ∈ Ext1MMFp

(1, M)
has good reduction if rM,�,p([Ep]) splits as a representation of Ip (that is, [V�Ep] is zero in
H1(Ip, V�Mp)). In [Sch91, § 2 Remark], Scholl conjectures as follows.

Conjecture. We expect that

(C3) the property that [Ep] has good reduction is independent of the prime �.

We then define Ext1good(1, Mp)� as the subspace of Ext1MMF
(1, Mp) consisting of extensions

having good reduction. By (C3), it should not depend on �: this is the p-integral part of the
motivic cohomology of Mp.
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On the integral part of A-motivic cohomology

Via the K-theory of regular models. Another conjectural way of defining the p-integral part of
motivic cohomology uses its expected link with K-theory. Following Beilinson [Bei86] in the case
where Mp is of the form hi−1(X)(n) for a smooth projective variety X over Fp and two integers n,
i � 1, there should be a natural isomorphism of Q-vector spaces (see [Bei86] for details):

Ext1MMFp
(1, Mp)

∼−→ (K2n−i(X)⊗Z Q)(n). (1.1)

Assume that X has a regular model X over Op (i.e. X is regular over SpecOp and X ×SpecOp

Spec Fp = X). Then, we define Ext1Op
(1, Mp) to be the inverse image of

image
(
(K2n−i(X )⊗Z Q)(n) −→ (K2n−i(X)⊗Z Q)(n)

)
through (1.1). By [Bei86, Lemma 8.3.1], this does not depend on the choice of the model X . The
next conjecture supersedes (C3).

Conjecture. We expect that

(C4) for any prime � not under p, we have Ext1Op
(1, Mp) = Ext1good(1, Mp)�.

The global version of the integral part of the motivic cohomology of a mixed motive M over F
is recovered as follows. The motive M induces a motive Mp over Fp by localization. Assuming
conjecture (C3), we say that an extension [E] (of 1 by M) has everywhere good reduction if,
for all p, the extension [Ep] belongs to Ext1MMFp

(1p, Mp)� for some prime � not dividing p.

We denote by Ext1good(1, M) the subspace of Ext1MMF
(1, M) consisting of extensions having

everywhere good reduction.
Similarly, in the case where M = hi−1(X)(n) for a smooth projective variety X over F , we

let Ext1OF
(1, M) be the subspace of extensions [E] such that [Ep] belongs to Ext1Op

(1p, Mp) for
all finite places p of F . In virtue of the previous conjectures, we should have

Ext1good(1, M) = Ext1OF
(1, M) ∼= (K2n−i(X )⊗Z Q)(n),

where X is a regular model of X over OF .
The space Ext1OF

(1, M) is at the heart of Beilinson’s conjectures, the next expectation being
the starting point thereof.

Conjecture. We expect that

(C5) the space Ext1OF
(1, M) has finite dimension over Q.

1.2 The function field picture
Despite its intrinsic obscurities, motivic cohomology remains a difficult subject also because
its definition sits on a completely conjectural framework. The present paper grew out as an
attempt to understand the analogous picture in function field arithmetic. There, the theory
looks more promising using Anderson A-motives, instead of classical motives, whose definition
is well-established. This parallel has been drawn by many authors and led to celebrated
achievements. The analogue of the Tate conjecture [Tag95, Tam94], of Grothendieck’s periods
conjecture [Pap08] and of the Hodge conjecture [HJ20] are now theorems on the function fields
side. The recent volume [BGHP20] records some of these feats. Counterparts of Motivic coho-
mology in function field arithmetic have not been studied yet, although recent works of Taelman
[Tae10, Tae20] and Mornev [Mor18] strongly suggest the pertinence of such a project.

The setting. Let F be a finite field, let q be its number of elements, and let (C,OC) be
a geometrically irreducible smooth projective curve over F. We let K be the function field of
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C and we fix a closed point ∞ on C. The F-algebra:

A := OC(C \ {∞})
has K as its field of fractions. We let K∞ be the completion of K with respect to the valuation v∞
associated to ∞, and let Ks∞ be the separable closure of K∞. The analogy with number fields
that guide us in this text is as follows.

Number fields: Z ⊂ Q ⊂ R ⊂ C

	 	 	 	
Function fields: A ⊂ K ⊂ K∞ ⊂ Ks∞

Let R be an A-algebra. The analogy with number fields disappears when one considers the
tensor product A⊗R, which is at the heart of the definition of Anderson A-motives (unlabeled
fiber and tensor products are over F). We consider the ring endomorphism τ of A⊗R which
acts as the identity on A and as the q-Frobenius on R. We let j be the ideal of A⊗R generated
by the set {a⊗ 1− 1⊗ a|a ∈ A}.

Following [And86], an Anderson A-motive M over R is a pair (M, τM ) where M denotes
a finite projective A⊗R-module of constant rank, and where τM : (τ∗M)[j−1]→M [j−1] is an
(A⊗R)[j−1]-linear isomorphism (Definition 2.3). We let MR denote the category of Anderson
A-motives with obvious morphisms. MR is known to be A-linear, rigid monoidal, and is exact in
the sense of Quillen (Proposition 2.15) but not abelian ([HJ20, § 2.3] or § 2.1). Let 1 in MR be
a neutral object for the tensor operation.

Extensions of A-motives. The category MR, or rather full subcategories of it, will play the
role of the category of Grothendieck’s motives. Guided by this, the next theorem already describes
the analogue of motivic cohomology in an explicit manner and is the starting point of our research
(see Theorem 2.21). Let M be an A-motive over R.

Theorem A. The cohomology of the complex
[
M

id−τM−−−−→M [j−1]
]

of A-modules, sitting in
degrees zero and one, computes the extension modules Exti

MR
(1, M) for all i.

We immediately deduce that Exti
MR

(1, M) vanishes for i > 1. For i = 1, the A-module of
degree one extensions admit the following explicit description. There is a natural surjective
morphism

ι : M [j−1] −→ Ext1MF
(1, M), (1.2)

which maps m ∈M [j−1] to the class of the extension of 1 by M whose middle term is the
A-motive given by

[
M ⊕ (A⊗R),

( τM m
0 1

)]
(§ 2.2). The kernel of ι being (id−τM )(M), we recover

the isomorphism provided by Theorem A.

Remark. Extension groups in the full subcategory of MR consisting of effective A-motives (see
Definition 2.5) were already determined in the existing literature (see, e.g., [Tae15, Tae20, PR03]).
The novelty of Theorem A is in considering the whole category MR.

To pursue the analogy with number fields, we now present the notion of weights and mixedness
for Anderson A-motives over fields. In the case A = F[t] or deg(∞) = 1 and over a complete
algebraically closed base field, the corresponding definitions were carried out respectively by
Taelman [Tae09] and Hartl and Juschka [HJ20]. We completed this picture in the most general
way (over any A-field and without any restriction on deg(∞)).

Let R = F be a field. To an Anderson A-motive M over F , we attach an isocrystal I∞(M)
at ∞ (in the sense of [Mor21]). The name isocrystal is borrowed from p-adic Hodge theory,
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On the integral part of A-motivic cohomology

where the function field setting allows the application of the non-archimedean theory at the
infinite point∞ of C as well. Following [And86, 1.9], we call M pure of weight μ if its associated
isocrystal is pure of slope −μ (Definition 3.21). More generally, we call M mixed if there exists
rational numbers μ1 < · · · < μs together with a finite ascending filtration of M by saturated
sub-A-motives:

0 = Wμ0M � Wμ1M � · · · � WμsM = M

for which the successive quotients WμiM/Wμi−1M are pure of weight μi (Definition 3.23).
We show in Proposition 3.28 that such a filtration, when it exists, is unique, as well as the
numbers μi which are then called the weights of M . As was observed by Hartl and Juschka
[HJ20, Example 2.3.13], there exist non-mixed A-motives. Nonetheless, it is always possible to
define the weights of a (not necessarily mixed) A-motive via the Dieudonné–Manin decomposi-
tion of isocrystals (see Definition 3.20). We denote by MMF the full subcategory of MF whose
objects are mixed Anderson A-motives over F . The main results of § 3 are gathered in the next
theorem.

Theorem B. Let M be an object of MMF . If all the weights of M are non-positive, then every
extension of 1 by M is mixed; that is,

Ext1MMF
(1, M) = Ext1MF

(1, M).

If all the weights of M are positive, then an extension of 1 by M is mixed if and only if its class
is torsion; that is,

Ext1MMF
(1, M) = Ext1MF

(1, M)tors.

Furthermore, for i > 1, Exti
MMF

(1, M) is a torsion module for all M .

Remark. For our analogy to be complete, one would rather seek a K-linear category: where MMF

is A-linear, the classical category MMQ is Q-linear. To obtain a K-linear category out of MMF ,
one introduces MMiso

F –the category of mixed A-motives up to isogenies–whose objects are
those of MMF and whose Hom-spaces are given by HomMMF

(−,−)⊗A K (e.g. [Har19, HJ20]).
Theorem B implies that Exti

MMiso
F

(1, M) = 0 for i > 1 and Ext1
MMiso

F
(1, M) = 0 if the weights of

M are positive. This reveals that the analogue of the number fields conjectures (C1) and (C2)
are true for function fields. Note, however, that contrary to what is expected for number fields,
the full subcategory of pure A-motives is not semi-simple. Hence, we cannot expect any 1-fold
Yoneda extension of two pure A-motives to split, even if they have the same weight.

The good �-adic part. To present the theory of good and integral extensions, we now assume
that F is a finite field extension of K (namely, a global function field). Let p be a finite place
of F (i.e. not above ∞), Fp the associated local function field, F s

p a separable closure of Fp and
Gp = Gal(F s

p |Fp) the absolute Galois group of Fp equipped with the profinite topology. Given a
maximal ideal � in A which does not lie under p, there is an �-adic realization functor from MFp

to the category of continuous O�-linear representations of Gp. Given an object Mp = (Mp, τM )
of MFp , it is defined as the O�-module

T� Mp := lim←−
n

{m ∈ (Mp⊗Fp F s
p)/�n(Mp⊗Fp F s

p) | m = τM (τ∗m)},

where Gp acts compatibly on the right of the tensor Mp⊗Fp F s
p (Definition 2.24).

We prove in Corollary 2.28 that T� is exact. This paves the way for introducing
extensions with good reduction, as Scholl did in the number fields setting. Let Ip ⊂ Gp be the

1719

https://doi.org/10.1112/S0010437X24007218
Downloaded from https://www.cambridge.org/core. IP address: 35.202.208.150, on 26 Sep 2024 at 22:13:47, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X24007218
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Q. Gazda

inertia subgroup. We consider the �-adic realization map restricted to Ip:

rM,�,p : Ext1MFp
(1p, Mp) −→ H1(Ip, T� Mp) (1.3)

(we refer to § 2.3). Mimicking Scholl’s approach, we say that an extension [Ep] of 1p by Mp

has good reduction if [Ep] lies in the kernel of (1.3). As in the number field setting, we expect
this definition to be independent of �, although this is presumably out of our reach. We let
Ext1good(1p, Mp)� denote the kernel of rM,�,p (Definition 2.30).

The integral part. Gardeyn [Gar03] has introduced a notion of maximal models for τ -sheaves.
Inspired by Gardeyn’s work, we developed the notion of maximal integral models of A-motives
(§ 4). They form the function field analogue of Néron models of abelian varieties, or more
generally, of regular models of varieties.

Let M be an A-motive over F , and denote by Mp the A-motive of Fp obtained from M by
base-change along F ⊂ Fp. Let Op be the valuation ring of Fp and let also OF denote the integral
closure of A in F .

Definition (Definition 4.19). Let L be a finitely generated sub-A⊗Op-module of Mp

(respectively, A⊗OF -module of M).

(1) We say that L is an Op-model for Mp if it generates Mp over Fp and τMp (τ
∗L) ⊂ L[j−1].

(2) We say that L is an OF -model for M if it generates M over F and τM (τ∗L) ⊂ L[j−1].

We say that L is maximal if L is not strictly contained in any other model.

As opposed to [Gar03, Definitions 2.1 and 2.3], we do not ask for an Op-model (respectively,
OF -model) to be locally free. We show that this is automatic for maximal ones (Theorem 4.32).
Compared with Gardeyn, our exposition is therefore simplified and avoids the use of a techni-
cal lemma due to Lafforgue [Gar03, § 2.2]. Our next result should be compared with [Gar03,
Proposition 2.13] (see Proposition 4.51 and Theorems 4.53 and 4.55 in the text).

Theorem C. A maximal Op-model MOp for Mp (respectively, OF -model MOF
for M) exists

and is unique. It is locally free over A⊗Op (respectively, A⊗OF ). In addition, the maximal
local and global models are related by canonical isomorphisms:

MOF
∼=
⋂
p

(M ∩MOp ) and MOp
∼= MOF

⊗OF
Op,

where the intersection is taken over finite places p of F .

Along the way, we also prove a good reduction criterion for A-motives, in the style of
Néron–Ogg–Shafarevič (Proposition 4.49).

Then, we call p-integral any extension of 1 by M which arises as an element of ι(MOp [j
−1])

as in (1.2). We let Ext1Op
(1p, Mp) be the module of p-integral extensions (Definition 4.58). Our

main result (repeated from Theorem 4.60) is next.

Theorem D. Let � be a maximal ideal of A which does not lie under p. Then Ext1Op
(1p, Mp) is

a sub-A-module of Ext1good(1p, Mp)�.

Surprisingly enough, we cannot claim equality in general. In § 5.1, in the simplest case of the
neutral A-motive, we construct for some � and p an explicit extension in Ext1good(1p, 1p)� which
does not belong to Ext1Op

(1p, 1p).
In § 4.4, we define the global version of the above. Namely, the A-motive M defines an

A-motive MFp
over Fp by extending the base field. We let Ext1OF

(1, M) be the module of
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integral extensions, i.e. of extensions that are p-integral for all p after base-change along F ⊂ Fp

(Definition 4.58). Our second main result (repeated from Theorem 4.62) is as follows.

Theorem E. The A-module Ext1OF
(1, M) equals the image of MOF

[j−1] through ι. In addition,
ι induces a natural isomorphism of A-modules:

MOF
[j−1]

(id−τM )(MOF
)

∼−→ Ext1OF
(1, M).

Regulated extensions of A-motives. We are facing two main issues to pursue our analogy: the
counterpart of conjecture (C4) does not hold true and, more seriously, neither is the counterpart
of conjecture (C5): the A-module Ext1OF

(1, M) is typically not finitely generated. Those facts
suggest that the category MF –and also MMF –is too huge to held a convincing motivic cohomol-
ogy theory. We end this text by presenting a conjectural picture aiming to answer the analogue
of conjectures (C4) and (C5).

Pink, in the context of function fields Hodge structures [Pin97, § 6], is facing a similar issue.
There, he introduced the notion of Hodge additivity, whose counterpart for A-motives is as
follows.

Definition (cf. 5.2 for details). Let 0→M → E → N → 0 be an exact sequence of A-motives
over F . We say that [E] is regulated if the Hodge polygon of the Hodge–Pink structure attached
to M ⊕N matches that of E (see [Pin97, § 6]). We denote by Ext1,reg the submodule of regulated
extensions.

Pink’s intuition for introducing Hodge additivity is driven by the inexact feature of the
operation assigning to a Hodge–Pink structure its ‘classical’ Hodge structure (i.e. the data of
its Hodge filtration). Although Pink was concerned with the computation of Hodge groups, for
our purpose this prevents the well-definedness of a regulator map from the module of extensions
of A-motives to that of extensions of ‘classical’ Hodge structures (see Remark 5.2). Regulated
extensions are designed to resolve this point, hence the naming. The notion of regulation has
applications in sequels to this text [Gaz22, GM23].

In Corollary 5.5, we prove that ι induces an isomorphism of A-modules:

M + τM (τ∗M)
(id−τM )(M)

∼−→ Ext1,reg
MF

(1, M).

Although Ext1,reg
OF

(1, M) is still not finitely generated over A in general, a version of conjec-
ture (C5) involving the infinite places holds (we refer the reader to [Gaz22, Theorem 4.1]).
Concerning the analogue of conjecture (C4), we strongly suspect regulated extensions to also
correct the integral�=good extensions phenomenon; namely we expect the following to hold for
A-motives Mp over Fp (see Conjecture 5.8).

Conjecture. Let � be a maximal ideal of A not under p. Then,

Ext1,reg
Op

(1p, Mp) = Ext1,reg
good(1p, Mp)�.

In particular, the module Ext1,reg
good(1p, Mp)� does not depend on �.

We conclude this text by solving particular instances of the above conjecture (§ 5.3). The
general case, however, remains open.

1.3 Plan of the paper
The paper is organized as follows.
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In § 2.1, we review the usual setup (notation, definitions and basic properties) of A-motives
over an arbitrary commutative and unital A-algebra. We follow [HJ20, Har19] as a guideline,
though the former reference is concerned with the particular choice of a closed point∞ of degree
one and over a complete algebraically closed field. Most of the results on A-motives extend
without changes to our more general setting. In § 2.2, A-motivic cohomology is introduced. We
describe the extension modules in categories of A-motives and obtain Theorem A as Theorem 2.21
in the text. In § 2.3, we recall the definition and main properties of the �-adic realization functor
for A-motives, and introduce extensions having good reduction with respect to � in Definition 2.30.

Section 3 is concerned with mixed A-motives. In § 3.1 we recall, and add some new material,
to the theory of function fields isocrystals in the steps of [Mor21]. The main ingredient, used later
on in § 3.1 to define the category of mixed A-motives over A-fields, is the existence and uniqueness
of the slope filtration (extending [Har11, Proposition 1.5.10] to general coefficient rings A). We
focus on extension modules in the category MMF in § 3.2 where we deduce Theorem B from
Propositions 3.37 and 3.39 and Theorem 3.42.

In § 4, we develop the notion of maximal integral models of A-motives over local and global
function fields. It splits into four subsections. In § 4.1, we present integral models of Frobenius
spaces over local function fields. The theory is much easier than that for A-motives, introduced
over a local function field in § 4.2 and over a global function field in § 4.3. Although our definition
of integral model is inspired by Gardeyn’s work in the context of τ -sheaves [Gar03], our presen-
tation is simpler as we removed the locally free assumption. That maximal integral models are
locally free is automatic, as we show in Theorems 4.32 and 4.53. The chief aim of this section,
however, is § 4.4 where we use the results of the earlier subsections to prove Theorems D and E,
(respectively, Theorems 4.60 and 4.62 in the text).

Finally, in § 5 we introduce the notion of regulated extensions of A-motives with an eye
toward understanding the lack of equality in Theorem D, highlighted in § 5.1. We recall the
definition of Hodge polygons, as introduced in [Pin97], in § 5.2. Those are used to define regulated
extensions in Definition 5.1. We conclude this text by § 5.3, where we present a general hope that
Ext1,reg

Op
(1p, Mp) and Ext1,reg

good(1p, Mp)� match. We then prove some particular instances of this
expectation, namely when M arises from a Frobenius space with good reduction (Theorem 5.9),
or when M is a positive Carlitz’s twist A(n) for n � 0 (Theorem 5.13).

Throughout the text, we make constant use of extension modules in exact but non-necessarily
abelian categories. Although everything works as expected, we decided to add an appendix on
exact categories as Appendix A because we did not find all of the relevant references in the
literature.

2. Anderson A-motives and their extension modules

Let F be a finite field with q elements. By convention, unlabeled tensor products and fiber
products throughout this text are over F; all algebras are associative, commutative and with
unit. Let (C,OC) be a geometrically irreducible smooth projective curve over F, and fix a closed
point∞ on C. Let A := OC(C \ {∞}) be the ring of regular functions on C \ {∞} and let K be
the function field of C.

2.1 Definition of A-motives
This subsection is devoted to define and recall the main properties of Anderson A-motives.
We begin with a paragraph of notation.
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On the integral part of A-motivic cohomology

Preliminaries on j and τ . Let R be an F-algebra and let κ : A→ R be an F-algebra morphism.
We refer to R as the base algebra and κ as the characteristic morphism. The kernel of κ is
called the characteristic of (R, κ). We consider the ideal j = jκ of A⊗R generated by the set
{a⊗ 1− 1⊗ κ(a)|a ∈ A}; j is equivalently defined as the kernel of A⊗R→ R, a⊗ f → κ(a)f .
The following observation appears in [Har19].

Lemma 2.1. The ideal j is an invertible A⊗R-module.

According to Lemma 2.1, the A⊗R-module jn makes sense for any integer n and we have
canonical inclusions j−n ↪→ j−(n+1). Given an A⊗R-module M , we denote by M [j−1] the colimit

M [j−1] := lim−→ M ⊗A⊗R j−n

taken over non-negative integers n in the category of A⊗R-modules.

Remark 2.2. For consistency with [Har19], observe that the map of schemes

D(j) = (Spec A⊗R) \ V (j) −→ Spec(A⊗R)[j−1], p −→ p[j−1],

composed with Spec(A⊗R)[j−1]→ Spec A⊗R, q → q ∩ (A⊗R), coincides with the canoni-
cal inclusion D(j) ↪→ Spec A⊗R of an open subscheme. Hence, D(j) and Spec(A⊗R)[j−1]
are canonically isomorphic. As tensor products commute with direct limits, we further
have

M [j−1] ∼= M ⊗A⊗R (A⊗R)[j−1],

which implies that M [j−1] is obtained by pulling back M along the open immersion

(Spec A⊗R) \ V (j) ↪→ Spec A⊗R.

Given another module N , we shall use freely the identifications1

HomA⊗R(N, M)[j−1] ∼→ HomA⊗R(N, M [j−1]) ∼← Hom(A⊗R)[j−1](N [j−1], M [j−1]).

We also use, without further notice, that the map A⊗R→ (A⊗R)[j−1] is flat.2

We denote by τ : A⊗R→ A⊗R be the A-linear morphism given by a⊗ r → a⊗ rq on
elementary tensors. We denote by τ∗M be the pull-back of M by τ (see [Bou70, A.II.§ 5]); i.e.
τ∗M is the A⊗R-module

τ∗M := (A⊗R)⊗τ,A⊗R M,

where the subscript τ signifies that the relation (a⊗τ bm) = (aτ(b)⊗τ m) holds for all elements
a, b ∈ A⊗R, m ∈M , and where the module structure corresponds to b · (a⊗τ m) := (ba⊗τ m).
We let

1 : τ∗(A⊗R) −→ A⊗R,

be the A⊗R-linear morphism which maps (a⊗ r)⊗τ (b⊗ s) ∈ τ∗(A⊗R) to ab⊗ rsq ∈ A⊗R.

Anderson A-motives. The next definition takes its roots in the work of Anderson [And86],
though this version is borrowed from [Har19, Definition 2.1].

1 For any integer n, the module jn is finite projective and, hence, Hom(N, M) ⊗ jn ∼= Hom(N, M ⊗ jn); the first
isomorphism follows as direct limits commute with Hom(N,−). The second follows from Hom(N ⊗ j−n, M [j−1]) ∼=
Hom(N, M [j−1] ⊗ jn) together with M [j−1] ⊗ jn ∼= M [j−1] (as tensor products commute with colimits).
2 This follows from the flatness of the A ⊗ R-module jn together with the fact that colimits preserve exact
sequences.
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Q. Gazda

Definition 2.3. An Anderson A-motive M (over R) is a pair (M, τM ) where M is a projective
A⊗R-module of finite constant rank and where τM : (τ∗M)[j−1]→M [j−1] is an isomorphism of
(A⊗R)[j−1]-modules.

In the following, we simply write A-motive instead of Anderson A-motive. The rank of M
is the (constant) rank of M over A⊗R.

A morphism (M, τM )→ (N, τN ) of A-motives (over R) is an A⊗R-linear morphism
f : M → N such that f ◦ τM = τN ◦ τ∗f . We let MR be the A-linear category of A-motives
over R.

Remark 2.4. Several authors call A-motives as in Definition 2.3 abelian A-motives (see,
e.g., [BP20]). The word abelian refers to the assumption that the underlying A⊗R-module
is finite projective. Dropping this assumption is not a good strategy in our work, as too many
analogies with number fields motives would fail to hold.

Definition 2.5. An A-motive M = (M, τM ) over R is called effective if τM (τ∗M) ⊂M . We let
Meff

R be the full subcategory of MR whose objects are effective A-motives.

Given an A-motive M , we will write M without an underline to refer to its underlying module
and write τN to refer to the underlying morphism. Some important classical constructions are
as follows.

– Let 1 be the unit A-motive over R defined as (A⊗R,1).
– The direct sum of two A-motives M and N , denoted M ⊕N , is representable in MR and

corresponds to the A-motive whose underlying A⊗R-module is M ⊕N and whose τ -linear
morphism is τM ⊕ τN .

– Their tensor product, denoted by M ⊗N , is defined to be (M ⊗A⊗R N, τM ⊗ τN ). The tensor
operation admits 1 as a neutral object.

– The internal hom is the object H = Hom(M, N) of MR representing the functor X →
HomMR

(X ⊗M, N). One verifies that its underlying module is H = HomA⊗R(M, N) with
τH given by

τH : (τ∗H)[j−1] = HomA⊗R((τ∗M)[j−1], (τ∗N)[j−1]) ∼→ HomA⊗R(M [j−1], N [j−1]) = H[j−1],

mapping h → τN ◦ h ◦ τ−1
M .

– The dual of M is defined to be the A-motive Hom(M, 1).
– Given S an R-algebra, there is a base-change functor MR →MS mapping the A-motive

M = (M, τM ) over R to MS := (M ⊗R S, τM ⊗R idS).
– In the situation where S is an étale R-algebra, there is also a restriction functor ResS/R :

MS →MR mapping an A-motive M over S to M seen as an A-motive over R (this uses [Sta,
Tag 0S6W]). Given two A-motives M and N over R and S, respectively, we have

HomMR
(M, ResS/R N) = HomMS

(MS , N).

In other words, the base-change functor is left-adjoint to the restriction functor.

Example 2.6 (Carlitz’s motive). Let C = P1
F be the projective line over F and let ∞ be the

closed point of coordinates [0 : 1]. If t is any element in O(P1
F \ {∞}) whose order of vanishing

at ∞ is 1, we have an identification A = F[t]. For an F-algebra R, the tensor product A⊗R
is identified with R[t]. The morphism τ acts on p(t) ∈ R[t] by raising its coefficients to the qth
power. It is rather common to denote by p(t)(1) the polynomial τ(p(t)). Let κ : A→ R be an
F-algebra morphism and let θ = κ(t). The ideal j ⊂ R[t] is principal, generated by (t− θ).
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On the integral part of A-motivic cohomology

The Carlitz F[t]-motive C over R is defined by the couple (R[t], τC) where τC maps τ∗p(t) to
(t− θ)p(t)(1). Its nth tensor power Cn := C⊗n is isomorphic to the F[t]-motive whose underlying
module is R[t] and where τCn maps τ∗p(t) to (t− θ)np(t)(1).

To match with number fields analogy, we let A(n) := C−n = (Cn)∨. For A = F[t], this nota-
tion stresses that A(1) plays the role of the number fields Tate motive Z(1) and, more generally,
that A(n) plays the role of Z(n).

In particular, the category MR is additive and A-linear and it is a mere verification that
that data of (MR,⊗, 1) forms a symmetric monoidal additive category which is rigid (e.g.
[HJ20, § 2.3]).

In general, morphisms in MR might not admit kernel nor cokernel because the underly-
ing module of the naturally defined kernel or cokernel might not be projective over A⊗R.
Nonetheless, there are some favorable situations where they are.

Lemma 2.7. Let f : M → N be a morphism in MR.

(i) If its underlying map of modules is surjective, then f admits a kernel in MR and its underlying
module is ker f .

(ii) If its underlying map of modules is a split injection, then f admits a cokernel in MR and its
underlying module is coker f .

Proof. We only prove the first part, as the argument for the second part is similar. By assumption,
f : M → N is surjective. As N is projective, f admits a splitting, amounting to M ∼= ker f ⊕N .
We deduce that ker f is finite projective (as M is) and that the sequence 0→ (τ∗ ker f)[j−1]→
(τ∗M)[j−1]→ (τ∗N)[j−1]→ 0 is exact. By the universal property of ker f , there exists a unique
dashed arrow making the following diagram commute:

and this dashed arrow is an isomorphism by the Snake lemma. That is, ker(f) := (ker f, τker f )
defines an A-motive over R sitting in a sequence S : 0→ ker(f)→M → N → 0.

It remains to check its universal property. Let g : M ′ →M be a morphism in MR whose
composition with f is zero. From the universal property of ker f in ModA⊗R, there exists a
unique h : M ′ → ker f through which g factors. Since S splits in ModA⊗R, (ker f)[j−1] (respec-
tively, (τ∗ ker f)[j−1])) is also a kernel of f [j−1] (respectively, (τ∗f)[j−1]) and g factors uniquely
through it. By uniqueness, we obtain h[j−1] = τker f ◦ (τ∗h) ◦ τ−1

M ′ [j−1] from which we deduce that
h extends (uniquely) to a morphism h : M ′ → ker(f). �

We end this paragraph by showing a useful corollary of Lemma 2.7. Recall that a retraction
in an additive category is a morphism r : X → Y for which there exists a section s : Y → X such
that r ◦ s = idY ; an additive category is called weakly idempotent complete if every retraction
admits a kernel [Büh10, § 7]. The following consequence will be important for the result in the
appendix to apply, especially Proposition A.5.

Corollary 2.8. The additive category MR is weakly idempotent complete.

Proof. A retraction in MR is necessarily surjective at the level of modules, hence admits a kernel
by Lemma 2.7. �
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Q. Gazda

Isogenies of A-motives. The category MR of A-motives over R is generally not abelian, even
if R = F is a field. To remedy to the non-abelian feature, we introduce next the category Miso

R

of A-motives up to isogenies over R (see Definition 2.12), which is abelian whenever R = F is a
field. Following [Har19, Definition 5.5, Proposition 5.8, Theorem 5.12, Corollary 5.15], we recall
the following result.

Proposition-Definition 2.9. A morphism f : M → N in MR is an isogeny if one of the
following equivalent conditions is satisfied:

(a) f is injective and coker(f : M → N) is a finite projective R-module;
(b) M and N have the same rank and coker f is finite over R;
(c) there exists 0 �= a ∈ A such that f induces an isomorphism of (A⊗R)[a−1]-modules

M [a−1] ∼→ N [a−1];
(d) there exists 0 �= a ∈ A and g : N →M in MR such that f ◦ g = a idN and g ◦ f = a idM .

If an isogeny between M and N exists, M and N are said to be isogenous.

We then introduce the notion of saturation.

Definition 2.10. Let f : N →M be a morphism of A-motives.

(i) We call f saturated, or say that N is saturated in M , if f admits a cokernel in MR.
(ii) Let Sat(f) denote the category of diagrams in MR of the form

where g is saturated, with morphisms in Sat(f) being morphisms of diagrams which are the
identity on both N and M . When it exists, we write an initial object in Sat(f), unique up
to unique isomorphism, in the form

and call f sat : N sat →M the saturation of f .

Lemma 2.11. Assume that R = F is a field and let f : N →M be a morphism in MF . Then f
admits a kernel in MF , and Sat(f) admits an initial object. If, further, f is a monomorphism,
the canonical map i : N → N sat is an isogeny.

Proof. The choice of R = F a field makes A⊗ F into a Dedekind domain. Therefore, any torsion-
free subquotient of a finite projective A⊗ F -module is itself finite projective; hence, so is the
module ker(f). That τN induces an isomorphism τker f : τ∗ ker(f)[j−1] ∼→ ker(f)[j−1] and that
ker(f) := (ker(f), τker f ) represents a kernel of f in MF is a mere verification similar to the proof
of Lemma 2.7.

For what remains, we assume, up to replacing N by the quotient N/ker(f), that f is an
inclusion of subobjects N ↪→M ; i.e. on the underlying modules, f is the inclusion N ⊂M . We
consider the submodules

N sat :=
{
m ∈M | there exists a ∈ A⊗ F : a · n ∈ N

}
,

(τ∗N)sat :=
{
m ∈ τ∗M | there exists a ∈ A⊗ F : a · n ∈ τ∗N

}
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of M and τ∗M , respectively. Both are finite projective A⊗ F -modules and so is M/N sat. One
verifies that τM induces an isomorphism

(τN )sat : (τ∗N)sat[j−1] ∼−→ N sat[j−1].

It remains to show that the couple (N sat, (τN )sat) forms an A-motive N sat; namely, it suffices to
prove the equality τ∗N sat = (τ∗N)sat as submodules of τ∗M . That N sat ↪→M is a saturation of
f will then be clear.

We consider the following ideal of A⊗ F :

v := Ann(N sat/N) = {a ∈ A⊗ F | for all m ∈ N sat : am ∈ N}.
As the modules (τ∗N)sat/τ∗N and N sat/N are isomorphic away from j (via the induced map
from τM ), we obtain

v = Ann(N sat/N) = Ann((τ∗N)sat/τ∗N)) ⊂ Ann(τ∗N sat/τ∗N) = τ(v)

as ideals of (A⊗ F )[j−1], where we used τ∗N sat ⊂ (τ∗N sat) for the above inclusion and
[Sta, Tag 07T8] for the last equality. Using prime ideal decomposition in the Dedekind domain
A⊗ F yields τ(v) = v. Consequently, v descends to an ideal of A from which we obtain
(τ∗N)sat = τ∗N sat, as desired. In addition, this shows that the cokernel of N ↪→ N sat is A-torsion,
hence that N → N sat is an isogeny (use Definition (c) for a ∈ A a generator of a principal ideal
in the form vh). �

The previous lemma motivates the definition of the category of A-motives up to isogenies
(see [HJ20, Definition 2.3.1]).

Definition 2.12. Let Miso
R be the K-linear category whose objects are those of MR and where

the hom-sets of two objects M and N is given by the K-vector space

HomMiso
R

(M, N) := HomMR
(M, N)⊗A K.

We call the objects of Miso
R the A-motives over R up to isogenies.

An isogeny in MR then becomes an isomorphism in Miso
R . In particular, over R = F a field,

Lemma 2.11 implies that any morphism admits a kernel and a cokernel in Miso
F . The following

is detailed in [HJ20, Proposition 2.3.4].

Proposition 2.13. The category Miso
F is abelian.

2.2 Extension modules in MR

In this subsection, we are concerned with the computation of extension modules in categories of
A-motives. Theorem A of the introduction is proved below (Theorem 2.21).

Let R be an A-algebra. As mentioned above, the category of A-motives over R is not
abelian. However, there is a notion of exact sequences in the category MR which we borrow from
[HJ20, Remark 2.3.5(b)]:

Definition 2.14. We say that a sequence 0→M ′ →M →M ′′ → 0 in MR is exact if its
underlying sequence of A⊗R-modules is exact.

The next proposition appears and is discussed in [HJ20, Remark 2.3.5(b)] and will allow
us to consider extension modules in § 3.2. Although stated in the case where R is a particular
A-algebra and deg(∞) = 1, its statement extends to our setting.

Proposition 2.15. The category MR together with the notion of exact sequences as in
Definition 2.14 forms an exact category (Definition A.1).
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Proof. We consider the forgetful functor F : MR →ModA⊗R. In particular, a sequence S in MR

is exact if and only if F (S) is exact. By Lemma 2.7, Proposition A.8 applies to the functor F ,
thus completing the proof. �

By the above proposition, we can make sense of Exti
MR

for i ∈ {0, 1} but, as MR is not
abelian, there is an ambiguity about what one means for i > 1. This ambiguity is cleared up
in the appendix where we defined higher extension modules in exact categories. By the fact
that MR is weakly idempotent complete (Corollary 2.8) and by the embedding Theorem A.3(ii),
higher extension modules in MR behave as well as in abelian categories.

Let M and N be two A-motives over R. The morphisms from N to M in MR are precisely
the A⊗R-linear maps of the underlying modules f : N →M such that τM ◦ τ∗f = f ◦ τN . The
module of degree zero extensions is set to be the module of homomorphisms in MR and, hence,

Ext0MR
(N, M) := HomMR

(N, M) = {f ∈ HomA⊗R(N, M) | τM ◦ τ∗f = f ◦ τN}.
The next proposition computes the module of degree-one extensions.

Proposition 2.16. There is a surjective morphism of A-modules, functorial in both N and M ,

ι : HomA⊗R(τ∗N, M)[j−1] � Ext1MR
(N, M)

whose kernel is
{
f ◦ τN − τM ◦ τ∗f | f ∈ HomA⊗R(N, M)

}
. ι maps u ∈ HomA⊗R(τ∗N, M)[j−1]

to the class of the extension [M ⊕N,
( τM u

0 τN

)
] in Ext1MR

(N, M).

Proof. Consider an exact sequence [E] : 0→M
i→ E

π→ N → 0 in MR, namely, an exact
sequence of the underlying A⊗R-modules with commuting τ -action. Because N is a pro-
jective module, there exists s : N → E a section of the underlying short exact sequence of
A⊗R-modules. We let ξ := i⊕ s : M ⊕N → E. This produces an equivalence of extensions
as follows.

Because ξ−1 ◦ τM ◦ ξ is an isomorphism from τ∗M [j−1]⊕ τ∗N [j−1] to M [j−1]⊕N [j−1] which
restricts to τM on the left and to τN on the right, there exists u ∈ Hom(A⊗R)[j−1](τ∗N [j−1],
M [j−1]) = HomA⊗R(τ∗N, M)[j−1] such that ξ−1 ◦ τE ◦ ξ =

( τM u
0 τN

)
. We have just shown that

the map

ι : HomA⊗R(τ∗N, M)[j−1] −→ Ext1MR
(N, M), u −→ [M ⊕N,

( τM u
0 τN

)
]

is onto. Note that ι(0) corresponds to the class of the split extension. Further, ι(u + v) corre-
sponds to the Baer sum of ι(u) and ι(v). In addition, given the exact sequence [E] and a ∈ A,
the pullback of multiplication by a on N by π gives another extension which defines a · [E].
If [E] = ι(u), it is formal to check that a · [E] = ι(au). As such, ι is a surjective A-module
morphism. To find its kernel, it suffices to determine whenever ι(u) is equivalent to the split
extension. This happens if and only if there is a commutative diagram in MR of the form
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where h is an isomorphism in MR. Since the diagram commutes in the category of A⊗R-
modules, it follows that h is of the form

( idM f
0 idN

)
for an A⊗R-linear map f : N →M . Because

it is a diagram in MR, it further requires commuting τ -action; that is,(
τM u
0 τN

)
τ∗
(

idM f
0 idN

)
=
(

idM f
0 idN

)(
τM 0
0 τN

)
.

The above equation amounts to u = f ◦ τN − τM ◦ τ∗f and, hence,

ker(ι) =
{
f ◦ τN − τM ◦ τ∗f | f ∈ HomA⊗R(N, M)

}
.

This concludes the proof. �

Corollary 2.17. Let f : M →M ′′ be an epimorphism in MR. Then, the induced map
Ext1MR

(N, M)→ Ext1MR
(N, M ′′) is onto.

Proof. Because N is finite projective over A⊗R, so is τ∗N and, hence, the functor
HomA⊗R(τ∗N,−) is exact. That f is an epimorphism means that f is a surjective morphism of
the underlying modules. The induced morphism

HomA⊗R(τ∗N, M)[j−1] −→ HomA⊗R(τ∗N, M ′′)[j−1]

is therefore surjective, and we conclude by Proposition 2.16. �

As an consequence of the above corollary and Proposition A.4 of the appendix, we record
the following result.

Proposition 2.18. The modules Exti
MR

(N, M) vanish for i > 1.

Propositions 2.16 and 2.18 combine to show that the cohomology of the complex[
HomA⊗R(N, M)

τ∨
N−τM−−−−−→ HomA⊗R(τ∗N, M)[j−1]

]
, (2.1)

sitting in degree zero and one, computes the extension modules in the corresponding degree. In
that respect, we slightly abuse notation in making the next definition.

Definition 2.19. We denote by RHomMR
(N, M) the complex (2.1).

Remark 2.20. The notation ‘RHom’ is generally reserved for the derived Hom, namely, the uni-
versal extension of the Hom functor in the derived category. Here we do not consider a derived
category, since MR is not abelian, and there is no confusion possible.

The category (MR,⊗, 1) is a monoidal exact category in the sense of Definition A.9. From
Corollary A.10, we have functorial isomorphisms for all i � 0:

Exti
MR

(N, M) ∼−→ Exti
MR

(1, M ⊗N∨) (2.2)

In particular, there is no loss of generality in considering extension modules of the form
Exti

MR
(1, M). From now on, we are mainly interested in extension modules of the latter form.

For readability, we introduce here and elsewhere the notation (id−τM )(M) to designate the
sub-A-module

(id−τM )(M) :=
{
m− τM (τ∗m) | m ∈M

}
of M [j−1]. We shall restate the main results of this section in this case (repeated from Theorem A
of the introduction).

1729

https://doi.org/10.1112/S0010437X24007218
Downloaded from https://www.cambridge.org/core. IP address: 35.202.208.150, on 26 Sep 2024 at 22:13:47, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X24007218
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Q. Gazda

Theorem 2.21. The cohomology of RHomMR
(1, M) is computed by the cohomology of the

complex of A-modules [
M

id−τM−−−−→M [j−1]
]

sitting in degree zero and one. Further, the natural A-linear surjection

ι : M [j−1] � Ext1MR
(1, M),

whose kernel is (id−τM )(M), is given by mapping m ∈M [j−1] to the class of the extension

0→M → [
M ⊕ (A⊗R),

(
τM m·1
0 1

)]→ 1→ 0.

Remark 2.22. From HomMiso
R

(−,−) = HomMR
(−,−)⊗A K (cf. Definition 2.12), the extension

spaces of 1 by M in the K-linear category Miso
R are computed by the complex[

M ⊗A K
id−τM−−−−→M [j−1]⊗A K

]
.

2.3 Extensions having good reduction
We introduce here the function field analogue of the �-adic realization functor (Definition 2.24),
and show that it is exact (Proposition 2.27). It will allow us to define extensions with good
reduction next (Definition 2.30).

Let � be a maximal ideal of A and denote by O� the completed local ring of A at �. We
let F be a field containing K and let κ : A→ F be the inclusion. Let F s be a separable closure
of F and denote by GF = Gal(F s|F ) the absolute Galois group of F equipped with the profinite
topology. The group GF acts A-linearly on the left-hand side of the tensor A⊗ F s, and this
action extends by continuity to an O�-linear action of GF on the algebra

A�(F s) := (A⊗ F s)∧� = lim←−
n

(A⊗ F s)/�n(A⊗ F s)

leaving A�(F ) := (A⊗ F )∧� invariant. If F� denotes the residue field of O� and π a uniformizer,
we have an identification A�(F ) = (F� ⊗ F )[[π]].

Remark 2.23. In the function field/number field dictionary, the assignment R → A(R) is akin to
the p-typical Witt vectors construction R →W (R) (e.g. [Har09, § 1.1]).

Let M = (M, τM ) be an A-motive over F of rank r. Let MF s = (MF s , τM ) be the A-motive
over F s obtained from M by base-change. Here GF acts O�-linearly on

(MF s)∧� := lim←−
n

(M ⊗F F s)/�n(M ⊗F F s) = M ⊗A⊗F A�(F s)

and leaves the submodule M∧
� = M ⊗A⊗F A�(F ) invariant. Following [And86, § 1.8], we state

the following definition.

Definition 2.24. The �-adic realization T� M of M consists of the O�-module

T� M :=
{
m ∈ (MF s)∧� | m = τM (τ∗m)

}
together with the compatible action of GF which it inherits as a submodule of (MF s)∧� .

Remark 2.25. In [Mor21], Mornev extended this construction to the situation where � is the
closed point ∞.

The next lemma is well-known in the case of τ -sheaves (e.g. [TW96, Proposition 6.1]).
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On the integral part of A-motivic cohomology

Lemma 2.26. The map T� M ⊗O�
A�(F s)→ (MF s)∧� , ω ⊗ f → ω · f is an isomorphism of

A�(F s)-modules. In particular, the O�-module T� M is free of rank r and the action of GF

on T� M is continuous.

Proof. Let n � 1. In the ring A⊗ F , the ideals �n and j are coprime. Hence, the following
composition of A⊗ F -linear maps is a well-defined isomorphism:

ϕn : τ∗(M/�nM) ∼= (τ∗M)
�n(τ∗M)

∼= (τ∗M)[j−1]
�n(τ∗M)[j−1]

τM−→ M [j−1]
�nM [j−1]

∼= M/�nM.

The data of ϕn induces a semi-simple q-linear map3 (in the sense of [Kat73a, § 1]) on the finite-
dimensional F s-vector space:

(M ⊗F F s)/�n(M ⊗F F s) = (MF s)∧� /�n(MF s)∧� .

By Lang’s isogeny theorem (e.g. [Kat73a, Proposition 1.1]), the multiplication map

{m ∈ (MF s)∧� /�n(MF s)∧� | τM (τ∗m) = m} ⊗F F s → (MF s)∧� /�n(MF s)∧� (2.3)

is an isomorphism. Taking the inverse limit of (2.3) over all n yields the desired isomorphism.
As (MF s)∧� is free of rank r over A�(F s), the same is true for the module (MF s)∧� /�n(MF s)∧�

over (A/�n)⊗ F s. The isomorphism (2.3) implies that the A/�n-module

[(MF s)∧� /�n(MF s)∧� ]τM=1 := {m ∈ (MF s)∧� | τM (τ∗m) = m}
is free of rank r over A/�n. Their projective limit T� M is thus a free O�-module of rank r.

By definition, the action of GF on T� M is continuous if, and only if, for all n, the induced
action of GF on T� M/�n T� M factors through Gal(En|F ) for some finite Galois extension
En of F . Let t = {t1, . . . , ts} be a basis of the finite-dimensional F -vector space M∧

� /�nM∧
� .

Let FM be the matrix of τM written in the basis τ∗t and t. Let ω = {ω1, . . . , ωs} be a basis of
T� M/�n T� M over F. By (2.3), ω is a basis of (MF s)∧� /�n(MF s)∧� over F s, and we let wij ∈ F s

be the coefficients of ω expressed in t, that is, for i ∈ {1, . . . , s}, ωi =
∑

wijtj . We let En

denote the Galois closure of the finite separable extension F (wij |(i, j) ∈ {1, . . . , s}2) of F in F s.
Then,

T� M/�n T� M = {m ∈ (M ⊗F En)/�n(M ⊗F En) | τM (τ∗m) = m}.
That is, the action of GF factors through Gal(En|F ), as desired. �
Proposition 2.27. The following sequence of O�[GF ]-modules is exact:

0→ T� M −→ (MF s)∧�
id−τM−−−−→ (MF s)∧� −→ 0.

Proof. Everything is clear but the surjectivity of id−τM . From Lemma 2.26, one reduces to the
situation where M = 1 is the unit A-motive, in which case (MF s)∧� = A�(F s) = (F� ⊗ F s)[[π]] and
τM = id⊗Frobq. Let f =

∑
n�0 anπn be a series in (F� ⊗ F s)[[π]] and let bn ∈ F� ⊗ F s be such

that [idF�
⊗(id−Frobq)](bn) = an (which exists as F s is separably closed). Then, g :=

∑
n�0 bnπn

in A�(F s) satisfies

f = (id−τM )(g),

and, hence, id−τM is surjective. �
We obtain the following.

3 For k a field containing F and V a k-vector space, an F-linear endomorphism f of V is q-linear if f(rv) = rqf(v)
for all r ∈ k and v ∈ V .
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Corollary 2.28. The functor M → T� M , from MF to the category of continuous O�-linear
GF -representations, is exact.

Proof. Let S : 0→M ′ →M →M ′′ → 0 be an exact sequence in MF . The underlying sequence
of A⊗ F -modules is exact, and because A�(F s) is flat over A⊗ F (e.g. [Bou70, AC.III § 4,
Theorem 3(iii)]), the sequence of A�(F s)-modules (SF s)∧� is exact. In particular, the next
commutative diagram of O�-modules has exact rows:

and the Snake lemma together with Proposition 2.27 yields that T� S is exact. �

Let M be an A-motive over F . From Corollary 2.28, the functor T� induces an A-linear
morphism:

Ext1MF
(1, M) −→ H1(GF , T� M) (2.4)

into the first continuous cohomology group of GF with values in T� M . The next proposition is
devoted to the explicit determination of (2.4).

Proposition 2.29. There is a commutative diagram of A-modules:

Ext1MF
(1, M)

(2.4)
�� H1(GF , T� M)

M [j−1]

(id − τM )(M)

ι �

��

��
M∧

�

(id − τM )(M∧
� )

�
��

where the right vertical morphism maps the class of f ∈M∧
� to the class of the cocycle

σ → ξ − σξ, ξ being any solution in (MF s)∧� of f = ξ − τM (τ∗ξ).

Proof. We prove the commutativity. Let [E] : 0→M → E → 1→ 0 be a class in Ext1MF
(1, M)

of the form ι(m) for some m ∈M [j−1] (Theorem 2.21). The �-adic realization T� E of E is the
O�[GF ]-module consisting of solutions ξ ⊕ a ∈ (MF s)∧� ⊕A�(F s) of the equation(

τM m · 1
0 1

)(
τ∗ξ
τ∗a

)
=
(

ξ
a

)

(see Definition 2.24). The above equality amounts to a ∈ O� and ξ − τM (τ∗ξ) = am. A splitting of
[T� E] as a sequence ofO�-modules corresponds to the choice of a particular solution ξm ∈ (MF s)∧�
of ξ − τM (τ∗ξ) = m (whose existence is ensured by Proposition 2.27). We then have

T� M ⊕O�
∼−→ T� E, (ω, a) −→ (ω + aξm, a).

It follows that the morphism (2.4) in the diagram in Proposition 2.29 maps [E] to the class of the
cocycle (σ → ξm − σξm), where ξm is any solution in (MF s)∧� of the equation ξ − τM (τ∗ξ) = m.
In other words, the square commutes.

It remains to check that the right vertical morphism is an isomorphism. Applying the functor
of GF -invariants to the short exact sequence of Proposition 2.27, we obtain a long exact sequence
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of cohomology:

M∧
�

id−τM−−−−→M∧
� −→ H1(GF , T� M) −→ H1(GF , (MF s)∧� ).

Therefore, it is sufficient to prove that H1(GF , (MF s)∧� ) vanishes. We have (MF s)∧� = M ⊗A⊗F

A�(F s), GF acting on the right-hand side of the tensor. Hence, it is enough to prove that the
module H1(GF ,A�(F s)) vanishes. This follows from

H1(GF ,A�(F s))
(1)
= lim←−

n

H1(GF , (A/�n)⊗ F s) = lim←−
n

(A/�n)⊗H1(GF , F s)
(2)
= (0)

where we used (1) the explicit form A�(F s) = (F� ⊗ F s)[[π]] and (2) that H1(GF , F s) vanishes by
the additive version of Hilbert’s 90 theorem [Ser68, x.§ 1, Proposition 1]. �

For the remainder of this section, let us assume that F = Fp is a local function field with
valuation ring Op and maximal ideal p. Let F ur

p be the maximal unramified extension of Fp in F s
p .

Let Ip be the inertia subgroup of Gp = GFp .

Definition 2.30. Let M be an A-motive over Fp, and let � be a maximal ideal in A. We say
that an extension [E] of 1 by M has good reduction with respect to � if [E] lies in the kernel
of Ext1MFp

(1, M)→ H1(Ip, T� M). We denote by Ext1good(1, M)� the kernel of (2.4), namely the
module of extensions having good reduction with respect to �.

The proof of Proposition 2.29 with Ip = Gal(F s
p |F ur

p ) in place of GF applies almost verbatim
to show the following.
Proposition 2.31. There is the following commutative diagram of A-modules.

Ext1MFp
(1, M)

(2.4)
�� H1(Ip, T� M)

M [j−1]

(id − τM )(M)

ι �

��

��
(MF ur

p
)∧�

(id − τM )((MF ur
p

)∧� )

�
��

In particular, given m ∈M [j−1], the following are equivalent:

(a) the extension ι(m) has good reduction with respect to �,
(b) the equation ξ − τM (τ∗ξ) = m admits a solution ξ in (MFur

p
)∧� .

Definition 2.30 should presumably be independent of �. The analogous statement is the
counterpart of conjecture (C3), which we state next.

Conjecture 2.32 (Independence of �). Assume κ(A) ⊂ Op. Let [E] be an extension of 1 by
M in the category MFp . If [E] has good reduction with respect to an ideal � of A for which
κ(�)Op = Op, then it has good reduction with respect to any ideal �′ with the same property.

3. Mixed A-motives and their extension modules

We discuss here the notion of mixedness for Anderson A-motives. In the case where A is a
univariate polynomial algebra, the definition of pure t-motives is traced back to the work of
Anderson [And86, 1.9]. Mixed A-motives were first mentioned in the talk of Pink at the Arbeit-
stagung in Bonn from 1997.4 A systematic study, however, appeared only recently in the work of

4 Available at https://people.math.ethz.ch/∼pink/ftp/HS-AT97.pdf.
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Hartl and Juschka [HJ20, § 3] under the condition that the place ∞ has degree one and the base
field R = F is algebraically closed. Our presentation deals with the most general case: arbitrary
curve C and place ∞, and over an arbitrary base field F . Compared with [Tae09] or [HJ20], the
new difficulty is to deal with non-perfect fields F , since, then, the slope filtration for isocrystals
does not necessarily split.

3.1 Mixed Anderson A-motives
Isocrystals over a field. In this subsection, we present some materials on function fields

isocrystals following [Mor21]. Our objective is to prove existence and uniqueness of the
slope filtration with pure subquotients having increasing slopes. The general theory of slope
filtrations has been developed in [And09], and the results of interest for us on isocrystals appear
in [Har11] in the case A is a univariate polynomial algebra. The new account of this subsection
is the adaptation of [Har11, Proposition 1.5.10] to allow more general ring A (see Theorem 3.10).
All of these are key steps towards the definition of weights and mixedness (Definition 3.20).

We begin with some general notation. Let R be an F-algebra and let E be a local function
fields. By that, we mean that E is the field of Laurent series over a finite field extension k of F in
the formal variable π, O the subring of E consisting of power series over k and m the maximal
ideal of O. Explicitly E = k((π)), O = k[[π]] and m = πO. In the following, E will correspond to
the local field of (C,OC) at a closed point of C.

Extending the notation introduced in § 2.3 in the context of the �-adic realization functor,
we denote by A(R) the completion of the ring O ⊗R at its ideal m⊗R:

A(R) := lim←−
n

(O ⊗R)/(mn ⊗R) (3.1)

and we let B(R) be the ring E ⊗O A(R). Through the previous identifications, we readily
check that A(R) = (k ⊗R)[[π]] and B(R) = (k ⊗R)((π)). The invertible elements of B(R) are
described as

B(R)× =
⋃
n∈Z

πn · A(R)×, A(R)× = (F� ⊗R)× + πA(R).

Given x ∈ B(R)×, we define vπ(x) as the unique n ∈ Z for which x ∈ πn · A(R)×.
Let τ : O ⊗R→ O⊗R, be theO-linear map induced by a⊗ r → a⊗ rq. We shall also denote

by τ its continuous extension to A(R) or B(R). Observe that vπ is preserved by τ . Again, we
denote by 1 the canonical A⊗R-linear morphisms τ∗A(R)→ A(R) and τ∗B(R)→ B(R).

For the remainder of this subsection, we assume that R = F is a field.

Definition 3.1. An isocrystal D over F is a pair (D, ϕD) where D is a free B(F )-module of
finite rank and ϕD : τ∗D → D is a B(F )-linear isomorphism.

A morphism (D, ϕD)→ (C, ϕC) of isocrystals is a B(F )-linear morphism of the underlying
modules f : D → C such that f ◦ ϕD = ϕC ◦ τ∗f . We let ICF be the category of isocrystals
over F .

Remark 3.2. Pursuing the analogy of Remark 2.23, isocrystals are the analogue of the eponymous
object in p-adic Hodge theory (we refer to [Har09, § 3.5]). In both settings, such objects carry a
slope filtration (see Theorem 3.10 for the function fields one). For number fields, isocrystals are
only defined at finite places, whereas for function fields, isocrystals are defined regardless of the
finiteness of the place. In the next subsection, we use the slope filtration at ∞ in order to define
weights.
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On the integral part of A-motivic cohomology

We define the rank rkD of D to be the rank of D over B(F ). If D is nonzero, let b be a
basis of D and let U denote the matrix of ϕ expressed in τ∗b and b. A different choice of basis
b′ leads to a matrix U ′ such that U = τ(P )U ′P−1 for a certain invertible matrix P with coef-
ficients in B(F ). As such, vπ(det U), well-defined as det U is invertible in B(R), is independent
of b. We denote it by deg D and we name it the degree of D. We define the slope of D to be
the rational number λ(D) = δ deg D/ rk D, where δ is the degree of k over F.

Remark 3.3. The normalizing factor δ appearing in the slope was introduced by Mornev [Mor21]
in order to manage consistently finite fields extensions.

From [Mor21, Proposition 4.1.1], the category ICF is abelian. We can therefore consider exact
sequences in ICF . The degree and rank are additive in short exact sequences, and the association
D → −λ(D) defines a slope function for ICF in the sense of [And09, Definition 1.3.1]. The second
point of the next definition should be compared with [And09, Definition 1.3.6].

Definition 3.4. Let D = (D, ϕ) be an isocrystal over F .

(i) A subisocrystal of D is an isocrystal G = (G, ϕG) for which G ⊂ D, ϕG = ϕD|τ∗G. The
quotient of D by G is the pair (D/G, ϕD) (this is indeed an isocrystal by [Mor21,
Proposition 4.1.1]).

(ii) The isocrystal D is semistable (respectively, isoclinic) if, for any nonzero subisocrystal D′

of D, λ(D′) � λ(D) (respectively, λ(D′) = λ(D)).

Semistability and isoclinicity are related to the notion of purity, borrowed from [Mor21,
Definition 3.4.6], that we next recall. We first require the definition of A(F )-lattices.

Definition 3.5. Let D be a free B(F )-module of finite rank. An A(F )-lattice in D is a
sub-A(F )-module of finite type of D which generates D over B(F ).

Observe that any A(F )-lattice L in D is free, and that its rank is the rank of D over B(F ).
We denote by 〈ϕDL〉 the sub-A(F )-module ϕD(τ∗L) in D: it is again an A(F )-lattice in D since
ϕD is an isomorphism. We define 〈ϕn

DL〉 inductively to be the A(F )-lattice 〈ϕD〈ϕn−1
D L〉〉. To

include the n = 0-case, we agree on 〈ϕ0
DL〉 = L.

Definition 3.6. A nonzero isocrystal (D, ϕD) over F is said to be pure of slope λ if there
exist an A(F )-lattice L in D and integers s and r > 0 such that 〈ϕrδ

D L〉 = msL and λ = s/r. By
convention, the zero isocrystal is pure with no slope.

Example 3.7. Let D be the free B(F )-module of rank r � 1 with basis {e0, . . . , er−1} and let ϕD :
τ∗D → D be the unique linear map such that ϕD(τ∗ei−1) = ei for 1 � i < r and ϕD(τ∗er−1) =
πse0. Then (D, ϕD) is a pure isocrystal of slope δs/r with A(F )-lattice given by A(F )e0 ⊕ · · · ⊕
A(F )es−1.

The following lemma relates the definition of slopes from purity and from slope functions.
It also implies that one can refer to the slope of a pure isocrystal.

Lemma 3.8. If D is a pure isocrystal of slope λ, then λ(D′) = λ for any nonzero subisocrystal
D′ of D. In particular, D is isoclinic (hence, semistable).

Proof. Let L be an A(F )-lattice in D such that 〈ϕrδL〉 = msL for integers r > 0 and d such
that λ = s/r (whose existence is ensured by the definition of pureness). If D′ = (D′, ϕ) is a
nonzero subisocrystal of D, then L′ = L ∩D′ is an A(F )-lattice in D′ such that 〈ϕrδL′〉 = msL′.
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As L′ is nonzero, let {t1, . . . , t�} be a basis of L′ over A(F ). We have

(det ϕ)rδ(t1 ∧ · · · ∧ t�) = ms�(t1 ∧ · · · ∧ t�) in
�∧

L′.

Hence, rδ deg D′ = s rk D′, which yields

λ(D′) =
δ deg D′

rkD′ =
s

r
= λ. �

Definition 3.9. A slope filtration for D is an increasing sequence of subisocrystals of D

0 = D0 � D1 � · · · � Ds = D,

satisfying:

(i) for all i ∈ {1, . . . , s}, Di/Di−1 is semistable;
(ii) we have λ(D1) < λ(D2/D1) < · · · < λ(Ds/Ds−1).

Theorem 3.10. Let D be an isocrystal over F . Then D carries a unique slope filtration:

0 = D0 � D1 � · · · � Ds = D. (3.2)

In addition, for all i ∈ {1, . . . , s}, the quotients Di/Di−1 are pure isocrystals. In particular, the
conditions pure, semi-stable and isoclinic are equivalent.

Remark 3.11. The proof presented below relies on [Har11, Proposition 1.5.10] which already uses
Dieudonné–Manin classification (in the case A = F[t]). It would be much more satisfactory to
prove the equivalence between semistability and isoclinicity directly, so that Theorem 3.10 would
follow from André’s theory.

Proof of Theorem 3.10. The existence and uniqueness of the slope filtration follows from
[And09, Theorem 1.4.7] applied to the slope function D → −λ(D) on the abelian category ICF .

Hence, we only need to prove existence of (3.2) with pure subquotients since uniqueness
follows from [And09, Theorem 1.4.7]. If δ = 1, then A(F ) is identified with F [[π]] and
Theorem 3.10 is proved in [Har11, Proposition 1.5.10]. We now explain how the general case
reduces to this one. Let G be the finite field extension of F corresponding to

G := {f ∈ F̄ ∩ F | f qδ
= f}.

Let φ : G→ F denote the inclusion. This defines an embedding of G in k, the residue field of E.
Let Aφ(F ) be the completion of O ⊗G F at the ideal m⊗G F . In the theory of isocrystals over
F with G in place of F, Aφ(F ) appears in place of A(F ) and δ = 1. In [Mor21, § 4.2], Mornev
defines an additive functor

[φ]∗ :
(A(F )− isocrystals

) −→ (Aφ(F )− isocrystals
)
,

which, by [Mor21, Proposition 4.2.2] (see also [BH11, Proposition 8.5]), is an equivalence of
categories such that [φ]∗(D) is a pure isocrystals of slope λ if D is. Let

[φ]∗ :
(Aφ(F )− isocrystals

) −→ (A(F )− isocrystals
)

be a quasi-inverse of [φ]∗ and let � : [φ]∗[φ]∗ ∼→ id be a natural transformation.
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On the integral part of A-motivic cohomology

Let D be an A(F )-isocrystal. We now prove the existence of (3.2) with pure subquotients
for D. By [Har11, Proposition 1.5.10], there exists an increasing sequence of sub-Aφ(F )-
isocrystals of [φ]∗D:

0 = G0 � G1 � G2 � · · · � Gs = [φ]∗D

the subquotients Gi/Gi−1 being pure of slopes λi with λ1 < · · · < λs. Applying [φ]∗ and then �,
we obtain

0 = D0 � D1 � D2 � · · · � Ds = D (3.3)

with Di := �([φ]∗[φ]∗Di) for all i ∈ {0, 1, . . . , s}. We claim that the isocrystals Di/Di−1 are pure
of slope λi. Indeed, we have

Di/Di−1
∼= [φ]∗Gi/[φ]∗Gi−1

∼= [φ]∗(Gi/Gi−1),

where the last isomorphism comes from the fact that [φ]∗ is an exact functor (any equivalence
of categories is exact). Because Gi/Gi−1 is pure of slope λi, Di/Di−1 is also pure of slope λi. We
conclude that (3.3) is the slope filtration for D and satisfies the assumption of the theorem. �

Let D be an isocrystal over F . It is useful to rewrite the slope filtration of D as (Dλi
)1�i�s

for rational numbers λ1 < · · · < λs, where the successive quotients Dλi
/Dλi−1

are pure of slope
λi. We let Dλi be the underlying module of Dλi

. For λ ∈ Q, let Dλ be the subisocrystal of
D whose underlying module is

Dλ :=
⋃

λi�λ

Dλi .

We also let

Grλ D := Dλ

/ ⋃
λ′<λ

Dλ′ ,

the symbol ∪ being understood as the isocrystal whose underlying module is given by the union.

Corollary 3.12. For all λ ∈ Q, the assignment ICF → ICF , D → Dλ defines an exact functor.
Equivalently, any morphism f : D → C of isocrystals over F is strict with respect to the slope
filtration; that is,

for all λ ∈ Q, f(Dλ) = f(D) ∩ Cλ.

Proof. This follows at once from Theorem 3.10 and Lemma 3.8 that any semistable isocrystal is
isoclinic. Hence, the corollary follows from [And09, Theorem 1.5.9]. �

We observe that the slope filtration is not split in general. However, it does when the ground
field F is perfect.

Theorem 3.13. If F is perfect, the slope filtration of D splits, i.e. D decomposes along a direct
sum

D ∼=
⊕
λ∈Q

Grλ D.

Proof. The proof is similar to the argument given for Theorem 3.10: the corresponding result
for δ = 1 is proven in [Har11, Proposition 1.5.10] and the general δ-case is easily deduced from
[Mor21, Proposition 4.2.2]. �
Remark 3.14. The above theorem is the Dieudonné–Manin decomposition for isocrystals. When
F is algebraically closed, given λ ∈ Q there exists a unique (up to isomorphisms) simple and pure
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isocrystal Sλ of slope λ (see [Mor21, Proposition 4.3.4]). Any pure isocrystal of slope λ decom-
poses as a direct sum of Sλ (see [Mor21, Proposition 4.3.7]) and together with Theorem 3.13 yields
the Dieudonné–Manin classification (see [Lau96]). It does not hold for any F , even separably
closed, as noticed by Mornev in [Mor21, Remark 4.3.5] (see also Example 3.26).

Isocrystals attached to A-motives. We now explain how to attach isocrystals to A-motives
over fields. This construction (Definition 3.16) will be required next in the definition of the
weights of A-motives (Definition 3.20).

Let R be an F-algebra and let κ : A→ R be an F-algebra morphism. We choose the ringsA(R)
and B(R) of the previous paragraph in the following way. Given a closed point x on C, we let
Ox ⊂ K be the associated discrete valuation ring (DVR) with maximal ideal mx. We denote
by Ox the completion of Ox and by Kx the completion of K. We let Fx denote the residue field
of x. We let Ax(R) and Bx(R) be the rings obtained by completing Ox ⊗R and Kx ⊗R for the
mx-adic topology (as in (3.1)).

Recall that jκ is the ideal of A⊗R generated by {a⊗ 1− 1⊗ κ(a) | a ∈ A}.
Lemma 3.15. We have jκB∞(R) = B∞(R). For x a closed point of C distinct from ∞ such that
κ(mx)R = R, we further have jκAx(R) = Ax(R).

Proof. We prove the first assertion. Let a be a non-constant element of A so that a−1 ∈ m∞.
Then a⊗ 1− 1⊗ κ(a) ∈ j is invertible with −∑n�0 a−(n+1) ⊗ κ(a)n as inverse, where the infinite
sum converges in A∞(R) ⊂ B∞(R).

We prove the second assertion. From κ(mx)R = R, there exists a relation of the form
1 =

∑
i κ(�i)ri for some �i ∈ mx and ri ∈ R. Then, the element∑

i

(1⊗ κ(�i)− �i ⊗ 1) · (1⊗ ri)

lies in 1 + (mx ⊗R) ⊂ Ax(R)×. It also belongs to jκ and, hence, jκAx(R) = Ax(R). �
In order to use the results of the previous paragraph, we now assume that R = F is a field

and that x is a closed point of C distinct from kerκ. Let M = (M, τM ) be an A-motive over F .
Lemma 3.15 yields an isomorphism of Bx(F )-modules:

τM ⊗A⊗F 1 : τ∗(M ⊗A⊗F Bx(F )) ∼−→M ⊗A⊗F Bx(F ).

This motivates the following construction.

Definition 3.16. Let Ix(M) be the Bx(F )-module M ⊗A⊗R Bx(F ). We define Ix(M) as the
pair (Ix(M), τM ⊗ 1).

Because of the next proposition, we may call the datum of Ix(M) the isocrystal attached
to M .

Proposition 3.17. We have the following:

(i) Ix(M) is an isocrystal over F ;
(ii) If x �=∞, Ix(M) is pure of slope 0.

Proof. Because M is locally free of constant rank and Bx(F ) is a finite product of fields, Ix(M) is
a free Bx(F )-module. Thus, point (i) follows from Lemma 3.15. To prove point (ii), it suffices to
note that L = M ⊗A⊗F Ax(F ) is an Ax(F )-lattice in M ⊗A⊗F Bx(F ) such that 〈τML〉 = L. �
Proposition 3.18. The assignment Ix : M → Ix(M) defines an exact functor from the category
of A-motives to the category of isocrystals at x.
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Proof. It suffices to prove that Bx(F ) is flat over A⊗ F . First note that Ox ⊗ F is Noetherian,
so that its completion Ax(F ) for the mx-adic topology is flat over it. Tensoring by Kx over Ox,
we obtain that Bx(F ) is flat over Kx ⊗ F . Yet the latter is flat over A⊗ F , which concludes. �

The next lemma clarifies the relation between the isocrystal of an A-motive and that of its
saturation (Definition 2.10 and Lemma 2.11). It will be important in the next subsection.

Lemma 3.19. Let f : N →M be an isogeny. Then Ix(f) : Ix(N)→ Ix(M) is an isomorphism.
In particular, given P a sub-A-motive of M and P sat its saturation in M , Ix(P ) = Ix(P sat). If Q
is another sub-A-motive of M such that Ix(P ) = Ix(Q) inside Ix(M), then P sat = Qsat.

Proof. The cokernel of an isogeny is A-torsion, hence is annihilated under tensoring with Bx(F ),
and the assertions of the second and third sentence of the lemma follow.

We prove the statement in the last sentence. Because Ix is exact, the pullback square

is transformed to a pullback square, and it follows that Ix(P ∩Q) = Ix(P ) = Ix(Q). In particular,
P ∩Q, P and Q are locally free of the same rank. By the definition of saturation (Definition 2.10)
P sat/(P ∩Q)sat is an A-motive over F . By the hypotheses it maps to zero under Ix. Because
Ix is rank preserving, this quotient is zero, and by symmetry in P and Q we deduce P sat =
(P ∩Q)sat = Qsat. �

Weight filtration and mixedness. As before, let F be a field containing F, let κ : A→ F be
an F-algebra morphism and let M be an A-motive over F . Let D := I∞(M) be the isocrystal at
the place ∞ attached to M . By Theorem 3.10, D carries a unique slope filtration:

0 = D0 � D1 � · · · � Ds = D (3.4)

with ascending slopes λ1 < · · · < λs, where λi := λ(Di/Di−1).

Definition 3.20. We call the set w(M) := {−λi | 1 � i � s} the set of weights of M .

The next definition dates back to the seminal paper of Anderson [And86, 1.9].

Definition 3.21. We call M pure of weight μ if D is pure of slope −μ. Equivalently, M is pure
of weight μ if w(M) = {μ}.

The sign convention, weights as opposed to slopes, is made to fit with the number field
situation.

Example 3.22. Using the notation of Example 2.6, the Carlitz twist A(1) over F is pure of weight
−1 and, more generally, A(n) is pure of weight −n. It is analogous to the number field case,
where the motive Z(n) is pure of weight −2n (the factor 2, reflecting the degree [C : R], could
be removed by renormalizing the weight filtration using half-integral integers).

In analogy with number fields, we define mixedness for A-motives as follows.

Definition 3.23. We call M mixed if there exist rational numbers μ1 < · · · < μs and an
increasing finite filtration by saturated sub-A-motives of M :

0 = Wμ0M � Wμ1M � · · · � WμsM = M, (3.5)

for which the successive quotients WμiM/Wμi−1M are pure of weight μi.
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Q. Gazda

Before pursuing on the properties of mixedness, let us explain why being mixed is a very
restrictive condition over imperfect base fields. Suppose that M is a mixed A-motive and consider
a filtration as in (3.5). The functor I∞ is exact (Proposition 3.18), and applying it to (3.5) yields
a finite filtration of D = I∞(M) by subisocrystals:

0 = D0 � D1 � · · · � Ds = D (3.6)

whose successive quotients Di/Di−1 are pure isocrystals of slope −μi. Note that the slopes of
this filtration are decreasing, hence (3.6) is not the slope filtration of D.

Proposition 3.24. If M is mixed, the slope filtration of I∞(M) splits.

To prove Proposition 3.24, we require a lemma on isocrystals.

Lemma 3.25. Let S : 0→ D → D′ → D′′ → 0 be an exact sequence of isocrystals, where D
and D′′ are pure and λ(D) > λ(D′′). Then S is split.

Proof. Because Ext1ICF
(D′′, D) ∼= Ext1ICF

(1, D ⊗ (D′′)∨) by Corollary A.10, the argument reduces
to the case of D′′ = 1 and λ(D) > 0 (e.g. [Mor21, Proposition 3.4.10]). Following the proof
of Proposition 2.16, one sees that Ext1ICF

(1, D) is isomorphic to D/ im(id−ϕ) as a K-vector
space, where by id−ϕ we mean the K-linear endomorphism of D given by d → d− ϕ(τ∗d). In
particular, to show that any sequence S splits, it is enough to show that id−ϕ is surjective on D.
As D is pure of positive slope, D contains an A(F )-lattice L satisfying 〈ϕhL〉 ⊂ mL for some
h > 0. This implies that the series

ξd := d + ϕ(τ∗d) + ϕ(τ∗ϕ(τ∗d)) + · · ·
converges in D for all d ∈ D, and the assignment d → ξd defines an inverse of id−ϕ. �

Proof of Proposition 3.24. Let D′
1, . . . , D

′
s be pure isocrystals and let D′′ be a pure isocrystal

such that λ(D′′) > λ(D′
i) for all i. Then, by Lemma 3.25,

Ext1ICF

(
D′′,

⊕
i

D′
i

)
∼=
⊕

i

Ext1ICF

(
D′′, D′

i

)
= (0).

Using the above observation, by induction one shows that I∞(Wμi) splits for all i, and for i = s
we obtain a splitting of the filtration (3.6). By reordering the pure parts, we build another split
filtration of D:

0 � Ds/Ds−1 � (Ds/Ds−1)⊕ (Ds−1/Ds−2) � · · · �
s⊕

i=1

Di/Di−1

having increasing slopes. By uniqueness, it coincides with the slope filtration of D. �

Proposition 3.24 allows one to construct non-mixed A-motives when F is imperfect, by
constructing an A-motive whose associated isocrystal is non-split. One observes that by
Theorem 3.13 such examples can only exist if F is imperfect. Example 3.26 below show that
such examples exist.

Example 3.26. We suppose that A = F[t] and denote by π the uniformizer t−1 in B∞(F ), then
identified with F ((π)). Assume that F is imperfect, and let α ∈ F be such that −α does not have
any qth root in F . Consider the t-motive M whose underlying module is F [t]e0 ⊕ F [t]e1, and
where τM acts by τM (τ∗e0) = e0 and τM (τ∗e1) = αe0 + (t− θ)−1e1. M inserts in a short exact
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On the integral part of A-motivic cohomology

sequence of t-motives:
0→ 1 · e0 →M → A(1) · e1 → 0. (3.7)

We prove that the slope filtration of I∞(M) does not split. More precisely, let us show that
I∞(1) · e0 is the only nonzero strict subisocrystal of I∞(M).

Let L �= 0 be a strict subisocrystal of I∞(M). L must have rank 1 over F ((π)), and we let
�0e0 + �1e1 be a generator of its underlying module. Let f ∈ F ((π)) be a nonzero element such
that τM (τ∗(�0e0 + �1e1)) = f(�0e0 + �1e1). This yields the equation:(

1 α
0 π(1− θπ)−1

)(
τ(�0)
τ(�1)

)
= f

(
�0

�1

)
.

Because L �= 0, the first row implies �0 �= 0. If �1 �= 0, as (1− θπ) is a unit in F [[π]] the bottom
row imposes vπ(f) = 1, whereas the first row reads

τ(�0) + ατ(�1) = f�0. (3.8)

Because vπ(f) = 1, (3.8) also implies that vπ(�0) = vπ(�1). In particular, if l0 and l1 are the first
nonzero coefficients in F of �0 and �1 in F ((π)) respectively, (3.8) gives

α = −(l0/l1)q.

This is in contradiction with our assumption. Hence, �1 = 0 and f = τ(�0)/�0. Therefore, L
coincides with I∞(1) · e0.

In this example, M is an extension of A(1) by 1, two t-motives of respective weights
−1 < 0. When the weights goes in ascending orders, such examples no longer appear (see
Proposition 3.37).

Remark 3.27. Observe that the converse of Proposition 3.24 does not hold: there are non-mixed
A-motives over perfect base fields (e.g. [HJ20, Example 2.3.13]). For a partial converse, we refer
to Proposition 3.30 below.

Proposition-Definition 3.28. If M is mixed, a filtration W = (WμiM)1�i�s as in (3.5) is
unique. In addition, the set {μ1, . . . , μs} equals w(M).

(i) For all i ∈ {1, . . . , s}, we let WμiM be the underlying module of WμiM .
(ii) For all μ ∈ Q, we set

WμM :=
⋃

μi�μ

WμiM, WμM := (WμM, τM ),

W<μM :=
⋃

μi<μ

WμiM, W<μM := (W<μM, τM ),

and Grμ M := WμM/W<μM . Both Grμ M and WμM , as well as W<μM , define mixed
A-motives over F for all μ ∈ Q.

(iii) We call (WμM)μ∈Q the weight filtration of M .
(iv) We let MMF (respectively, MMiso

F ) be the subcategory of MF (respectively, Miso
F ) whose

objects are mixed, and whose morphisms f : M → N preserves the weight filtration:

for all μ ∈ Q : f(WμM) ⊂WμN.

Remark 3.29. We shall prove below (Corollary 3.31) that every morphism of A-motives
f : M → N , M and N being mixed, preserves the weight filtration. In other words, that MMF

is a full subcategory of MF .
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Proof of Proposition 3.28. Let D = I∞(M). By Proposition 3.24, we have a canonical
decomposition:

D =
s⊕

i=1

Grλi D, (3.9)

Grλi D being canonically identified with a pure subisocrystal of D of slope λi. On the other
hand, let W be as in (3.5). By uniqueness of the decomposition (3.9), we have equalities of
subisocrystals of D:

for all μ ∈ Q : I∞(WμM) =
⊕

λi�−μ

Grλi D. (3.10)

We conclude by Lemma 3.19 that the above identity determines W uniquely. The fact that
w(M) = {μ1, . . . , μs} also follows. �

Next, we suggest a criterion for mixedness.

Proposition 3.30. Suppose that the slope filtration of D splits. For all μ ∈ Q, let I∞(M)μ

be the subisocrystal of D corresponding to
⊕

λi�−μ Grλi D. Denote by I∞(M)μ its underlying
module. Then, we have

for all μ ∈ Q : rankA⊗F (I∞(M)μ ∩M) � rankB(F ) I∞(M)μ

with equality if and only if M is mixed. In the latter case, WμM = I∞(M)μ ∩M .

Proof. First note that, for all μ, the couple Mμ := (I∞(M)μ ∩M, τM ) defines a saturated sub-A-
motive of M . Furthermore, since the underlying module of I∞(Mμ) corresponds to the completion
of I∞(M)μ ∩ (M ⊗A K) for the∞-adic topology, I∞(Mμ) defines a subisocrystal of I∞(M)μ. The
rank being additive in short exact sequences in the category of isocrystals, we get the desired
inequality:

rankA⊗F (I∞(M)μ ∩M) = rankMμ = rank I∞(Mμ) � rank I∞(M)μ.

If this is an equality for all μ, then we obtain I∞(Mμ) = I∞(M)μ and deduce that the family
(Mμ)μ satisfies the requested property of Definition 3.23.

Conversely, if M is mixed, the following sequence of inclusions holds:

(WμM)⊗A K ⊂ I∞(M)μ ∩ (M ⊗A K) ⊂ I∞(M)μ.

Note that the left-hand side forms a dense subset of the right-hand side for the∞-adic topology.
Hence, the first inclusion is an inclusion of a dense subset. Taking the completion, we obtain
I∞(WμM) = I∞(I∞(M)μ ∩M) = I∞(M)μ. The corresponding ranks are thus equal.

To conclude, as both WμM and I∞(M)μ ∩M are saturated submodules of M , we deduce
the equality WμM = I∞(M)μ ∩M from Lemma 3.19. �

As an important corollary of the above formula for W , we obtain the following.

Corollary 3.31. Let f : M → N be a morphism of A-motives, M and N being mixed. Then,
f preserves the weight filtration:

for all μ ∈ Q : f(WμM) ⊂WμN.

In particular, for all μ ∈ Q, the assignment M →WμM defines a functor from the category
MMF to itself.
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Proof. Let μ ∈ Q. The claim follows from the following two easy observations.

(i) If M is mixed, then so is WμM ,
(ii) If f : M → N is a morphism of mixed A-motives, then the associated morphism of isocrystals

maps I∞(M)μ to I∞(N)μ, and by Proposition 3.30 we have f(WμM) ⊂WμN . �

Remark 3.32. We end this subsection by describing how weights behave under linear algebra
type operations. Proofs are presented in [HJ20, Proposition 2.3.11] and extend without change
to our larger setting. First note that 1 is a pure A-motive over F of weight 0. Given two mixed
A-motives M and N , their biproduct M ⊕N is again mixed with weight filtration Wμ(M ⊕N) =
WμM ⊕WμN (μ ∈ Q). Their tensor product M ⊗N is also mixed, with λ-part of its weight
filtration being

Wλ(M ⊗N) =
( ∑

μ+ν=λ

WμM ⊗WνN

)sat

.

We took the saturation A-motive to ensure that the above is a saturated sub-A-motive of M ⊗N .
The dual M∨ is mixed, and the μ-part of its weight filtration WμM has for underlying module
WμM∨ = {m ∈M∨|∀λ < −μ : m(WλM) = 0}sat. In general, given M and N two A-motives
over F (without regarding whether M or N are mixed) and an exact sequence 0→M ′ →M →
M ′′ → 0 in MF , we have

w(0) = ∅ ,
w(M∨) = −w(M) ,
w(M ⊕N) = w(M) ∪ w(N) ,
w(M) = w(M ′) ∪ w(M ′′) ,
w(M ⊗N) = {w + v | w ∈ w(M), v ∈ w(N)}.

3.2 Extension modules of mixed A-motives
As before, let F be a field containing F and consider an F-algebra morphism κ : A→ F . In this
subsection, we are concerned with extension modules in the category MMF . The next proposition
shows that they are well-defined.

Proposition 3.33. The category MMF together with the notion of exact sequences of
Definition 2.14 is an exact category.

To prove Proposition 3.33, we use Proposition A.8 of the appendix applied once again to
the forgetful functor MMF →ModA⊗R as in proof of Proposition 2.15. Checking the required
hypothesis of Proposition A.8 amounts to showing the following.

Proposition 3.34. Let 0→M ′ →M →M ′′ → 0 be an exact sequence of A-motives over F .
If M is mixed and one of M ′ or M ′′ is mixed, then all three are mixed.

Before proving (3.34), we begin by an intermediate result on isocrystals.

Lemma 3.35. Let 0→ D′ → D → D′′ → 0 be an exact sequence of isocrystals over F . If the
slope filtration of D and one of D′ or D′′ split, then all three are split.
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Proof. Assume that the slope filtration of D and D′ are split. Then D decomposes as a finite
direct sum of pure subisocrystals Grλ D. We have a commutative diagram of subisocrystals of D:

(3.11)

where the symbol ∩ is understood as the subisocrystal whose underlying module is given by
the intersection. We claim that ι is an isomorphism. First, it is injective as one checks by a
diagram chase. By assumption, D′ also decomposes as a direct sum of subisocrystals Grλ D′

which, when nonzero, are pure of slope λ. By functoriality of the slope filtration, the inclusion
Grλ D′ ↪→ D′ ↪→ D factors through Grλ D. Hence,

rk D′ =
∑
λ∈Q

rk Grλ D′ �
∑
λ∈Q

rk(D′ ∩Grλ D) � rkD′,

where the last inequality follows from the injectivity of ι. All the above inequalities are thus
equalities, from which we deduce that ι is an isomorphism.

Therefore, we can extend the square (3.11) into exact sequences:

where the dashed arrow exists and is unique by the cokernel property of the upper right term.
By the Snake lemma, it is an isomorphism. In particular, D′′ decomposes as a direct sum of pure
subisocrystals, and by uniqueness, we deduce that its slope filtration splits.

The argument for the second part of the statement is similar enough to the first to be
skipped. �
Proof of Proposition 3.34. Suppose M and M ′ (respectively, M ′′) are mixed. For μ ∈ Q, let
WμM ′ := WμM ∩M ′ and WμM ′′ := f(WμM)sat, where f is the epimorphism M � M ′′. They
are canonically endowed with A-motive structures denoted by WμM ′ and WμM ′′, respectively,
and our task is to prove that (WμM ′)μ and (WμM ′′)μ satisfy the property of Definition 3.5.

By Lemma 3.35, the slope filtrations of I∞(N) for N ∈ {M, M ′, M ′′} are split, and, for
μ ∈ Q, we denote by I∞(N)μ the direct sum of the subisocrystals of I∞(N) which are pure of
slope � −μ.

Since B∞(F ) is flat over A⊗ F , the functor −⊗A⊗F B∞(F ) commutes with finite intersec-
tions (e.g. [Bou70, § I.2, Proposition 6]):

I∞(WμM ′) = (WμM ∩M ′)⊗A⊗F B∞(F ) = I∞(M)μ ∩ I∞(M ′) = I∞(M ′)μ,

where the last equality follows from the fact that the category of isocrystals has strict morphisms
for the slope filtration (Corollary 3.12). Similarly,

I∞(WμM ′′) = f(WμM)sat ⊗A⊗F B∞(F ) = f(I∞(M)μ) = I∞(M ′′)μ.

This shows that M ′ and M ′′ are both mixed with respective weight filtrations (WμM ′)μ∈Q and
(WμM ′′)μ∈Q. �
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On the integral part of A-motivic cohomology

Corollary 3.36. For all μ ∈ Q, the functor M →WμM is exact on MMiso
F .

Proof. Let 0→M ′ →M
f→M ′′ → 0 be an exact sequence of mixed A-motives. By the proof

of Proposition 3.34, we have WμM ′ = WμM ∩M ′. Hence, the sequence 0→WμM ′ →WμM →
WμM ′′ → 0 is left-exact. We also have WμM ′′ = f(WμM)sat, so that the A-motive im(f |WμM)
is isogenous to WμM ′′. In particular, the sequence 0→WμM ′ →WμM →WμM ′′ → 0 is exact
in MMiso

F . �
According to Proposition 3.33, we can consider extension modules of two mixed A-motives

in MMF . By Corollary 3.31, we have an equality

Ext0MMF
(M, N) = Ext0MF

(M, N),

but this does not necessary hold for higher extension modules. Ext1MMF
(M, N) can be interpreted

as a submodule of Ext1MF
(M, N), but, in general, ExtiMMF

is not even a submodule of ExtiMF

(i > 1).

Proposition 3.37. Let 0→M ′ →M
p→M ′′ → 0 be an exact sequence of A-motives in MF .

If M ′ and M ′′ are mixed, and if the smallest weight of M ′′ is bigger than the largest weight of
M ′, then M is mixed.

Proof. By Proposition 2.16, there exists u ∈ HomA⊗F (τ∗M ′′, M ′)[j−1] and a diagram

which commutes in MF . From the weight assumption on M ′ and M ′′, u automatically respects
the weight filtration: for all μ ∈ Q, u(τ∗WμM ′′) ⊂WμM ′. In particular,

Mμ := ξ

(
WμM ′ ⊕WμM ′′,

(
τM ′ u
0 τM ′′

))
defines a sub-A-motive of M inserting in a short exact sequence in MF :

0 −→WμM ′ −→Mμ −→WμM ′′ −→ 0. (3.12)

Similarly, M<μ := ξ
(
W<μM ′ ⊕W<μM ′′,

( τM′ u
0 τM′′

))
defines a sub-A-motive of Mμ. By (3.12),

we obtain an exact sequence of A-motives:

0 −→ Grμ M ′ −→Mμ/M<μ −→ Grμ M ′′ −→ 0. (3.13)

The extremal terms of (3.13) are pure of weight μ and at least one of them is zero, and thus the
middle term is pure of weight μ. We deduce that the increasing sequence (Mμ)μ of sub-A-motives
of M satisfies the condition of Definition 3.23. Therefore, M is mixed. �
Remark 3.38. In contrast to the number fields situation, the full subcategory of MMF con-
sisting of pure A-motives over F is not semi-simple. This follows easily from the equality
Ext1MMF

(N, M) = Ext1MF
(N, M) for two pure motives of the same weight.

Proposition 3.37 implies that Ext1MF
(M ′′, M ′) = Ext1MMF

(M ′′, M ′) whenever the weights
of M ′′ are bigger than the biggest weight of M ′. In general this is not true. In this direction we
record the following.
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Proposition 3.39. Let 0→M ′ →M →M ′′ → 0 be an exact sequence of A-motives where M ′

and M ′′ are mixed. We assume that all the weights of M ′′ are strictly smaller than the smallest
weight of M ′. Then, the sequence is torsion in Ext1MF

(M ′′, M ′) if, and only if, M is mixed.

Proof of Proposition 3.39. By Corollary A.10 of the appendix, taking N := M ′ ⊗ (M ′′)∨ we can
assume that the exact sequence is of the form S : 0→ N → E → 1→ 0, the mixed A-motive
N having positive weights. In view of Theorem 2.21, we may assume that E = ι(u) for some
u ∈ N [j−1]. Note that 0 is a weight of E, the smallest.

If E is mixed, then E contains a sub-A-motive L = (L, τN ) of weight 0 which is isomorphic
to 1. Let (m⊕ a) ∈ N ⊕ (A⊗ F ) be a generator of L over A⊗ F . We have(

τN u
0 1

)(
τ∗m
τ∗a

)
=
(

m
a

)
.

This amounts to a ∈ A and au ∈ im(id−τN ), and then that a[E] = 0 in Ext1MF
(1, N). Conversely,

if there exists a nonzero a ∈ A such that a[E] is split, Theorem 2.21 implies that there exists
m ∈ N such that au = m− τN (τ∗m). The nonzero A⊗ F -module L generated by m⊕ a together
with τN defines a sub-A-module of E isomorphic to 1. For all μ ∈ Q, we define A⊗ F -modules

Eμ := WμN + 1μ�0L, E<μ := W<μN + 1μ>0L,

where (WμN)μ∈Q is the weight filtration of N , and where 1μ∈S is the indicator function of the
set S. It is easy to see that Eμ := (Eμ, τN ) and E<μ := (E<μ, τN ) define sub-A-motives of E
such that

Eμ/E<μ
∼=

⎧⎪⎨
⎪⎩

0 if μ < 0,

L if μ = 0,

Grμ N if μ > 0.

As desired, we have constructed an increasing sequence (Eμ)μ of sub-A-motives of E satisfying
the property of Definition 3.23. Hence, E is mixed. �

Remark 3.40. Under the same hypothesis, Proposition 3.39 can be rephrased into

Ext1MF
(M ′′, M ′)tors = Ext1MMF

(M ′′, M ′).

In particular, the K-vector space Ext1
MMiso

F
(M ′′, M ′) vanishes. The latter is only conjectured to

be true in the number fields setting [Del89, § 1.3].

Remark 3.41. Nevertheless, Ext1MMF
(1, M) is generally nonzero for M having positive weights.

In the notation of Example 2.6, let n be a positive integer that is a power of the characteristic
p, and consider the A-motive A(−n) over a field extension F of K that contains a (q − 1)th root
η of (−1/θ)n. We claim that Ext1MMF

(1, A(−n)) is nonzero, equivalently that Ext1MF
(1, A(−n))

has nonzero torsion. Indeed, let [E] := ι(ηq). Then,

−tn · [E] = ι(−tnηq) = ι(η − (t− θ)nηq) = 0.

On the other hand, [E] is nonzero: for degree reasons, there does not exist p(t) ∈ F [t] such that
ηq = p(t)− (t− θ)np(t)(1).

Theorem 3.42. Let M be a mixed A-motive over F . For i > 1, the A-module Exti
MMF

(1, M)
is torsion.
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On the integral part of A-motivic cohomology

Proof. Let A be the K-linear abelian category MMiso
F . From the relation

Exti
MMiso

F
(1, M) = Exti

MMF
(1, M)⊗A K,

it suffices to show that the left-hand side vanishes for i > 1. Let us first treat the case where M
only has non-positive weights. Let A0 be the full subcategory of A consisting of objects whose
weights are all non-positive. As M is an object of A0, note that

Ext1A0
(1, M) = Ext1A(1, M) = Ext1

Miso
F

(1, M),

where the last equality follows from Proposition 3.37. From Corollary 2.17, we deduce that
the functor Ext1A0

(1,−) is right-exact on A0, hence Ext2A0
(1, M) = (0) (Proposition A.4). Now,

from the exactness of W0 over A (Corollary 3.36), any e ∈ Ext2A(1, M) produces a commutative
diagram in A:

from which we deduce Ext2A0
(1, M) = Ext2A(1, M) as desired. Now, let M have arbitrary weights.

Applying Ext1A(1,−) to the exact sequence

0 −→W0M −→M −→M/W0M −→ 0,

we obtain from Proposition 3.39 that the natural map

Ext1A(1, W0M) −→ Ext1A(1, M)

is surjective. Given an epimorphism f : M → N in A, we obtain the following commutative
square.

The left vertical arrow is surjective: indeed, W0f : W0M →W0N is an epimorphism by
Corollary 3.36, and we already proved that over A0 the functor Ext1A(1,−) = Ext1A0

(1,−) is
right-exact. Hence, the right vertical arrow is surjective and the functor Ext1A(1,−) is right-exact
on A. Hence, Exti

A(1, M) = (0) (Proposition A.4 again). �

4. Models and the integral part of A-motivic cohomology

In this section we illustrate the notion of maximal integral models. For A-motives, maximal
integral models are understood as an analogue of Néron models of abelian varieties. The notion
dates back to Gardeyn’s work on models of τ -sheaves [Gar03] and their reduction [Gar02], where
he proved a Néron–Ogg–Shafarevič-type criterion (see Proposition 4.49 in our context). However,
our setting differs by the fact that, in opposition to τ -sheaves, A-motives might not be effective.
We also removed Gardeyn’s assumption for an integral model to be locally free. We show in
Theorems 4.32 and 4.53 that this is automatic for maximal ones over local and global function
fields. Our presentation thus avoids the use of a technical lemma due to Lafforgue in Gardeyn’s
exposition [Gar03, § 2]. In that sense, the content of this section is original.
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In practice, to make maximal integral models of A-motives explicit is a difficult task. In § 4.1,
we consider the easier problem of finding maximal integral models of Frobenius spaces. Those
are pairs (V, ϕ) where V is a finite-dimensional vector space over a local field E containing
F and ϕ is a q-linear endomorphism of V . We show in Proposition 4.2 that there exists a unique
OE-lattice in V stable by ϕ and which is maximal for this property. We end this section by the
review of Katz’s equivalence of categories, and its application to study maximal integral models.

In §§ 4.2 and 4.3, we shall be concerned with integral models of A-motives. Given an inclusion
R ⊂ S of A-algebras and an A-motive M = (M, τM ) over S, an R-model for M is a finite sub-A⊗
R-module of M stable by τM (Definition 4.19).

We study the case where M is an A-motive over a local function field S = E and where
R = OE is its valuation ring in § 4.2. In Proposition 4.30, we prove existence and uniqueness of
integral OE-models which are maximal for the inclusion, and we prove that they are projective
in Theorem 4.32. We show that, given a well-chosen maximal ideal � ⊂ A and a positive integer
n, the data of (M/�nM, τM ) defines a Frobenius space over E. Theorem 4.41, our main result of
this section, describes how to recover the maximal integral model of M in terms of the data of
the maximal integral model of (M/�nM, τM ) for all n. The latter is of fundamental importance
in the proof of Theorem D, and permits to obtain the Néron–Ogg–Shafarevič-type criterion for
A-motives (Proposition 4.49).

In § 4.3, we treat the case where M is an A-motive over a global function field S = F where
R is a Dedekind domain whose fraction field is F . If p is a nonzero prime ideal of R, we obtain
an A-motive MFp

by base field extension from F to its completion Fp. Our Proposition 4.51
explains how to recover the maximal integral model of M from the data of the maximal integral
models of MFp

for all p.
The full force of this section is used in § 4.4 to prove Theorems D and E of the introduction

(respectively, Theorems 4.60 and 4.62 in the main text).

4.1 Models of Frobenius spaces
In this subsection we work with notation that is slightly more general to what we need in the
following. Let (OE , vE) be a DVR that contains the field F. We denote by p = pE its maximal
ideal and we fix � a uniformizer. We let E be the field of fractions of OE . For what we have
in mind, it will be enough to take for OE a valuation subring of a function field over F or its
completion. We let σ : E → E denote the q-Frobenius on E (it fixes F).

Our object of study are pairs (V, ϕ) where V is a finite-dimensional E-vector space and
ϕ : σ∗V → V is an E-linear isomorphism. In the existing literature, they are generally referred
to as étale finite F-shtukas over E (e.g. [Har19, § 4]). We prefer here the shorter name Frobenius
spaces. By an OE-lattice in V we mean a finitely generated sub-OE-module L of V which
generates V over E. A sub-OE-module L is stable by ϕ if ϕ(σ∗L) ⊂ L.

Definition 4.1. We say that L is an integral model for (V, ϕ) if L is an OE-lattice in V stable
by ϕ. We say that L is maximal if it is not strictly included in another integral model for (V, ϕ).

Proposition 4.2. A maximal integral model for (V, ϕ) exists and is unique.

Proof. Our proof follows closely [Gar03, Propositions 2.2, 2.13]. First note that there exists an
integral model. Indeed, let T ′ be an arbitrary OE-lattice in V . There exists a positive integer k
such that ϕ(σ∗T ′) ⊂ �−kT ′. We let T := �kT ′ so that

ϕ(σ∗T ) = �qkϕ(σ∗T ′) ⊂ �(q−1)kT ′ = �(q−2)kT ⊂ T.

Hence, the OE-module T is an OE-lattice in V stable by ϕ.
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On the integral part of A-motivic cohomology

We turn to the existence and uniqueness of the maximal integral model. If L′ ⊂ L is an
inclusion of integral models, we have

lengthOE

(
ϕ(σ∗L)/ϕ(σ∗L′)

)
= q · lengthOE

(
L/L′).

We define the discriminant of L to be the non-negative integer

Δ(L) := lengthOE

(
L/ϕ(σ∗L)

)
.

Since,

Δ(L′)−Δ(L) = lengthOE

(
L′/ϕ(σ∗L′)

)− lengthOE

(
L/ϕ(σ∗L)

)
= lengthOE

(
ϕ(σ∗L)/ϕ(σ∗L′)

)− lengthOE

(
L/L′)

= (q − 1) · lengthOE

(
L′/L

)
, (4.1)

we have Δ(L′) > Δ(L) whenever the inclusion L′ ⊂ L is strict.
Now let L be an integral model with minimal discriminant. We claim that L equals the

union of all integral models of (V, ϕ), which proves both existence and uniqueness of the maximal
integral model. Indeed, if L′ is another integral model for (V, ϕ) not contained in L, then L + L′ is
an integral model such that the inclusion L ⊂ L + L′ is strict. But this contradicts the minimality
assumption as we would have Δ(L) > Δ(L + L′). �
Example 4.3. Assume that we are in the local function field situation, namely OE = k[[�]] for
some field k containing F. Suppose V := E, f ∈ OE a nonzero element and ϕ is the mor-
phism corresponding to x → fxq. Write f = u�khq−1 where u ∈ O×

E , 0 � k < q − 1 is an integer
and h ∈ OE . Then, the maximal integral model of (V, ϕ) is given by h−1OE . This is because
Δ(h−1OE) = k together with (4.1).

Let T be an integral model for (V, ϕ) and let r be its rank as a free OE-module. The cokernel
of the inclusion ϕ(σ∗T ) ⊂ T is a torsion OE-module of finite type and there exists elements
g1, . . . , gr in OE with vE(gi) � vE(gi+1) such that

T/ϕ(σ∗T ) ∼= OE/(g1)⊕OE/(g2)⊕ · · · ⊕ OE/(gr).

Equivalently, there exists a basis (v1, . . . , vr) of T over OE such that

ϕ(σ∗T ) = (g1)v1 ⊕ (g2)v2 ⊕ · · · ⊕ (gr)vr.

The elements g1, . . . , gr are unique up to multiplication by units and are called the elementary
divisors relative to the inclusion of OE-lattices ϕ(σ∗T ) ⊂ T .

Lemma 4.4. Let t be a basis of T over OE and let F be the matrix of ϕ written in the bases
σ∗t and t. The elementary divisors relative to the inclusion ϕ(σ∗T ) ⊂ T are the elementary
divisors of the matrix F , up to units in OE .

Proof. If (f1, . . . , fr) denotes the elementary divisors of F with vE(fi) � vE(fi+1), the
Smith’s normal form theorem implies that there exists U, V ∈ GLr(OE) such that UF =
diag(f1, . . . , fr)V . If we let v = (v1, . . . , vr) be the basis of T corresponding to V · t, this relation
reads

ϕ(σ∗T ) = (f1)v1 ⊕ (f2)v2 ⊕ · · · ⊕ (fr)vr.

By uniqueness of the ideals (g1), . . . , (gr), we conclude that (fi) = (gi) for all i ∈ {1, . . . , r}. �
Remark 4.5. Let ÔE denote the completion of OE with respect to its valuation, and let Ê be
its field of fractions. The datum of V ⊗E Ê equipped with ϕ⊗ σ defines a Frobenius space over Ê;
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let VÔ be its maximal integral model. Given a matrix M with coefficients in OE , the valuation of
its elementary divisors are unchanged if we consider M in ÔE . Consequently, one deduces from
Lemma 4.4 that the inclusion VO ⊗OE

ÔE ⊆ VÔ is an equality.

Definition 4.6. We let the type of T be the sequence (e1, . . . , er) of the valuations of the ele-
mentary divisors relative to the inclusion ϕ(σ∗T ) ⊂ T ordered such that 0 � e1 � e2 � · · · � er.
We define the range rT of T to be the integer er.

Remark 4.7. We have Δ(T ) = e1 + · · ·+ er so that r � Δ(T ) � r · rT where Δ(T ) denotes the
discriminant of T .

We shall denote by VO the maximal integral model of (V, ϕ). The following proposition
enables us to say how far an integral lattice is from being maximal given its range.

Proposition 4.8. Let T be an OE-lattice in V stable by ϕ. Let s be a non-negative integer. If
the range of T satisfies rT � s(q − 1), then VO ⊂ �−sT .

We start with a lemma.

Lemma 4.9. Let U be an OE-lattice in V such that U ⊂ ϕ(σ∗U). Then VO ⊂ U .

Proof. For n � 0, we let σn∗ := (σn)∗ and denote by ϕn : σn∗V → V the E-linear morphism
given by the composition

σn∗V σ(n−1)∗ϕ−−−−−−→ σ(n−1)∗V −→ · · · −→ σ∗V ϕ−→ V.

We consider the following sub-OE-module of V :

Ũ :=
∞⋃

n=0

ϕn(σn∗U).

As an increasing union of OE-lattices, Ũ is a sub-OE-module of V . The intersection VO ∩ Ũ is
finitely generated over OE , stable by ϕ and generates V over E as it contains the OE-lattice
VO ∩ U . That is, VO ∩ Ũ is an integral model whose discriminant

Δ(VO ∩ Ũ) := lengthOE

(
VO ∩ Ũ

ϕ(σ∗VO ∩ Ũ)

)
= lengthOE

(
VO ∩ Ũ

ϕ(σ∗VO) ∩ Ũ

)
is smaller than that of VO (indeed, any chain of strict submodules from ϕ(σ∗L) to L induces,
by intersecting with Ũ , a smaller chain of strict submodules from ϕ(σ∗L) ∩ Ũ to L ∩ Ũ). By
maximality, Δ(L) is minimal hence VO = VO ∩ Ũ . We deduce that there exists a non-negative
integer m such that VO ⊂ ϕm(σm∗U). Because ϕ(σ∗VO) ⊂ VO, we have σ∗VO ⊂ ϕ−1(VO) and by
immediate recursion one gets σm∗VO ⊂ ϕ−m(VO) ⊂ σm∗U . We conclude that VO ⊂ U because
σ : OE → OE is faithfully flat. �
Proof of Proposition 4.8. Let (e1, . . . , er) be the type of T . Recall that p = pE denotes the max-
imal ideal of OE . There exists a basis (t1, . . . , tr) of T such that ϕ(σ∗T ) = pe1t1 ⊕ pe2t2 ⊕ · · · ⊕
per tr. By assumption, e1, . . . , er � s(q − 1) and, thus,

�−sT ⊂ �−s
(
pe1−s(q−1)t1 ⊕ pe2−s(q−1)t2 ⊕ · · · ⊕ per−s(q−1)tr

)
= pe1−sqt1 ⊕ pe2−sqt2 ⊕ · · · ⊕ per−sqtr

= �−qsϕ(σ∗T )

= ϕ(σ∗(�−sT )).

Hence, U := �−sT satisfies U ⊂ ϕ(σ∗U) and we deduce that VO ⊂ U by Lemma 4.9. �
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On the integral part of A-motivic cohomology

Akin to integral models, there is also a notion of good sublattices.

Definition 4.10. Let L be a finitely generated OE-submodule of V . We say that L is a good
sublattice for (V, ϕ) if ϕ(σ∗L) = L. We say that L is maximal if it is not strictly included in
another good sublattice of (V, ϕ).

Proposition 4.11. A maximal good sublattice for (V, ϕ) exists, is unique and contained in VO.

Proof. First note that any good sublattice L for (V, ϕ) is contained in VO: indeed, L + VO is
again an integral model, hence included in VO. The sum U over all good sublattices for (V, ϕ)
exists (it is non-empty as the zero module is a good sublattice) and therefore included in VO.
Because OE is Noetherian, U is a finitely generated OE-module. We also have ϕ(σ∗U) = U . We
deduce that U is maximal, unique and contained in VO. �

We shall denote by Vgood the maximal good sublattice of (V, ϕ); it is a sub-OE-module of VO.

Proposition 4.12. The inclusion Vgood ⊂ VO splits.

Proof. Consider the subobject of (V, ϕ) whose underlying E-vector space U is generated by Vgood

over E. Its maximal integral model is Vgood (it has zero discriminant) and, thus, VO ∩ U ⊂ Vgood.
In particular, the quotient module VO/Vgood is finite torsion-free, hence finite free over OE .
In particular, the surjection VO → VO/Vgood splits and the proposition follows. �
Definition 4.13. We call the rank of Vgood the non-degenerate rank of (V, ϕ). We say that
(V, ϕ) has good reduction if Vgood = VO; i.e. if the non-degenerate rank is maximal.

We can give a rather useful formula for Vgood in terms of VO.

Lemma 4.14. We have Vgood =
⋂

n�0 ϕn(σn∗VO).

Proof. The right-hand side L is a decreasing intersection of OE-lattices, hence is itself a finitely
generated OE-module. Since it further verifies ϕ(σ∗L) = L, one obtains L ⊂ Vgood. But Vgood =
ϕn(σn∗Vgood) ⊂ ϕn(σn∗VO) for all n � 0, therefore L = Vgood. �

Maximal good sublattices have an interpretation in terms of Frobenius sheaves that we now
recall. Let X be a smooth connected scheme over F, and let π(X) be its étale fundamental group.
We still denote by σ the Frobenius on X. Let F(X) be the category whose objects are pairs
(V, ϕ) where V is a locally free OX -module of finite rank and ϕ : σ∗V → V is an isomorphism
of OX -modules. Morphisms in this category are morphisms of the underlying OX -modules with
commuting ϕ-action.

Example 4.15. Objects of F(Spec E) are Frobenius spaces over E, and objects of F(SpecOE)
are pairs (V, ϕ) where V is a finite free OE-module, and where ϕ : σ∗V → V is an OE-linear
isomorphism.

Until the end of this subsection, E is a local function field with perfect residue field k. As
a consequence, E = k((�)). We fix a separable closure Es of E and denote by GE the absolute
Galois group Gal(Es|E) of E. Let also IE ⊂ GE be the inertia subgroup. The following result is
due to Katz in [Kat73b, Proposition 4.1.1].

Theorem 4.16. There is a rank-preserving equivalence of categories from F(X) to the
category of F-linear continuous representation of π(X), which commutes with base change.
For X = Spec E, it is explicitly given by

V = (V, ϕ) −→ TV = {x ∈ V ⊗E Es | x = ϕ(σ∗x)},
where π(Spec E) is identified with Gal(Es|E), and acts on the right-hand side of V ⊗E Es.

1751

https://doi.org/10.1112/S0010437X24007218
Downloaded from https://www.cambridge.org/core. IP address: 35.202.208.150, on 26 Sep 2024 at 22:13:47, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X24007218
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Q. Gazda

The following proposition is almost immediate from Katz’s equivalence.

Proposition 4.17. Let V be a Frobenius space over E. The non-degenerate rank of (V, ϕ)
equals the rank of (TV )IE . In particular, V has good reduction if and only if TV is unramified.

Proof. As π(SpecOE) ∼= GE/IE , the representation (TV )IE is the maximal subobject of TV
which comes from an object in F(SpecOE) by Katz’s equivalence. Yet, elements in F(SpecOE)
which specialize to subobjects of V by base change to E are exactly the good sublattices of V . �

We end this subsection with the next result, which is the main ingredient to obtain Theorem D
of the introduction.

Proposition 4.18. Let V = (V, ϕ) be a Frobenius space over E, and let x ∈ V . The following
are equivalent:

(i) there exists y ∈ V ⊗E Eur such that x = y − ϕ(τ∗y);
(ii) x ∈ Vgood + (idV −ϕ)(V );
(iii) x ∈ VO + (idV −ϕ)(V ).

Proof. We first prove the equivalence between parts (i) and (ii). Let 1 : σ∗E → E be the canonical
E-linear isomorphism and let 1 be the neutral Frobenius space (E,1) over E. Also let Ext1(1, V )
be the F-vector space of Yoneda extensions of 1 by V in the category F(Spec E). We have an
isomorphism of F-vector spaces, natural in V ,

V

(id−ϕ)(V )
∼−→ Ext1(1, V ) (4.2)

mapping a representative v ∈ V to the class of the extension of 1 by V whose underlying module is
V ⊕ E and whose Frobenius action is given by

(
ϕ v·1
0 1

)
. Katz’s equivalence leads to a commutative

square

where, by diagram chasing, the bottom row is given as follows: for v ∈ V , let w ∈ V ⊗E Es be
such that v = w − ϕ(τ∗w), then cv : ρ → w − ρw defines a cocycle cv : GE → TV whose class
does not depend on the choice of w. The bottom row maps v to cv. Hence, part (i) holds if and
only if cx comes from a cocycle in H1(π(SpecOE), (TV )IE ), that is, if and only if part (ii) holds.

It remains to prove that parts (ii) and (iii) are equivalent. The map v → ϕ(σ∗v) is topo-
logically nilpotent on VO/Vgood, as can be deduced from Lemma 4.14 and, thus, id−ϕ acts
as an F-linear automorphism on it. Therefore, the Snake lemma implies that the natural
map from the cokernel of id−ϕ on Vgood to that on VO is an isomorphism. This implies
VO ⊂ Vgood + (id−ϕ)(VO) and yields

Vgood + (idV −ϕ)(V ) = VO + (idV −ϕ)(V )

as desired. �
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On the integral part of A-motivic cohomology

4.2 Models of A-motives over a local function field
General theory. Let R be a commutative F-algebra given together with an F-algebra mor-

phism κ : A→ R. Let S be a commutative ring which contains R as a subring. Let M = (M, τM )
be an A-motive over S (with characteristic morphism A

κ→ R→ S).

Definition 4.19. We define an R-integral model L for M to be a finitely generated sub-A⊗
R-module of M satisfying:

(i) L generates M over S (equivalently, over A⊗ S);
(ii) τM (τ∗L) ⊂ L[j−1].

We say that L is maximal if it is not strictly contained in any other R-integral model of M .

The next proposition is inspired by [Gar03, Proposition 2.2].

Proposition 4.20. If S is obtained from R by localization, an R-model for M exists.

Proof. Let (m1, . . . , ms) be generators of M as an A⊗ S-module, and let L0 be the sub-A⊗
R-module of M generated by (m1, . . . , ms). Let d ∈ R be such that τM (τ∗L0) ⊂ d−1L0[j−1],
and set L := dL0. We have

τM (τ∗L) = dqτM (τ∗L0) ⊂ dq−1L0[j−1] = dq−2L[j−1] ⊂ L[j−1].

Thus, L is an R-model. �
When it exists, we have the following claim for a maximal integral model.

Lemma 4.21. A maximal R-integral model for M contains all the R-integral models for M .
In particular, if it exists it is unique.

Proof. Given L1 and L2 two R-integral models, their sum L1 + L2 again defines an R-integral
model. Hence, if L1 is maximal, the inclusion L1 ⊆ L1 + L2 is not strict: we deduce L1 + L2 = L1,
then L2 ⊂ L1. �

As for Frobenius spaces, we have the notion of a good sublattice.

Definition 4.22. We define an R-good sublattice L for M to be a finitely generated sub-A⊗
R-module of M such that τM (τ∗L)[j−1] = L[j−1]. We say that L is maximal if it is not strictly
contained in any other R-good sublattice of M .

Following the argument given in the proof of Proposition 4.11, we obtain the following.

Lemma 4.23. Assume that there exists a maximal R-integral model for M . Then, a maximal
R-good sublattice for M exists and is unique.

We continue this section by recording additional properties of maximal R-models in the gen-
eral situation. Those will eventually by useful in § 4.4 for the proof of Theorem E (Theorem 4.62
in the main text) when specializing to R ⊂ S being the inclusion of a Dedekind domain in its
fraction field.

Let M be an A-motive over S and suppose that it admits a maximal integral R-integral
model denoted by MR.

Proposition 4.24. Let N be a finitely generated sub-A⊗R-module of M such that τM (τ∗N) ⊂
N [j−1]. Then, N ⊂MR. In particular, any element m ∈M such that τM (τ∗m) = m belongs
to MR.

Proof. It suffices to notice that the module L generated by MR and N over A⊗R is an R-model
for M , and hence N ⊂ L ⊂MR. �
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Q. Gazda

Corollary 4.25. We have (id−τM )(MR) = (id−τM )(M) ∩MR[j−1].

Proof. The inclusion (id−τM )(MR) ⊂ (id−τM )(M) ∩MR[j−1] is clear. Conversely, let m ∈
MR[j−1] and let n ∈M be such that m = n− τM (τ∗n). The sub-A⊗R-module 〈MR, n〉 of M
generated by elements of MR together with n over A⊗R is an R-model for M . In particular,
〈MR, n〉 ⊂MR and n ∈MR. �

We end this subsection with a remark on the assignment M →MR. For it to be well-defined
assume that the inclusion R ⊂ S is such that every object in MS admits a maximal R-integral
model (this is the case when R ⊂ S is the inclusion of a Dedekind domain into its field of fractions,
as will be shown below in Proposition 4.51).

Corollary 4.26. Let f : M → N be a morphism in MS . Then f(MR) ⊂ NR. In particular, the
assignment M →MR is functorial.

Existence and first properties over DVRs. We examine the existence of maximal models over
DVRs. Let (OE , vE) be a DVR with maximal ideal p = pE and fraction field E. We fix � ∈ p a
uniformizer. We assume that κ : A→ OE is such that κ−1(p) admits a nonzero element. In this
subsection, we shall be concerned by models of A-motives in the situation where R ⊂ S is the
inclusion OE ⊂ E.

Let M be an A-motive over E. In order to prove the existence of a maximal integral model
for M , we start with a series of lemmas. Let L and L′ be two finitely generated sub-A⊗
OE-modules of M [j−1] and assume that L′ generates M [j−1] over (A⊗ E)[j−1].

Lemma 4.27. There exists an integer k such that �kL ⊂ L′[j−1].

Proof. We have L ⊂M [j−1] =
⋃

k�0 �−kL′[j−1] (colimits commute). In particular, the sequence
(L ∩�−kL′[j−1])k�0 defines an ascending chain of sub-A⊗OE-modules of L. As L is Noetherian,
this chain eventually stabilizes, from which we deduce L ⊂ �−kL′[j−1] for k large enough. �

We denote by [L : L′] the smallest integer k for which Lemma 4.27 holds. Before listing
important properties of this numerical invariant, the following is needed.

Lemma 4.28. Let T be a flat A⊗OE-module and let N := T ⊗OE
E. Inside N [j−1]:

(i) for all a ∈ A, we have T ∩ aN = aT ;
(ii) we have T = T [j−1] ∩N .

Proof. We prove part (i): if t ∈ N and a ∈ A are such that (a⊗ 1)t ∈ T , then t ∈ T . Indeed, the
map T/(a⊗ 1)T → N/(a⊗ 1)N arises as

T ⊗A⊗OE
(A/aA⊗OE ↪→ A/aA⊗ E),

and, hence, is injective by flatness of T .
We turn to part (ii). Let c be an element of T [j−1] ∩N . Let a ∈ κ−1(p) be nonzero

(which exists by our assumption on κ). Then, there exists u, v � 0 such that (1⊗�u)c and
(a⊗ 1− 1⊗ κ(a))vc are in T . Taking w � 0 such that qw � u, v, we have

(aqw ⊗ 1)c = (a⊗ 1− 1⊗ κ(a))qw
c + (1⊗ κ(a)qw

)c ∈ T.

By part (i) we have (aqw ⊗ 1)c ∈ T ∩ aqw
N = aqw

T and then c ∈ T . �
Lemma 4.29. Let L, L′, L′′ be finitely generated sub-A⊗OE-modules of M [j−1] which generates
it over (A⊗ E)[j−1]:

(a) if L ⊂ L′[j−1], then [L : L′] � 0;
(b) [L : L′′] � [L : L′] + [L′ : L′′].
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On the integral part of A-motivic cohomology

Let T be a finite flat sub-A⊗OE-module of M which generates it over A⊗ E. If L ⊂M and L
generates M over A⊗ E, we have:

(c) [τM (τ∗L) : τM (τ∗T )] = q[L : T ].

If, in addition, L is a model of M , then:

(d) [L : T ] � [T : τM (τ∗T )]/(q − 1).

Proof. Property (a) is obvious. Writing k and k′ for [L : L′] and [L′ : L′′] respectively, we have
�kL ⊂ L′[j−1] and �k′

L′ ⊂ L′′[j−1] and hence �k+k′
L ⊂ L′′[j−1] proving property (b).

We prove property (c). By Lemma 4.28, [L : T ] is equivalently the smallest integer k such
that �kL ⊂ T . In particular, �qkτM (τ∗L) ⊂ τM (τ∗T ) and, thus,

[τM (τ∗L) : τM (τ∗L)] � qk.

If this inequality was strict, we would have �qkτM (τ∗L) ⊂ �τM (τ∗T )[j−1], hence,

τM (τ∗(�kL)) = �qkτM (τ∗L) ⊂ (
�τM (τ∗T )[j−1]

) ∩ τM (τ∗M)

= �
(
τM (τ∗T )[j−1] ∩ τM (τ∗M)

)
= �τM ((τ∗T )[j−1] ∩ τ∗M)

= �τM (τ∗T )

⊂ τM (τ∗(T ⊗OE
�1/qOE1/q)),

where, to pass from the first to the second line we used that τM (τ∗M) is an E-vector space,
from second to third that τM is injective and from third to fourth we applied Lemma 4.28 to
the modules τ∗T ⊂ τ∗M . Above, we denoted by E1/q the field of q-roots of elements of E and
by OE1/q its ring of integers. Using the flatness of T , we obtain

�kL ⊂ (T ⊗OE
�1/qOE1/q) ∩ T = �T

which contradicts [L : T ] = k.
To conclude, we prove property (d):

q[L : T ] = [τM (τ∗L) : τM (τ∗T )] (by (c))

� [τM (τ∗L) : L] + [L : τM (τ∗T )] (by (b))

� [L : τM (τ∗T )] (by (a))

� [L : T ] + [T : τM (τ∗T )] (by (b))

and therefore (q − 1)[L : T ] � [T : τM (τ∗T )]. �

Let M be an A-motive over E of characteristic morphism κ. We are ready to prove the
existence of the maximal OE-model for M .

Proposition 4.30. A maximal OE-model for M exists and is unique. In particular, a maximal
OE-good sublattice for M exists and is unique.
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Proof. It is enough to show the existence of a maximal integral model. Fix a flat and generating
sub-A⊗OE-module5 T of M . Denote by cT the integer

cT :=
⌊
− [T : τM (τ∗T )]

q − 1

⌋
.

Let U be the A⊗OE-module given by the sum over all the OE-models for M . As U is non-empty
by Proposition 4.20, it generates M over E. We also have τM (τ∗U) ⊂ U [j−1]. By Lemma 4.29(d),
any OE-model L of M is a submodule of �cT T and thus U ⊂ �cT T . Since A⊗OE is Noetherian,
U is finitely generated. Hence, U is a model of M which is maximal by construction. �
Definition 4.31. We denote by MO the unique maximal OE-integral model of M , and by
Mgood the maximal OE-good sublattice of M .

As announced earlier, maximal OE-models are projective as we show next.

Theorem 4.32. Both MO and Mgood are projective over A⊗OE .

This will result from the following general statement.

Proposition 4.33. Let N be a finite sub-A⊗OE-module of a projective A⊗ E-module M
which generates M over E. We claim that the following are equivalent:

(i) for all a ∈ A, the equality N ∩ aM = aN holds inside M ; and
(ii) the module N is projective.

Before proving the proposition, we recall a useful fact from dimension theory which
generalizes the well-known statement that finite torsion-free modules over Dedekind domains
are projective.

Lemma 4.34. Let R be a Noetherian regular integral domain of Krull dimension n. Let M be a
finite torsion-free R-module. Then, the projective dimension of M is < n.

Proof. We know that the projective dimension pdR(M) of M is � n. Suppose it is n. Then, there
exists a maximal ideal m of R such that pdRm

(Mm) = n. By the Auslander–Buchsbaum formula
[Eis95, Theorem 19.9], we have

depth(Mm) = depth(Rm)− n � 0

and then depth(Mm) = 0. This means that Mm is torsion, a contradiction since M is not. �
Proof of Proposition 4.33. That part (ii) implies part (i) corresponds to Lemma 4.28(i).

We focus on the converse. It is enough to show that N is flat, which is equivalent to the
injectivity of the map μ : I ⊗A⊗OE

N → IN for all ideal I of A⊗OE (cf. [Sta, 00HD]). As
M is flat over A⊗ E, we have IM ∼= I ⊗A⊗OE

M and the injectivity of μ is equivalent to
that of I ⊗A⊗OE

N → I ⊗A⊗OE
M . In that respect, it is sufficient to show the vanishing of the

module:
TorA⊗OE

1 (I, M/N). (4.3)

We shall derive it by the following pair of lemmas. �
Lemma 4.35. Let I be an ideal of A⊗OE and let P be an A⊗OE-module with no A-torsion.
Then TorA⊗OE

1 (I, P ) has no A-torsion.

5 Such a T exists: as M is finite projective over A ⊗ E, it is a direct summand of free A ⊗ E-module, say (A ⊗ E)s.
Then one could take T = (A ⊗OE)s ∩ M .
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On the integral part of A-motivic cohomology

Proof. As A⊗OE has Krull dimension 2 and I is a finite torsion-free A⊗OE-module,
Lemma 4.34 applies to show that I has projective dimension � 1. By the dimension theorem
[Wei94, Proposition 4.15], projective and Tor dimension coincide, hence TorA⊗OE

2 (I,−) = (0).
On the other hand, given a ∈ A nonzero, the sequence 0→ P

a−→ P → P/aP → 0 is exact. The
induced Tor-sequence

(0) = TorA⊗OE
2 (I, P/aP )→ TorA⊗OE

1 (I, P ) r−→ TorA⊗OE
1 (I, P )

implies that multiplication-by-a on TorA⊗OE
1 (I, P ) is injective; i.e. that it has no a-torsion. This

concludes the proof. �
Lemma 4.36. For any A⊗OE-module P , we have K ⊗A TorA⊗OE

1 (I, P ) = (0).

Proof. As localization commutes with Tor, we have

K ⊗A TorA⊗OE
1 (I, P ) ∼= TorK⊗OE

1 (K ⊗A I, K ⊗A P ).

But K ⊗OE is a Dedekind domain, thus K ⊗A I is projective and the right-hand side is zero. �
We conclude the proof by showing that (4.3) is zero. Observe that part (i) implies that M/N

has no A-torsion. In particular, Lemma 4.35 implies that (4.3) has no torsion. Lemma 4.36 then
implies that (4.3) vanishes. �

To deduce Theorem 4.32 from Proposition 4.33, we are left to show the following.

Lemma 4.37. Let a ⊂ A be an ideal. Then MO ∩ aM = aMO and Mgood ∩ aM = aMgood.

Proof. The proofs being similar, we solely make it explicit in the case of MO. The inclusion
⊃ is clear. We assume a �= 0 and consider the sub-A-motive (aM, τM ) of M . If T is an OE-model
for (aM, τM ), then a−1T is an OE-model for M and we have a−1T ⊂MO. This implies that
aMO is the maximal OE-model of (aM, τM ) so that (aM)O = a(MO). Therefore, the inclusion
MO ∩ aM ⊂ aMO follows from the fact that MO ∩ aM is an OE-model for (aM, τM ). �
Proof of Theorem 4.32. For all a ∈ A, we have MO ∩ aM = aMO (respectively, Mgood ∩ aM =
aMgood) by Lemma 4.37. Since MO generates M over E (respectively, Mgood generates the
projective A⊗ E-module Mgood ⊗OE

E), we deduce from Proposition 4.33 that MO (respectively,
Mgood) is projective. �
Remark 4.38. Let M and N be two A-motives over E, and let MO and NO be their respective
integral models. While the maximal integral model of M ⊕N is easily shown to be MO ⊕NO, it
is not true in general that the maximal integral model of M ⊗N is the image of MO ⊗A⊗OE

NO
in M ⊗A⊗E N . To find a counterexample, we assume q > 2 and consider � ∈ OE a uniformizer.
We consider the A-motive M over E where M = A⊗ E and where τM = � · 1. The maximal
integral model of M is MO = A⊗OE . However, M⊗(q−1) has �−1M

⊗(q−1)
O for maximal integral

model.

Comparison with Frobenius spaces. As in § 4.1, E is the fraction field of a DVR (OE , vE) with
maximal ideal p = pE . We assume that κ : A→ OE is such that κ−1(p) admits a non zero element.
This implies, in particular, that κ is injective and, hence, that j(A/a⊗ E) = A/a⊗ E for all
nonzero ideal a ⊂ A. We fix a maximal ideal � of A. The assumption on κ implies j(A/�n ⊗ E) =
A/�n ⊗ E for all positive integers n.

Let M be an A-motive over E. We have canonical isomorphisms

for all n � 1 : M/�nM ∼= M [j−1]/�nM [j−1]. (4.4)
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Q. Gazda

In particular, τM defines an A⊗ E-linear morphism τ∗(M/�nM)→M/�nM through the
composition

τ∗(M/�nM) τM−→M [j−1]/�nM [j−1]
(4.4)−→M/�nM,

which we still denote by τM . The pair (M/�nM, τM ) thusly defined is a Frobenius space over
E in the sense of § 4.1 which we denote by M/�nM . Let Ln ⊂M/�nM be its maximal integral
model.

Remark 4.39. We caution the reader, that in general we cannot claim equality between
(MO + �nM)/�nM and Ln. Here is a counterexample.

Suppose that A = F[t], so that A⊗OE is identified with OE [t], and let � = (t). Let κ : A→
OE be the F-algebra morphism which maps t to �. In this setting, j is the principal ideal of OE [t]
generated by (t−�). Consider the A-motive M := (E[t], f · 1) over E where f = �q−1 −�q−2t.
We claim that the maximal integral model of M is OE [t]. Clearly, OE [t] is an integral model
for M so that OE [t] ⊂MO. Conversely, by [Qui76, Theorem 4], MO is free of rank one over
OE [t]. If h generates MO, there exists b ∈ OE [t] such that fh(1) = bh. For p ∈ E[t], let v(p) be
the infinimum of the valuations of the coefficients of p. We have

v(h) � − v(f)
q − 1

= −q − 2
q − 1

> −1

and h ∈ OE [t]. We get MO ⊂ OE [t].
On the other hand, the Frobenius space (M/�M, τM ) is isomorphic to the pair (OE , �q−11),

whose maximal integral model is �−1OE , not OE .

If one wants to compare MO with (Ln)n�1, then one wishes that (MO + �nM)/�nM defines
an integral model for M/�nM for all n � 1. This is the case in Remark 4.39, although it is not
maximal, because the considered A-motive M is effective. In general, this is not true.6 From now
on, we assume:

(C�) the ideal � ⊂ A is such that κ(�)OE = OE .

The above assumption ensures that j(A/�n ⊗OE) = A/�n ⊗OE (e.g. the proof of
Proposition 3.17), and thus that (MO + �nM)/�nM is an integral model for (M/�nM, τM ).

Remark 4.40. Note that there always exists a maximal ideal � in A satisfying (C�); in fact, any
maximal ideal � coprime to κ−1(p) will do.

Even though we cannot claim always equality between (MO + �nM)/�nM and Ln, the data
of Ln for all n � 1 is enough to recover MO as we show in the next theorem.

Theorem 4.41. Let Ln be the maximal integral model of the Frobenius space M/�nM . Let
m ∈M . Then m ∈MO if and only if m + �nM ∈ Ln for all large enough positive integers n.

We start with some lemmas.

Lemma 4.42. The OE-module Ln is an A/�n ⊗OE-module.

Proof. For an elementary tensor r ⊗ f in A/�n ⊗OE , the OE-module (r ⊗ f)Ln is stable by τM .
Indeed, we have τM (τ∗(r ⊗ f)Ln) = (r ⊗ f q)τM (τ∗Ln) ⊂ (r ⊗ f)Ln. By maximality of Ln, we
have (r ⊗ f)Ln ⊂ Ln. �

Recall the notion of range from Definition 4.6.

6 For instance, consider the t-motive (E[t], (t − �)−11) over E, whose maximal OE-model is OE [t], together with
� = (t).
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On the integral part of A-motivic cohomology

Lemma 4.43. Let rn be the range of the OE-lattice (MO + �nM)/�nM in M/�nM . Then (rn)n�1

is bounded.

Proof. Let e and f be large enough positive integers such that τM (τ∗M) ⊂ j−eM and
M ⊂ j−fτM (τ∗M). For this choice of e, there is an exact sequence of A⊗OE-modules

0 −→ τ∗MO
τM−−→ j−eMO −→ Ce −→ 0, (4.5)

where we denoted by Ce the cokernel of the former map. We claim that there exists an integer
k � 0 such that Ce is annihilated by (1⊗�k)jf . Indeed, one could take k = [MO : τM (τ∗MO)]
(as in the notation following Lemma 4.27), as then

�kMO ⊂ τM (τ∗MO)[j−1] ∩ j−fτM (τ∗M) = τM ((τ∗MO)[j−1] ∩ j−fτ∗M) = j−fτM (τ∗MO),

where, for the last inequality, we used Lemma 4.28 with respect to the flat submodule j−fτ∗MO
of j−fτ∗M (where flatness follows from Theorem 4.32).

The proof of the lemma will follow from the inequality rn � k for all n � 1. To prove
the latter, note that the range rn is the smallest integer r � 0 such that �r annihilates the
cokernel of

τ∗(MO/�nMO) τM−−→MO/�nMO (4.6)

(we implicitly used MO/�nMO ∼= (MO + �nM)/�nM , following Lemma 4.37). Yet, using the
right-exactness of −⊗A A/�n applied to the sequence (4.5), together with the fact that j is
invertible modulo �n (by our assumption (C�)), the cokernel of (4.6) is Ce/�nCe. Hence, it is
annihilated by �k and then rn � k. �

For n � 1, let L̃n be the inverse image in M of Ln ⊂M/�nM .

Proof of Theorem 4.41. First observe that the sequence of subsets (L̃n + �nM)n�1 of M
decreases when n grows: for n � 1, we have L̃n+1 + �n+1M ⊂ L̃n+1 + �nM and, because (L̃n+1 +
�nM)/�nM defines an integral model for (M/�nM, τM ), we also have

L̃n+1 + �nM ⊂ L̃n + �nM.

Hence, the statement of the theorem is equivalent to the equality

MO = L, where L :=
∞⋂

n=1

(L̃n + �nM).

By Lemma 4.42, L is an A⊗OE-module. The inclusion MO ⊂ L follows from the fact that, for
all n, (MO + �nM)/�nM is an integral model for (M/�nM, τM ). To prove the converse inclusion,
we show that L is an integral model for M . From MO ⊂ L, one deduces that L generates
M over E. Because τM (τ∗(L̃n + �nM)) ⊂ L̃n + �nM [j−1], we also have τM (τ∗L) ⊂ L[j−1]. The
theorem follows once we have proved that L is finitely generated.

Assume that L is not finitely generated. From the Noetherianity of A⊗OE , for all s � 0, it
follows that L �⊂ �−sMO. Equivalently, there exists an unbounded increasing sequence (sn)n�0

of non-negative integers such that �snLn �⊂ (MO + �nM)/�nM . By Proposition 4.8, the range
of (MO + �nM)/�nM is > sn(q − 1). But this contradicts Lemma 4.43. �

In the remainder of this subsection, we still assume (C�). We record a useful corollary to
Theorem 4.41.
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Q. Gazda

Corollary 4.44. Let N = (N, τN ) be an A-motive over OE and NE its base change to E.
Then, N = (NE)O = (NE)good.

Proof. For all n � 1, Ln := (N + �nNE)/�nNE is an integral model of the Frobenius space
(NE/�nNE , τN ) which further satisfies τM (τ∗Ln) = Ln. Hence, (NE/�nNE , τN ) has good reduc-
tion with Ln as the maximal integral model (e.g. Lemma 4.9). Theorem 4.41 implies that the
maximal integral model of NE is the �-adic (topological) closure of N in NE . Yet, as N is a finite
projective A⊗OE-module, it is �-adically closed in NE (one reduces, considering N as a direct
summand in a finite free A⊗OE-module and similarly for NE by base change along OE → E,
to the question of whether A⊗OE is �-adically closed in A⊗ E, which is clear). �

There is a version of Theorem 4.41 for the maximal good model. The proof is along the same
lines, so we do not repeat it.

Proposition 4.45. Let Tn be the maximal good sublattice of the Frobenius space M/�nM . Let
m ∈M . Then m ∈Mgood if and only if m + �nM ∈ Tn for all large enough positive integers n.

For the next section, we shall not only be interested in how to recover MO from Ln, but also
in how to recover MO + (id−τM )(M). While we do not give a complete answer, we at least show
next how to recover its �-adic closure in M in the case M effective. We continue with some finer
technicalities.

Even if we do not have equality between L̃n + �nM and MO + �nM , the former is a good
approximation of the latter as we show next.

Lemma 4.46. Let n � 1. The sequence (L̃m + �nM)m�n is decreasing for the inclusion,
stationary and converges to MO + �nM .

Proof. Let m � 1. (L̃m+1 + �mM)/�mM is an OE-lattice stable by τM in M/�mM so that
L̃m+1 + �mM ⊂ L̃m + �mM . If m � n, we have L̃m+1 + �nM ⊂ L̃m + �nM which shows that
(L̃m + �nM)m�n decreases. Similarly, MO + �nM ⊂ L̃m + �nM for all m � n. Because the set
of OE-lattices Λ such that MO + �nM ⊆ Λ ⊆ L̃n + �nM is finite, the sequence (L̃m + �nM)m�n

is stationary. We denote by Ln its limit. By Theorem 4.41, we have

Ln =
∞⋂

m=n

(L̃m + �nM) =
∞⋂

m=n

(L̃m + �mM) + �nM = MO + �nM.

This concludes the proof. �
Lemma 4.47. There exists an unbounded and increasing sequence (kn)n�1 of non-negative
integers such that, L̃n + �nM ⊂MO + �knM (typically, kn � n for all n).

Proof. For m � 1, let Im be the set of non-negative integers k such that L̃m + �mM ⊂MO +
�kM . Here Im is nonempty as it contains 0 and Im is further bounded: otherwise we would have

L̃m + �mM ⊂
⋂
k

(MO + �kM) = MO, (4.7)

where the last equality is due to the fact that MO is �-adically closed in M (by the same argu-
ment given in the proof of Corollary 4.44, using that MO is finite projective by Theorem 4.32).
Yet, this is impossible as L̃m + �mM is an A⊗OE-module which is not of finite type. Hence,
Im has a maximal element, which we denote by km. Because L̃m+1 + �m+1M ⊂ L̃m + �mM ,
we have km+1 � km. This shows that (km)m�1 increases. We show that it is unbounded.
Let n � 1. By Lemma 4.46, there exists m � n such that MO + �nM = L̃m + �nM . Thus
L̃m + �mM ⊂MO + �nM . In particular, there exists m � n such that km � n. �
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On the integral part of A-motivic cohomology

Proposition 4.48. Assume that M is effective, and let m ∈M . The following are equivalent:

(i) m belongs to the �-adic closure of MO + (id−τM )(M) in M ;
(ii) for all n � 1, m ∈ L̃n + (id−τM )(M) + �nM .

Proof. By Theorem 4.41, the inclusion

MO + (id−τM )(M) ⊂
∞⋂

n=1

[
L̃n + (id−τM )(M) + �nM

]
holds as subsets of M , and the right-hand side is �-adically complete. Hence, part (i) implies
part (ii). The converse follows from Lemma 4.47:

∞⋂
n=1

[
L̃n + (id−τM )(M) + �nM

] ⊂ ∞⋂
n=1

[
MO + (id−τM )(M) + �knM

]
where the right-hand side is identified with the �-adic completion of MO + (id−τM )(M). �

Néron–Ogg–Shafarevič-type criterion. Let E be a local function field with finite residue field k
and valuation ring OE with maximal ideal p = pE . This paragraph is an aparté offering a good
reduction criterion, very much in the spirit of Gardeyn’s Néron–Ogg–Shafarevič-type criterion
[Gar02, Theorem 1.1]. Proposition 4.49 below is not needed in the following, although it is useful
in examples to compute maximal models.

Consider a characteristic morphism κ : A→ OE (i.e. an F-algebra morphism) such that
κ−1(pE) �= (0).

Proposition 4.49. Let M be an A-motive over E, and let � be a maximal ideal of A such that
κ(�)OE = OE . The following statements are equivalent:

(i) There exists an A-motive N over OE such that NE is isomorphic to M .
(ii) The inclusion Mgood ⊂MO is an equality.
(iii) The representation T� M is unramified.

Proof. The equivalence between statements (i) and (ii) follows from Theorem 4.41 and
Proposition 4.45. Let Mn denote the Frobenius space (M/�nM, τM ) of the previous section,
and let Ln and Tn be its maximal integral and good sublattice, respectively. The equivalence
between statements (ii) and (iii) follows from the following sequence of equivalent statements:

T� M is unramified⇐⇒ ∀n � 1, TMn is unramified (notations of Theorem 4.16)

⇐⇒ ∀n � 1, Tn = Ln (by Proposition 4.17)

⇐⇒Mgood = MO (by Theorem 4.41 and Proposition 4.45). �
Definition 4.50. We say that M has good reduction if one of the equivalent points of
Proposition 4.49 is satisfied.

4.3 Models of A-motives over a global function field
Let R be a Dedekind domain which is an A-algebra via a morphism κ. We assume that the
only ideal mapped to the zero ideal under the induced map κ∗ : Spec R→ Spec A is the zero
ideal itself; equivalently, for all prime ideal p ⊂ R, we have κ−1(p) = (0) if and only if p = (0).
In particular, the results of § 4.2 holds for OE being either the localization R(p) of R at the
multiplicative subset A \ p of A or its completion Rp. Let F be the fraction field of R, and Fp

the fraction field of Rp.
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In this subsection, we show existence of maximal R-model for A-motives over F and compare
them with maximal local models of § 4.2. Let M = (M, τM ) be an A-motive over F , and let MFp

be the A-motive over Fp obtained from M by base change from F to Fp. We let MRp denote the
maximal Rp-model of MFp

whose existence is ensured by Proposition 4.30.

Proposition 4.51. There exists a unique maximal R-model for M . It equals the intersection⋂
p(M ∩MRp ) for p running over the maximal ideals of R. We denote it by MR.

Proof. From Lemma 4.21, uniqueness is automatic. Let N be an R-model for M (whose existence
is ensured by Proposition 4.20). For any maximal ideal p of R, we have N ⊂ N ⊗R Rp ⊂MRp

by maximality of MRp . Therefore, N ⊂ ⋂
p(M ∩MRp ). Hence, it is sufficient to show that⋂

p(M ∩MRp ) is an R-model. First note that it is a sub-A⊗R-module of M which, as it
contains N , generates M over F . To show stability by τM , let e be a large enough integer such
that τM (τ∗M) ⊂ j−eM . One easily checks that

τM

(
τ∗⋂

p

(M ∩MRp )
)
⊂
⋂
p

j−e(M ∩MRp ) ⊂
(⋂

p

M ∩MRp

)
[j−1].

It remains to show that
⋂

p(M ∩MRp ) is finitely generated over A⊗R. Let T ⊂M be a generat-
ing finite flat sub-A⊗R-module and let d ∈ R be such that d · T ⊂ τM (τ∗T )[j−1]. In particular,
Tp := T ⊗R Rp is a generating finite flat sub-A⊗Rp-module of Mp, and [Tp : τM (τ∗Tp)] � vp(d).
We denote cT (p) := �−[Tp : τM (τ∗Tp)]/(q − 1)� so that, as in the proof of Proposition 4.30,
MRp ⊂ �cT (p)Tp. Note that cT (p) = 0 for almost all p. We have

M ∩MRp ⊂M ∩�cT (p)Tp = (F ⊗R T ) ∩ (pcT (p)Rp⊗R T ) = pcT (p)T,

where we used the flatness of T for the last equality. Therefore,⋂
p

(M ∩MRp ) ⊂
⋂
p

pcT (p)T = d · T,

where d := ∩pp
cT (p) is a fractional ideal of R. The module d · T being finitely generated, we

conclude using the Noetherianity of A⊗R. �
From Lemma 4.23, we obtain.

Corollary 4.52. The maximal good sublattice Mgood of M exists and is unique.

We now state the global version of Theorem 4.32. The argument is similar, so we omit proofs.

Theorem 4.53. Both MR and Mgood are projective over A⊗R.

Remark 4.54. Note, however, that an integral model for M , when not maximal, is not necessarily
projective. For instance, the F[t]-motive 1 = (F[t](θ),1) over F(θ) admits L := tF[t, θ] + θF[t, θ]
as F[θ]-model. But it is well-known that L is not a flat F[t, θ]-module. A short way to see
this consists of considering the element Δ := (t⊗ θ − θ ⊗ t) ∈ L⊗F[t,θ] L. Here Δ is nonzero in
L⊗F[t,θ] L, but

θ ·Δ = (θt)⊗ θ − θ ⊗ (θt) = (θt)⊗ θ − (θt)⊗ θ = 0.

Then L is not flat because L⊗F[t,θ] L has non-trivial torsion.

By the formula given in Proposition 4.51, the datum of all the maximal local models is
enough to recover MR. Conversely, the knowledge of MR is sufficient to recover MRp as we show
next.
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Theorem 4.55. The inclusion MR ⊗R Rp ⊆MRp is an equality.

We begin with a useful statement on its own which allows to reduce the proof of Theorem 4.55
to the case where R is a DVR. We denote by (−)(p) the localization functor with respect to the
multiplicative subset A \ p of A. We denote by MR(p)

the maximal R(p)-model of M .

Lemma 4.56. The inclusion (MR)(p) ⊆MR(p)
is an equality.

Proof. As both modules generate M over F , the cokernel of the inclusion is p-torsion and, thus,
given any m ∈MR(p)

, there exists a ∈ A such that (a) = pc for some c � 1 and am ∈ (MR)(p).
By definition of localization, there exists b ∈ A \ p for which abm ∈MR. By Proposition 4.51,
we have abm ∈M ∩MRq and then bm ∈M ∩MRq for all q �= p. Hence,

bm ∈MR(p)

⋂
q
=p

(M ∩MRq ) = (M ∩MRp )
⋂
q
=p

(M ∩MRq ) = MR,

and, finally, m ∈ (MR)(p). For the first equality, we used that MR(p)
= M ∩MRp , which follows

by applying Proposition 4.51 but to the ring R(p) instead of R. �

Proof of Theorem 4.55. In virtue of Lemma 4.56, we may assume that R is a DVR with maximal
ideal p and that Rp is its completion. Let C denote the cokernel of MR ⊗R Rp ⊆MRp ; as C is
both finite as a module over A⊗Rp and is id⊗p-torsion, it is finite over A.

Let � be a maximal ideal of A not lying under p (i.e. such that condition (C�) holds). Let (kn)n

and (k′
n)n be the sequences of integers produced by Lemma 4.47 for M and MFp

, respectively. Let
n be such that kn, k′

n � 1. Let L and Lp be the maximal R-model and Rp-models of the Frobenius
spaces M/�nM and MFp

/�nMFp
. As remarked in Remark 4.5, we have Lp = L⊗R Rp. By choice

of n, we also have

L + �M = MR + �M, (4.8)

Lp + �Mp = MRp + �MFp . (4.9)

Using Fp = F ⊗R Rp, we get

MR ⊗R Rp + �MFp = (MR + �M)⊗R Rp = (L + �M)⊗R Rp = L⊗R Rp + �MFp = Lp + �MFp

= MRp + �MFp .

As a result, we obtain the following diagram.

That the vertical arrows are isomorphism as depicted on the diagram is deduced from the
flatness of the modules MR ⊗R Rp and MRp over A⊗Rp (e.g. as in the beginning of the proof
of Lemma 4.28). This implies that the bottom row is an isomorphism and, hence, C/�C = (0).

This being true for infinitely many �, and because C is a finite A-module, we obtain C = (0),
proving the theorem. �

Definition 4.57. We say that M has good reduction at p if MFp
has good reduction. We say

that M has everywhere good reduction if M has good reduction at p for all maximal ideals
p of R.
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4.4 The integral part of A-motivic cohomology
In this subsection, we introduce the notion of integral and p-integral extension and compare it
with that of good extension at p with respect to � as defined earlier in Definition 2.30. More
precisely, we shall prove Theorems C and D stated in the introduction.

Over local function fields. Let m ⊂ A be a maximal ideal of A with associated local function
field Km. Let Fp be a finite field extension of Km with valuation ring Op. Let κ : A→ Op be the
inclusion; in particular, κ−1(p) �= (0) and the results of the previous subsections apply. Let F ur

p

be the maximal unramified extension of Fp in F s
p . Let Ip be the inertia subgroup of Gp = GFp .

Let M be an A-motive over Fp and let MOp be its maximal Op-model.

Definition 4.58. We define Ext1Op
(1, M) as the sub-A-module of Ext1MFp

(1, M) given by the

image of MOp [j
−1] through ι (Theorem 2.21). Extensions whose class belongs to the latter module

will be called p-integral (or simply integral when p is clear from the context).

From Corollary 4.25, ι induces an isomorphism of A-modules:

MOp [j
−1]

(id−τM )(MOp )
∼−→ Ext1Op

(1, M).

Remark 4.59. An important remark is that the assignment M → Ext1Op
(1, M) is functorial,

thanks to Corollary 4.26.

Our main result states that for � �= m integral extensions have good reduction with respect
to �.

Theorem 4.60. Let � be a maximal ideal in A distinct from m. Then,

Ext1Op
(1, M) ⊂ Ext1good(1, M)�.

Proof. By choice of �, we have κ(�)Op = Op. Let [E] ∈ Ext1Op
(1, M). By definition, there exists

m ∈MOp [j
−1] such that [E] = ι(m). If L̃n denotes a lift in M of the maximal integral model

of the Frobenius space M/�nM , we obtain m ∈ L̃n + �nM for all n. By Proposition 4.18, there
exists yn ∈M ⊗Fp ⊗F nr

p such that

m ≡ yn − τM (τ∗yn) (mod �n). (4.10)

Note that, for each n, there are only finitely many such yn (mod �n). We next show that we can
choose compatibly yn for all n (that is, yn+1 ≡ yn (mod �n)). Let us define a tree T indexed by
n � 1 whose nodes at the height n are the solutions yn of (4.10) in (M ⊗Fp F ur

p )/�n(M ⊗Fp F ur
p ).

There is an edge between zn and zn+1 if and only if zn+1 coincides with zn modulo �n. The tree has
finitely many nodes at each height and it is infinite from the fact that a solution of (4.10) exists
for all n. By König’s lemma, there exists an infinite branch on T . This branch corresponds to a
converging sequence (yn)n�1 whose limit y in (M⊗̂FpF

ur
p )� satisfies m = y − τM (τ∗y). Therefore,

we conclude that [E] ∈ Ext1good(1, M)� thanks to Proposition 2.31. �

Over global function fields. Let F be a finite field extension of K and let OF be the integral
closure of A in F . We let κ : A→ OF denote the inclusion. We fix S to be a set of nonzero prime
ideals of OF and consider the subring R := OF [S−1] of F . The ring R is a Dedekind domain
whose fraction field is F . We have κ−1(p) = (0) if and only if p = (0), so the result of § 4.3 applies.

Let M = (M, τM ) be an Anderson A-motive over F . Given a maximal ideal p ⊂ R, we
let Mp be the A-motive over Fp obtained from M by base-change from F to Fp. Given an
extension [E] ∈ Ext1MF

(1, M), the exactness of the base change functor defines an extension
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On the integral part of A-motivic cohomology

[Ep] ∈ Ext1MFp
(1p, Mp). This allows us to define the following submodule of Ext1MF

(1, M):

Ext1R(1, M) =
⋂
p⊂R

maximal

{
[E] ∈ Ext1MF

(1, M)
∣∣∣∣ [Ep] ∈ Ext1Rp

(1p, Mp)
}

.

Definition 4.61. We say that an extension of 1 by M is R-integral (or simply integral) if it
belongs to Ext1R(1, M).

Our second main result consists of the next theorem.

Theorem 4.62. Let MR denote the maximal integral R-model of M . The A-module Ext1R(1, M)
equals the image of MR[j−1] through ι. In addition, ι induces a natural isomorphism of A-modules:

MR[j−1]
(id−τM )(MR)

∼−→ Ext1R(1, M).

The proof of the above theorem will result after a sequence of lemmas.

Lemma 4.63. Let MRp be the maximal integral model of Mp = (Mp, τM ). Inside M [j−1], we
have

M [j−1] ∩
(
MRp [j

−1] + (id−τM )(Mp)
)

= M [j−1] ∩MRp [j
−1] + (id−τM )(M).

Proof. The inclusion ⊃ is clear. Since M is generated over F by elements in M ∩MRp and
as Fp = F + Rp, we have Mp = M + MRp . Let m be an element in the left-hand side. We can
write m as mp + np− τM (τ∗np) + n− τM (τ∗n) where mp ∈MRp [j

−1], np ∈MRp and n ∈M . In
particular, mp + np− τM (τ∗np) belongs to M [j−1] ∩MRp [j

−1] which implies that m ∈M [j−1] ∩
MRp [j

−1] + (id−τM )(M). �
Lemma 4.64. Let m ∈M . Then m ∈MRp for almost all maximal ideals p of R.

Proof. There exists a nonzero element d ∈ R such that dm ∈MR. Let {q1, . . . , qs} be the finite
set of maximal ideals in R that contain (d). By Proposition 4.51, m ∈MRp for all p not in
{q1, . . . , qs}. �

Let N be a finite-dimensional vector space over F (respectively, Fp). By a lattice in N we
mean a finitely generated module over R (respectively, Rp) in N that contains a basis of N .

Lemma 4.65 (Strong approximation). Let N be a finite-dimensional F -vector space and, for all
maximal ideals p of R, let NRp be an Rp-lattice in Np := N ⊗R Fp such that the intersection⋂

p

(
N ∩NRp

)
, over all maximal ideals p of R, is an R-lattice in N . Let T be a finite set of maximal

ideals in R and, for q ∈ T , let nq ∈ Nq. Then, there exists n ∈ N such that n− nq ∈ NRq for all
q ∈ T and n ∈ NRp for all p not in T .

Proof. Let NR denote the intersection
⋂

p

(
N ∩NRp

)
over all maximal ideals p of R. By the

structure theorem for finitely generated modules over the Dedekind domain R, there exists a
nonzero ideal a ⊂ R and elements {b1, . . . , br} ⊂M such that

NR = Rb1 ⊕ · · · ⊕Rbr−1 ⊕ abr.

Because NR ⊗R Rp ⊂ NRp for p ⊂ R, we have Rpb1 ⊕ · · · ⊕ pvp(a)Rpbr ⊂ NRp . For q ∈ T , let us
write nq =

∑
i fq,ibi with fq,i ∈ Fq. By the strong approximation theorem [Ros02, Theorem 6.13],

for all i ∈ {1, . . . , r}, there exists fi ∈ F such that:

(i) for q ∈ T and i ∈ {1, . . . , r − 1}, vq(fi − fq,i) � 0;
(ii) for q ∈ T , vq(fr − fq,r) � vq(a);
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Q. Gazda

(iii) for p /∈ T and i ∈ {1, . . . , r − 1}, vp(fi) � 0;
(iv) for p /∈ T , vp(fr) � vp(a).

The element n =
∑

i fibi ∈ N satisfies the assumption of the lemma. �

Lemma 4.66. We have⋂
p⊂R

(
M [j−1] ∩MRp [j

−1] + (id−τM )(M)
)

= MR[j−1] + (id−τM )(M), (4.11)

where the intersection is indexed over the maximal ideals of R.

Proof. The inclusion ⊃ follows from Proposition 4.51. Conversely, let m be an element of the
left-hand side of (4.11). By Lemma 4.64, there exists a finite subset T of maximal ideals of
R such that m ∈MRp [j

−1] for p /∈ T . For q ∈ T , there exists nq ∈M and mq ∈M [j−1] ∩MRq [j
−1]

such that m = mq + nq− τM (τ∗nq).
Let N be a finite-dimensional sub-F -vector space of M that contains m and nq for all

q ∈ T . For a maximal ideal p of R, let NRp := MRp ∩ (N ⊗F Fp). Let also NR :=
⋂

p(N ∩NRp ).
By Proposition 4.51, we have NR = N ∩MR. In particular, this implies that NR generates
N over F . This also implies that NR is a finitely generated R-module: as MR is finite pro-
jective (Theorem 4.53), it is included in a finite free A⊗R-module from which we consider a
basis (m1, . . . , mt). On the other hand, if (n1, . . . , ns) is a basis of N over F , there exists a
constant C � 0 large enough for which each ni belongs to

⊕
j(A⊗ F )deg<C ·mj , i ∈ {1, . . . , s},

where we denoted (A⊗ F )deg<C the finite-dimensional sub-F -vector space of A⊗ F of elements
built as sums of elementary tensors a⊗ f with deg(a) < C. This yields

NR ⊆
t⊕

j=1

(A⊗R)deg<C ·mj

and, hence, NR is finitely generated. We have therefore proved that NR is an R-lattice in N , and
Lemma 4.65 applies: there exists n ∈ N such that n− nq ∈ NRq for all q ∈ T and n ∈ NRp for
all p not in T . Then m + n− τM (τ∗n) ∈ NR ⊂MR, which ends the proof. �

Proof of Theorem 4.62. Let [E] ∈ Ext1MF
(1, M) and let m ∈M [j−1] be such that [E] = ι(m).

The proof of Theorem 4.62 is achieved via the following sequence of equivalence:

[E] ∈ Ext1R(1, M)⇐⇒ ∀p ∈ Spm R : [Ep] ∈ Ext1Rp
(1p, Mp)

⇐⇒ ∀p ∈ Spm R : m ∈M [j−1] ∩ [MRp [j
−1] + (id−τM )(Mp)]

⇐⇒ ∀p ∈ Spm R : m ∈M [j−1] ∩MRp [j
−1] + (id−τM )(M)

⇐⇒ m ∈MR[j−1] + (id−τM )(M)

⇐⇒ [E] ∈ ι(MR[j−1]),

where the second equivalence stems from Definition 4.19, the third from Lemma 4.63 and the
fourth from Lemma 4.66. The second assertion follows from Corollary 4.25. �

5. Regulated extensions

Let m ⊂ A be a maximal ideal of A with associated local function field Km, let Fp be a finite
field extension of Km with valuation ring Op and, as before, denote by κ : A→ Op the inclusion.
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On the integral part of A-motivic cohomology

Consider an A-motive M over Op. In the previous section, we proved that given any maximal
ideal � in A distinct from m, there is an inclusion

Ext1Op
(1, M) ⊂ Ext1good(1, M)� (5.1)

of sub-A-modules of Ext1MFp
(1, M). Surprisingly, this is almost never an equality. In § 5.1, we

construct explicitly a class in the right-hand side of (5.1) which does not belong the left-hand
side. In the remaining part of this text, we offer a conjectural framework in which we expect to
solve this default.

5.1 A particular extension of 1 by itself
We consider the case where A = F[t] and consider the maximal ideal � = (t) in A. Let E be the
local function field F((π)), O = F[[π]], with structure morphism κ : A→ O defined by κ(t) = 1 + π
(that is, π = θ − 1 where θ = κ(t)). We have κ(�)O = (1 + π)F[[π]] = O so κ(�)O = O. Let M = 1
over E. By Proposition 2.29 enriched with Proposition 4.18, there is a commutative square of
A-modules:

where the bottom arrow is induced by the inclusion of E[t, (t− θ)−1] in E[[t]].
Hereafter, we construct an element m in E[t, (t− θ)−1] of the form

m =
mk

(t− θ)k
+ · · ·+ m1

(t− θ)

for some m1, . . . , mk in E, not all in O, such that m belongs to (id−τ)(E[[t]]). Then, ι(m)
has good reduction with respect to (t) (in the sense of Definition 2.30) but does not belong to
O[t, (t− θ)−1] + (id−τ)(E[t]).

Let k = q2 where q is the number of elements of F, and for i ∈ {0, . . . , k − 1}, define n′
i as

θi(π−1 − π−q) in E. Thus, n′
i has valuation −q. For all c � 0, let fck be a root in E of the

polynomial:

Xq −X + θ−ckn′
0.

Such a root exists in E as θ−k ≡ 1 (mod πq2
). We now define fl ∈ E for all l � 0 by the rule

fl := fck if l = ck + r for c � 0 and 0 � r < k. We obtain

for all l � 0 : θ−ln′̄
l = fl − f q

l , (5.2)

where l ∈ {0, . . . , k − 1} denotes the remainder of the Euclidean division of l by k.
For l � 0, let Sk(l) be the Pascal matrix whose ith row-jth column entry is the binomial

coefficient
(
i+j+l
i+l

)
(0 � i, j < k). The following claims are easily proven.

(i) The determinant of Sk(0) is 1.

1767

https://doi.org/10.1112/S0010437X24007218
Downloaded from https://www.cambridge.org/core. IP address: 35.202.208.150, on 26 Sep 2024 at 22:13:47, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X24007218
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Q. Gazda

(ii) Let p be the characteristic of F. For l � 0, we have the formula

Sk(l + 1) ≡

⎛
⎜⎜⎜⎜⎜⎝

1
1

. . .
1

1

⎞
⎟⎟⎟⎟⎟⎠Sk(l) (mod p).

(iii) The application l → Sk(l) is k-periodic modulo p.

We now define m′
i ∈ E for i ∈ {0, . . . , k − 1} by mean of the formula:

Sk(0)

⎛
⎜⎜⎜⎝

m′
0

m′
1

...
m′

k−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

n′
0

n′
1
...

n′
k−1

⎞
⎟⎟⎟⎠ .

Since the ni have negative valuation, at least one of the mi has negative valuation (by claim (i)).
From claim (ii), we have

for all l � 0 : Sk(l)

⎛
⎜⎜⎜⎝

m′
0

m′
1

...
m′

k−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

n′̄
l

n′
l+1
...

n′
l+k−1

⎞
⎟⎟⎟⎟⎠ .

From (5.2), we obtain

for all l � 0 : θ−l

( k−1∑
i=0

m′
i

(
i + l

l

))
= fl − f q

l . (5.3)

Finally, for i ∈ {1, . . . , k}, let mi := (−θ)im′
i−1. Formula (5.3) amounts to

m :=
mk

(t− θ)k
+ · · ·+ m1

(t− θ)
= f − f (1),

where f :=
∑

l�0 flt
l. Therefore, ι(m) has good reduction, although m does not belong to

O[t, (t− θ)−1] + (id−τ)(E[t]).

5.2 Hodge polygons of A-motives
We recognize that the extension of Hodge–Pink structures corresponding to ι(m) constructed
in the previous subsection is not Hodge additive in the sense of [Pin97, §§ 6 and 7]. We now
introduce the notion of regulated extensions which is the counterpart of Hodge additivity for
A-motives.

Let F be (any) field equipped with an F-algebra morphism κ : A→ F . Let M be an
A-motive of rank r over F and characteristic morphism κ. Given e a large enough integer for
which jeτM (τ∗M) ⊂M , we have an isomorphism

M/jeτM (τ∗M) ∼=
r⊕

i=1

(A⊗ F )/je+wi

for some uniquely determined integers w1 � · · · � wr independent of e nor of the isomorphism.
We call (w1, . . . , wr) the multiset of Hodge weights of M . Hodge weights are graphically organized
into the Hodge polygon of M whose construction we now recall.
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By polygon, we mean the graph in R2 of a piecewise linear convex function [0, n]→ R starting
at (0, 0). All slopes are assumed to be rational numbers, and the length of the subinterval of
[0, n] on which the function as a given slope q ∈ Q is called the multiplicity of q. Therefore,
each polygon P is uniquely determined by its multiplicity function mP : Q→ N which assigns to
q ∈ Q the multiplicity of the slope q. Such a function m is the multiplicity function of a polygon
if, and only if, the set {q ∈ Q|m(q) > 0} is finite. The Hodge polygon of M is the polygon whose
multiplicity function is q → #{i ∈ {1, . . . , r}|wi = q}.

Let 0→M → E → N → 0 be an exact sequence of A-motives over F . An argument due
to Katz shows that the Hodge polygon of M ⊕N lies above that of E and has the same
end points (see [Kat79, Lemma 1.2.3] in the context of F -crystals, or [Pin97, Proposition 6.9]
in our situation). In general, one cannot claim equality among those Hodge polygons which
makes our situation differ from classical mixed motives over Q. In the context of function
fields Hodge structures, in order the compute Hodge groups explicitly, Pink introduced the
condition of Hodge additivity [Pin97, §§ 6 and 7] whose counterpart for A-motives is that of
regulation.

Definition 5.1. We call an exact sequence 0→M → E → N → 0 in MF regulated if the Hodge
polygon of M ⊕N coincide with that of E.

Clearly, any exact sequence equivalent to a regulated exact sequence in Ext1MF
(N, M) is

itself regulated. We denote by Ext1,reg
MF

(N, M) the subset of regulated extensions.

Remark 5.2. The choice of the naming regulated deserves some explanations. It is derived from
the name regulator which corresponds classically to the group morphism from extensions of clas-
sical mixed motives to extensions of classical mixed Hodge structures induced by the exactness
of the Hodge realization functor. In function field arithmetic, one associates to an A-motive M
the data of an F -vector space equipped with a decreasing filtration:

H := τ∗M/jτ∗M, p ∈ Z : Filp H := image
(
τ∗M ∩ jp · τ−1

M (M)→ τ∗M/jτ∗M
)
, (5.4)

which one could legitimately call its associated Hodge structure (H, Fil) (e.g. [HJ20]). However,
following considerations by Pink, this functor is not exact,7 hence preventing the well-definedness
of a regulator morphism in this setting. More precisely, as one could derive from [Pin97,
Proposition 6.11], an exact sequence of A-motives S induces an exact sequence of Hodge struc-
tures if and only if S is regulated. The notion of regulation is exploited in a sequel to this text
to define a function field regulator among finite-dimensional vector spaces (see [Gaz22, GM23]).

The next proposition allows us to compute regulated extensions in the category MF . Let M
and N be two objects in MF . Recall the map ι = ιN,M from Proposition 2.16.

Proposition 5.3. Let u ∈ HomA⊗F (τ∗N, M)[j−1] and let [E] be the extension of N by M
given by ιN,M (u). Then, [E] is regulated if and only if there exists f ∈ HomA⊗F (τ∗N, τ∗M) and
g ∈ HomA⊗F (N, M) such that u = τM ◦ f − g ◦ τN .

Proof. We may assume that E is the A-motive
[
M ⊕N,

( τM u
0 τN

)]
(in full generality, the extension

[E] is only equivalent to it). We preserve the notation E instead of M ⊕N below to lighten
notation. For e � 0 large enough, there is an exact sequence of A⊗ F -modules

S : 0 −→M/jeτM (τ∗M) m−→ E/jeτE(τ∗E) n−→ N/jeτN (τ∗N) −→ 0

7 Call a sequence S of Hodge structures exact if the sequence Filp S is exact in the category of F -vector spaces
for all p.
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resulting from the Snake lemma. We interpret the terms of S as finite torsion modules over
the DVR F [[j]] := lim←−n

A⊗ F/jn. The elementary divisors are of the form e + i, where i runs
through the slopes of the corresponding Hodge polygon. Thus, similar to the proof of [Pin97,
Proposition 8.7], the regulation of [E] is equivalent to the splitting of S over F [[j]], itself equivalent
to the splitting of S over A⊗ F .

Assume that [E] is regulated. From a splitting of S, we get an isomorphism

ε : M/jeτM (τ∗M)⊕N/jeτN (τ∗N) ∼−→ E/jeτE(τ∗E) (5.5)

compatible with S. Consider the linear map ḡ : N → E/jeτE(τ∗E), n → ε(0, n)− (0, n), where
the subtracted term is understood through the surjection M ⊕N � E/jeτE(τ∗E). By compati-
bility of ε with S, we have n ◦ ḡ = 0, hence ḡ factors through m. As M is a projective module,
ḡ : N →M/jeτM (τ∗M) lifts to a map g : N →M . By construction, we obtain the following
commutative square.

The bottom row maps je
( τM 0

0 τN

)
(τ∗M ⊕ τ∗N) isomorphically to je

( τM u
0 τN

)
(τ∗M ⊕ τ∗N). In

particular, for any n ∈ τ∗N , there exists a necessarily unique m′ ∈ τ∗M such that(
idM g
0 idN

)(
τM 0
0 τN

)(
0
n

)
=
(

τM u
0 τN

)(
m′

n

)
.

The assignment n → m′ is linear, and we denote it by f . We have u = τM ◦ f − g ◦ τN by
construction, as desired.

It becomes clear from the proof how to construct a splitting of S, from the existence of
f and g such that u = τM ◦ f − g ◦ τN , proving thusly the converse statement. �

It follows from the above proposition that the subset Ext1,reg
MF

(N, M) of regulated extensions
of N by M is well-defined and is a sub-A-module of Ext1MF

(N, M). We also deduce that the
notion of regulation is compatible with the duality property of extension modules.

Corollary 5.4. Let d : Ext1MF
(N, M)→ Ext1MF

(1, M ⊗N∨) be the canonical map of (2.2).
Let [E] be an extension of N by M . Then, [E] is regulated if and only if d([E]) is.

Proof. Fix an extension [E] := [0→M → E
p→ N → 0]. Under d, it is mapped to the extension

[E′] := [0→M ⊗N∨ → E′ → 1→ 0] where E′ is the A-motive obtained as the pullback of

E ⊗N∨ p⊗id−−−→ N ⊗N∨ ε←− 1

and where ε is the unit morphism (cf. Appendix A.7). Let u : (τ∗N)[j−1]→M [j−1] be an A⊗
F -linear map for which ιN,M (u) = [E]. This means that, up to replacing [E] by an equivalent
extension, we can assume E to be the A-motive

(E, τE) :=
(

M ⊕N,

(
τM u
0 τN

))

with p : E → N being the projection prN . Then, E′ is described as the A-motive whose
underlying module is

E′ =
{
v ∈ HomA⊗F (N, N ⊕M) | prN ◦g ∈ (A⊗ F ) · idN

}
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and where τE′ maps v ∈ τ∗ Hom(N, E) = Hom(τ∗N, τ∗E) to τE ◦ v ◦ τ−1
N ∈ Hom(N, E)[j−1].

Now observe that any element in E′ can be written uniquely as h⊕ a · idN for some h : N →M
and a ∈ A⊗ F . Taking v ∈ E′ in this form, we get

τE′(τ∗v) = (τM ◦ τ∗v ◦ τ−1
N + a · u ◦ τ−1

N )⊕ a · idN .

From this computation we deduce that the following diagram commutes

where the left vertical map sends u to the morphism mapping a ∈ τ∗(A⊗ F ) = A⊗ F to
a · (u ◦ τ−1

N ). Applying Proposition 5.3 we get that [E] is regulated, if and only if there exists f
and g such that u = g ◦ τN − τM ◦ f , if and only if u ◦ τ−1

N = g − τM ◦ f ◦ τ−1
N , which happens if

and only if [E′] is itself regulated. �
In the particular situation of N = 1, Proposition 5.3 yields the following.

Corollary 5.5. Let M be an A-motive over F . Then, ι induces an isomorphism of A-modules:

M + τM (τ∗M)
(id−τM )(M)

∼−→ Ext1,reg
MF

(1, M).

One may use Corollary 5.5 to show that the extension of 1 by itself constructed in § 5.1 is
not regulated. Indeed, using the notation of § 5.1, the aforementioned extension was represented
by an element

m =
mk

(t− θ)k
+ · · ·+ m1

(t− θ)
∈M [j−1] = E[t]

[
1

t− θ

]
,

where at least one of the mi is nonzero. In particular, it does not belong to M + τM (τ∗M) which
is E[t] in this case.

Remark 5.6. For Hodge–Pink structures, Pink proved that the dimension of Hodge additive
extension spaces is finite [Pin97, Proposition 8.7]. It seems at first reasonable to expect a similar
result for integral regulated extensions of A-motives. However, the condition of regulation alone
is not sufficient to state a counterpart of conjecture (C5) for A-motives. An other condition, that
of analytic reduction at ∞, is required. This is the main subject of our sequel [Gaz22], where
we prove the finite generation of the A-module of integral regulated extensions having analytic
reduction at ∞ (see Theorem 4.1 in [Gaz22]).

5.3 Regulated extensions having good reduction
We now assume that F is a finite field extension of K, let p be a finite place of F and let m be
the place of K sitting under p. Hereafter, κ is the inclusion of A into F ; it factors through OF ,
the integral closure of A in F . By the field L (respectively, the ring OL) we shall mean either F
or Fp (respectively, OF or Op). Let � be a maximal ideal in A distinct from m.

Let M be an A-motive over L. Recall that we considered two submodules of Ext1ML
(1, M)

related to integrality and good reduction, respectively:

Ext1OL
(1, M) integral extensions (Definition 4.58);

Ext1good(1, M)� good reduction extensions with respect to � (Definition 2.30).

We now introduce their regulated avatar.
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Definition 5.7. We let Ext1,reg
OL

(1, M) be the submodule of Ext1OL
(1, M) consisting of regulated

extensions. Similarly, by Ext1,reg
good(1, M)� we designate the submodule of Ext1good(1, M)� consisting

of regulated extensions in the category ML.

Assume now that L = Fp. By Theorem D (Theorem 4.62), there is an inclusion of A-modules:

Ext1,reg
Op

(1, M) ⊆ Ext1,reg
good(1, M)�. (5.6)

We strongly suspect the above to be an equality although we were unable to prove it in generality.
The following is our expected analogue of conjecture (C4).

Conjecture 5.8. The inclusion (5.6) is an equality. In particular, Ext1,reg
good(1, M)� does not

depend on �.

We stated Conjecture 5.8 as the only examples we could produce of extensions which belong
to the right-hand side of (5.6), but not in the left-hand side, that were not regulated. Still, we
owe the reader stronger motivations for it. For the remainder of this section, we present some
evidences for Conjecture 5.8, in Theorems 5.9 and 5.13 below.

Hereafter we assume A = F[t]. Let V = (V, ϕ) be a Frobenius space over Fp (§ 4.1). From
V we obtain an A-motive over Fp, denoted by A⊗ V , whose underlying module is A⊗ V and
whose morphism is idA⊗ϕ. Those A-motives form a quite restrictive class: observe that A⊗ V
is effective of weight and Hodge weight zero.

Theorem 5.9. Assume that V has good reduction (Definition 4.13). Then Conjecture 5.8 is
true for A⊗ V .

We will, in fact, prove a slightly more general version.

Proposition 5.10. Let N = (N, τN ) be an A-motive over Fp such that:

(i) it is effective;
(ii) it has good reduction;
(iii) there exists an A(Fp)-lattice Λ in N ⊗A⊗Fp B(Fp) such that both

(a) τN (τ∗Λ) = Λ and
(b) as Fp-vector spaces, N ⊗A⊗Fp B∞(Fp) = N ⊕ Λ.

Then, Conjecture 5.8 is true for N .

The assumption A = F[t] was superfluous so far; we use it next to relate Proposition 5.10 to
Theorem 5.9 in the next lemma.

Lemma 5.11. The A-motive A⊗ V satisfies the condition of Proposition 5.10.

Proof. Write N = (N, τN ) for the A-motive A⊗ V . That N is effective and has good reduction
is clear. It remains to find Λ. Identifying A(Fp) with Fp[[t−1]] and N ⊂ NA⊗FpB∞(Fp) with
V [t] ⊂ V ((t−1)), we can choose Λ = t−1V [[t−1]]. �

We are left with the proof of Proposition 5.10. First, we show the following.

Lemma 5.12. Let � be a maximal ideal of A and let N be an A-motive over Fp as in
Proposition 5.10. Then NOp + (id−τN )(N) is �-adically closed in N .

Proof. Let Λ be as in Proposition 5.10(iii). For n � 0, let Nn be the finite-dimensional
Fp-vector space �nΛ ∩N . (Nn)n defines an increasing sequence of subspaces of N and we both
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On the integral part of A-motivic cohomology

have
⋃

n�0 Nn = N and N = Nn ⊕ �nN . We claim that

NOp ∩N = (NOp ∩Nn)⊕ �n(NOp ∩N).

To see this, note that since N has good reduction, the image of NOp ∩Nn through N → N/�nN
equals the maximal integral model of (N/�nN, τM ). Hence, NOp ∩N ⊂ (NOp ∩Nn)⊕ �nN and
the claim follows.

Let m ∈ N be such that there exists a sequence (mn)n�0 in NOp + (id−τN )(N) which con-
verges �-adically to m. We can assume without loss of generality that mn ∈ Nn for all n. Yet,
we have m ∈ Nd for a large enough integer d. If pd denotes the projection onto Nd orthogonally
to �dN , we obtain m = pd(m) = pd(md) ∈ (NOp ∩Nd) + (id−τN )(Nd) as desired. �

Proof of Proposition 5.10. Let [E] = ι(m) be an extension in Ext1,reg
good(1, N)�. By definition,

m ∈ N , and by Proposition 2.3, there exists ξ ∈ (NFur
p

)∧� such that

m = ξ − τN (τ∗ξ). (5.7)

Reducing (5.7) modulo �n for all n � 1, we obtain from Proposition 4.18, applied to the Frobenius
space (N/�nN, τN ), that

for all n � 1 : m ∈ L̃n + (id−τN )(N) + �nN,

where L̃n is a lift in N of a maximal integral model for (N/�nN, τN ). It follows from
Proposition 4.48 that m belongs to the �-adic closure of NOp + (id−τN )(N). But the latter
is already closed by Lemma 5.12. It follows that m ∈ NOp + (id−τN )(N), which amounts to
[E] ∈ Ext1,reg

Op
(1, N) as desired. �

Let M = A(n) be the nth twist of the Carlitz motive over Fp (Example 2.6). That is,
M = Fp[t] and that τM acts by mapping τ∗p(t) to (t− θ)−np(t)(1), for p(t) ∈ Fp[t]. Let (�) �= m

be a maximal ideal of A = F[t].

Theorem 5.13. Let n be a non-negative integer and let M = A(n). Then Conjecture 5.8 is true
for M .

The original proof of Theorem 5.13 only worked for n a power of the characteristic of F.
We are thankful to the referee for suggesting this new argument which fills our previous gap.

Proof of Theorem 5.13. Let m ∈M + τM (τ∗M) be such that there exists f ∈ (MFur
p

)∧� for which
f − τM (τ∗f) = m. That is, m = (t− θ)−np ∈ (t− θ)−n · Fp[t] and f ∈ F ur

p [t]∧� . We let s := vp(p)
be the minimum of the valuation of the coefficients of the polynomial p; we have to show that up
to subtracting an element of (id−τM )(M) to m, i.e. a polynomial of the form (t− θ)nh− h(1) to
p, we can find p with vp(p) � 0. Suppose otherwise, and denote by s < 0 the maximal valuation
of such p.

From the relation

p = (t− θ)nf − f (1),

which we consider in F ur
p [t]∧� = F((�))d[[�]] where d = [A/� : F], we deduce that the coefficients

(ci)i�0 in F((�))d of f as a formal power series in the variable � are bounded. In particular,
the value vp(f) := infi{vp(ci)} is well-defined and, since s < 0, satisfies s = vp(f (1)) = qvp(f).
This implies that q divides s, from which one deduces the existence of a polynomial h such that
vp(p + (t− θ)nh− h(1)) > s. But this contradicts the maximality of s. �
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Appendix A. Exact categories

Exact categories were introduced by Quillen in [Qui73] in order to define their K-groups. By
definition, exact categories possess a class of short sequences satisfying several axioms which are
modeled out of properties of exact sequences in abelian category; in that respect, short sequences
in those classes are called short exact.

The embedding theorem (cf. [Büh10, § A]) states that any exact category which is small
embeds fully and faithfully into an abelian category, in such a way that exact sequences coincide.
This is presumably the main reason why the literature on this topic does not abound: many of
the properties of exact categories can be deduced from their counterpart in abelian categories.

There are, however, some statements involved at certain key steps in the course of this text
that we did not find clearly stated in references. Among those, we state the following.

– There does not seem to be a consensus on what long exact sequences and higher extension
groups mean in an exact category C. One could either take Yoneda extensions for definition
(as we do below), but then it is not immediate that there are long exact sequences of extension
groups attached to a short exact sequence. To facilitate to this, one could define extension
groups after a choice of an embedding C→ A into an abelian category by the embedding
theorem, and then define extension groups in C to be those in A. While this would yield
equivalent definitions for degree 1 extensions, it is not clear what degree i > 1 extensions are,
nor that they are independent of the abelian embedding.

– We did not find references for what a monoidal exact category means. We define the
corresponding notion in this appendix, and show canonical isomorphisms

Exti(A⊗X, B) ∼= Exti(A, B ⊗X∨)

whenever X is a dualizable object.

Our main reference for what follows is the paper of Bühler [Büh10].
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A.1 Definitions
Let C be an additive category. We fix a class ex(C) of sequences S of composable arrows in C of
the form:

S : 0 −→ X
f−→ Z

g−→ Y −→ 0 (A.1)

such that g is a cokernel of f and f is a kernel of g. Sequences in the class ex(C) will be called
short exact. Morphisms f (respectively, g) which are featured in an exact sequence S as in (A.1)
will be called ( ex(C))-admissible mono (respectively, epi).

The next definition, in a reduced form compared with Quillen’s, is due to Yoneda.

Definition A.1 (Exact category). We say that (C, ex(C)), or just C for short, is an exact category
if ex(C) verifies the following list of axioms.

Ex 1 For all objects X of C, the identity morphism idX is an admissible mono (respectively, epi).
Ex 2 The class of admissible mono (respectively, epi) is stable under composition.
Ex 3 The pushout (respectively, pullback) of an admissible mono along a morphism with the

same source (respectively, target) is representable in C and itself is an admissible mono
(respectively, epi).

It can be shown that any sequence S isomorphic to a sequence in ex(C) is itself in C. For
any pair of objects (A, B) of C, the sequence 0→ A→ A⊕B → B → 0 belongs to ex(C) and is
called the canonical split sequence. We shall call S split if S is isomorphic to the canonical split
sequence.

A.2 Exact functor and the embedding theorem
Let (C, ex(C)) and (D, ex(D)) be exact categories and let F : C→ D be an additive functor.

Definition A.2. The functor F is called exact if F (S) ∈ ex(D) for any S ∈ ex(C). We say that
F reflects exactness if F is exact and if S ∈ ex(C) whenever F (S) ∈ ex(D).

We say that F reflects admissible mono (respectively, epi) if f is admissible mono
(respectively, epi) if and only if F (f) is.

Any abelian category is endowed with the structure of an exact category in an evident way.
Conversely, we record the Freyd–Mitchel embedding theorem [Büh10, Theorem A.1].

Theorem A.3 (Embedding theorem). Let (C, ex(C)) be a small exact category.

(i) There is an abelian category A and a fully faithful exact functor i : C→ A that reflects
exactness. Moreover, C is closed under extensions in A.

(ii) Assume moreover that C is weakly idempotent complete.8 Then, one can choose i : C→ A

as in part (i) in such a way that it further reflects admissible epi.

A.3 The group of extensions
Let (A, B) be a pair of objects in C and let i be a positive integer. By a degree i extension of A
by B we mean a sequence of composable arrows in C of the form

S : 0→ B
f−→ E1

d1−→ · · · di−1−−−→ Ei
g−→ A→ 0 (A.2)

such that, for all j ∈ {1, . . . , i− 1}, there exists a factorization of dj into Ej → Fj+1 → Ej+1

such that the sequences Sj : 0→ Fj → Ej → Fj+1 → 0 are short exact. If we do not want to
make reference to A and B, we shall call (A.2) a (long) exact sequence in C.

8 Recall that an additive is called weakly idempotent complete if every retraction admits a kernel (equivalently,
any coretraction admits a cokernel) [Büh10, § 7].
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Observe that the short exact sequences Sj are uniquely determined by S up to isomorphism.
In particular, Fi = A, Fi−1 = ker(Ei → A) and, more generally, Fj = ker(Ej+1 → Fj+1).

Cup product. A degree i extension S of A by B and a degree j extension T of B by C compose
into a degree i + j extension of A by C via the cup product :

T ∪ S : 0→ C → F1 → · · · → Fj
u−→ E1 → · · · → Ei → A→ 0,

where we wrote T : 0→ C → F1 → · · · → Fj → B → 0 and where u is the composition of Fj →
B → E1. By definition, a degree i extension S can be written uniquely as the iterative cup
product of degree 1 extensions S =

⋃
j Sj .

Equivalence. Given another extension S′ of A by B of the same degree, we write S ≡ S′ if there
is the following commutative diagram in C.

More generally, we shall say that A and B are equivalent and write S ≡ S′ if they are equivalent
for the equivalence relation generated9 by ≡. One verifies that cup products are preserved under
equivalences: T ′ ∪ S′ ≡ T ∪ S whenever T ′ ≡ T and S′ ≡ S.

The extensions 0→ B → B ⊕A→ A→ 0 for i = 1 and 0→ B
id→ B

0→ · · · 0→ A
id→ A→ 0

for i > 1 are called canonically split extension of degree i. A degree i extension S is called split
if it is equivalent to the canonically split extension of degree i. One verifies that S ∪ T is split
whenever S or T is.

Pullback and pushforward. Consider two morphisms a : A′ → A and b : B′ → B in C. By Ex 3,
the pullback E ×A A′ and the pushout B′ �B E exist and their universal property yield that the
canonical maps B → E ×A A′ and B′ �B E → A are a kernel and a cokernel of E ×A A′ → A′ and
B′ → B′ �B E, respectively. Therefore, for any short exact sequence S : 0→ B → E → A→ 0,
we obtain short exact sequences:

a∗S : 0 −→ B −→ E ×A A′ −→ A′ −→ 0,

b∗S : 0 −→ B′ −→ B′ �B E −→ A −→ 0,

which are degree 1 extensions of A′ by B and A by B′, respectively. We call a∗S and b∗S
the pullback of S by a and the pushout of S by b. Pullbacks are immediately extended to
degree i > 1 extensions S by first writing it as a splitting S′ ∪ Si where Si (respectively, S′) is
a degree 1 (respectively, degree i− 1) extension, then by setting a∗S to be S′ ∪ a∗Si. Dually for
pushforwards.

We leave the following list of facts without proof.

(a) A pullback or pushout of a split sequence is itself split.
(b) We have id∗

A S ≡ S and idB∗ S ≡ S.
(c) If S ≡ S′, then a∗S ≡ a∗S′ and b∗S ≡ b∗S′.
(d) If a′ : A′′ → A′ and b′ : B′ → B′′, then (a′ ◦ a)∗S ≡ a′∗(a∗S) and (b ◦ b′)∗S ≡ b∗(b′∗S).
(e) Given F : C→ D an exact functor, F (S′) ≡ F (S) whenever S′ ≡ S.

9 That is, S is equivalent to S′ if and only if there exists a sequence S′′ such that S ≡ S′′ and S′ ≡ S′′. In fact,
one could show that, in the case i = 1, ≡ already is an equivalence relation as a version of the five lemma holds
in exact categories [Büh10, Lemma 8.9].
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On the integral part of A-motivic cohomology

(f) Given F : C→ D an exact functor, F (a)∗F (S) ≡ F (a∗S) and F (b)∗F (S) ≡ F (b∗S).
(g) We have b∗(a∗S) ≡ a∗(b∗S) as extensions of A′ by B′.
(h) The sequences f∗S and g∗S are split, where f and g are as in (A.2).

Extension groups. We assume that C is small. As a consequence, equivalence classes of degree i
extensions of A by B form a set, pointed by the equivalence class of the split extension, which
we denote by

Exti
C(A, B).

The cup product defines a map of pointed set ExtiC(A, B)× Extj
C(B, C)→ Exti+j

C (A, C).
Proprieties (a)–(d) ensure that ExtiC defines a bifunctor Cop × C→ Set∗ of pointed sets. By
property (e), an exact functor F : C→ D induces a natural transformation of bifunctors of
pointed sets Exti

C(F ) : Exti
C(−,−)→ Exti

C(F (−), F (−)).
This construction can be refined into a bifunctor of abelian groups under the Baer sum.

If ∇A : A→ A⊕A denotes the diagonal embedding and ΔB : B ⊕B → B the addition, the
degree i Baer sum is defined as the composition:

+ : Exti
C(A, B)× Exti

C(A, B)→ Exti
C(A⊕A, B ⊕B)

∇∗
A◦ΔB∗−−−−−→ Exti

C(A, B).

The first map corresponds to direct sums of exact sequences, which are also exact [Büh10,
Proposition 2.9]. Then, ExtiC(A, B) becomes an abelian group under + with the class of the split
exact sequence as the identity. The cup product, as well as Exti

C(F ), become morphisms of abelian
groups in virtue of properties (e)–(f). If the category C is R-linear for some commutative ring R,
then Exti

C(A, B) becomes an R-module with r ∈ R acting as pullback by the multiplication by
r on A.

A.4 Long exact sequence of extensions groups

We again assume that C is small. Consider a short exact sequence S : 0→ X
f−→ Y

g−→ Z → 0.
Also let A be an object of C. Then, one can produce two natural complexes of abelian groups.

The pushout sequence associated to S and A:

and the pullback sequence associated to S and A:
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That two successive arrows in these sequences compose to zero follows easily from properties
(a)–(h) above.

Proposition A.4. Assume that the functor Exti
C(A,−) transforms admissible epi into

surjections. Then, the functors Extn
C(A,−) are identically zero for n > i. Dually, if Exti

C(−, B)
transforms admissible mono into surjections, the functors Extn

C(−, B) are identically zero for
n > i.

Proof. The class of any extension U in Exti+1
C (A, B) is decomposed as the cup product of a

degree-one extension S and a degree-i extension T whose class are in Ext1C(E, B) and Exti
C(A, E),

respectively, for some object E. The pushout sequence associated to S and A together with the
surjectivity of g∗ imply that the map

S ∪ − : Exti
C(A, E) −→ Exti+1

C (A, B)

starred in the pushout sequence, is zero. Since U is in its image, its class is zero. Therefore,
Exti+1

C (A, B) = (0).
For the general case, observe similarly that a degree n > i + 1 extension U decomposes as

the cup product of a degree i + 1 and n− (i + 1) extensions, respectively. The class of the first
is zero, hence so is the class of U . �

The author is not aware of a reference that states the exactness of the pushout and pullback
long sequences at this level of generality. However, we prove under reasonable assumptions that
they are.

Proposition A.5. Assume that C is a small exact category that is weakly idempotent complete.
Then pushout and pullback sequences are exact.

We begin with a lemma.

Lemma A.6. Let h : C→ D be an embedding of C into an exact category D which reflects
exactness and admissible epi. Let S : 0→ Xn → Xn−1 → · · · → X1 → 0 be a sequence in C.
The following are equivalent:

(i) S is exact;
(ii) h(S) is exact in D.

Proof. If S is exact, then S =
⋃

i Si for short exact sequences Si, hence h(S) =
⋃

i h(Si). Because
h reflects exactness, this proves (i)=⇒(ii).

We prove the converse by induction on the length n of the sequence; for n � 3, there is
nothing to prove. For n > 3, suppose h(S) is exact. We splice up h(S) into exact sequences as(

0→ h(Xn)→ · · · → h(X2)→ Z → 0
) ∪ (0→ Z → h(X1)

h(d1)−−−→ h(X0)→ 0
)
. (A.3)

In particular h(d1) is an admissible epi and so is d1 by reflection. Hence, d1 admits a kernel Y1

in C and the sequence V : 0→ Y1 → X1 → X0 → 0 is short exact. By universality of the kernel,
the splicing (A.3) corresponds to h(S) = h(U) ∪ h(V ) for some sequence U in C:

U : 0→ Xn
dn−→ Xn−1 → · · · → X2 → Y1 → 0.

Since h(U) is exact, so is U by the induction hypothesis. Since V is exact, so is their cup product
U ∪ V = S. �
Proof of Proposition A.5. It suffices to apply the statement of Lemma A.6 to the functor i :
C→ A produced by the Freyd–Mitchell embedding in part (ii). In particular, the pushout and
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pullback long sequences become the respective ones for the abelian category A for which the
statement is known. �

A.5 Extensions and adjunctions
Let (C, ex(C)) and (D, ex(D)) be exact categories. Let F : C→ D be an exact functor that admits
a right-adjoint G : D→ C which we assume to be exact as well (it is a priori unclear that this
holds). We denote by η : idD→ GF and ε : FG→ idC the unit and counit of this adjunction. In
particular, given any objects A and B of C and D, respectively, there are maps of groups:

g : Exti
D(F (A), B) G−→ Exti

C(GF (A), G(B))
η∗

A−→ Exti
C(A, G(B)),

f : Exti
C(A, G(B)) F−→ Exti

D(F (A), FG(B))
(εB)∗−−−→ Exti

D(F (A), B).

Proposition A.7. The maps f and g are mutually inverse. In particular, for all i > 0, there
are isomorphisms of groups:

Exti
D(F (A), B) ∼= Exti

C(A, G(B)).

Proof. We only prove that f ◦ g is equivalent to the identity as the dual statement is proven along
the same lines. We consider an extension in Exti

D(F (A), B) represented by a long exact sequence
S : 0→ B → E1 → · · · → Ei → F (A)→ 0. We have the following commutative diagram, whose
rows are exact by assumption.

We have denoted by ∗ the pullback of G(Ei)→ GF (A)← A and by ∗∗ the pushforward of
B ← FG(B)→ FG(E1), as indicated by the symbols � and �.

This diagram corresponds to S
ε← FG(S)← F (g(S))→ f(g(S)) vertically. Therefore, it

suffices to show that the bottom row is equivalent to the first.
By commutativity of the square � and universal property of the pushforward, there exists a

map s : ∗∗ → E1 whose composition with FG(E1)→ ∗∗ is the map εE1 and whose composition
with B → ∗∗ is B → E1 starred in S. In particular, we get the following commutative diagram.
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To conclude that the above diagram is an equivalence among f(g(S)) and S, it remains to show
that εF (A) ◦ F (ηA) = idF (A). This results from the diagram

which commutes, as the adjunction maps ad are obtained by composing F with the natural
transformation FG→ idD. It remains to apply the commutativity of the above square to the
couple (ηA, idGF (A)) sitting in the lower left corner. Via the lower path, it is mapped to ηA and
then to idF (A). Via the upper path, to (F (ηA), εF (A)), then to εF (A) ◦ F (ηA). Hence, εF (A) ◦
F (ηA) = idF (A) as announced. �

A.6 Construction of exact categories
We present a way of constructing exact categories out of certain functors. This procedure will be
used in the following to endow the category of A-motives with the structure of an exact category
(cf. Definition 2.14). Let (D, ex(D)) be an exact category and let F : C→ D be an additive
functor.

Proposition A.8. Assume the following.

(i) Given g : Y → Z be a morphism in C, if F (g) is an admissible epi of D, then g admits a
kernel ker g → Y in C and F (ker g → Y ) is a kernel of F (g).

(ii) Given f : X → Y be a morphism in C, if F (f) is an admissible mono of D, then f admits a
cokernel Y → coker f in C and F (Y → coker f) is a cokernel of F (f).

Then there exists a unique structure of exact category on C making F a functor which reflects
exactness. In fact, F further reflects admissible epi and mono.

Proof. Since F has to reflect exactness, the candidate class is uniquely determined to be the class
ex(C) of short sequences S : 0→ X

f→ Y
g→ Z → 0 such that f is a kernel of g, g is a cokernel

of f , and F (S) is exact in D.
Assumptions (i) and (ii) ensure that for short sequences of ex(C) the former non-trivial

arrow is a kernel of the latter, and dually. It remains to show the axioms of Definition 2.14.
Axioms Ex 1 and Ex 2 are clear as F is a functor. To prove Ex 3, we fix a short sequence S :
0→ X → Y → Z → 0 in ex(C) and a morphism Z ′ → Z. We claim that the pullback Y ×Z Z ′ is
representable in C; indeed, F (Y )×F (Z) F (Z ′) is representable in D and, hence, F (Y )⊕ F (Z ′) =
F (Y ⊕ Z ′)→ F (Z) admits a kernel. By the obscure axioms in D (see [Büh10, Proposition 2.16]),
it is an admissible epi since the composition F (Y )→ F (Y ⊕ Z ′)→ F (Z) is. Hence, Y ⊕ Z ′ → Z
admits a kernel by assumption (i), this kernel represents the pullback Y ×Z Z ′, and we have
F (Y ×Z Z ′) ∼= F (Y )×F (Z) F (Z ′).

In particular, by Ex 3 for D, F (Y ×Z Z ′ → Z) is an admissible epi, hence Y ×Z Z ′ → Z
admits a kernel in C by assumption (i) and kerF (Y ×Z Z ′ → Z) ∼= F (ker(Y ×Z Z ′ → Z)).
That is, the sequence

F (0→ ker(Y ×Z Z ′ → Z)→ Y ×Z Z ′ → Z → 0)

belongs to ex(D), hence 0→ ker(Y ×Z Z ′ → Z)→ Y ×Z Z ′ → Z → 0 is in ex(C). The dual
statement follows similarly.

That F further reflects admissible mono and epi is clear from the class ex(C). �
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A.7 Monoidal exact categories
Let (C, ex(C)) be an exact category and let ⊗ : C× C→ C be a bifunctor making (C,⊗) an
additive monoidal category [Sta, 0FNA]. We denote by 1 a neutral object for ⊗.

Definition A.9. The datum of (C, ex(C),⊗) is called a monoidal exact category if, given any
object X of C, the endofunctors −⊗X and X ⊗− are exact.

It is immediate that, given any couple of objects (A, B) in C, the functor −⊗X determines
group morphisms

−⊗X : Exti
C(A, B) −→ Exti

C(A⊗X, B ⊗X), [S] −→ [S ⊗X]. (A.4)

Recall that X is called dualizable if the functor −⊗X admits a right-adjoint, denoted by
Hom(X,−). We denote by X∨ the object Hom(X, 1), called the dual of X. Since Hom(X,−) ∼=
X∨ ⊗−, the functor Hom(X,−) is exact. In particular, as a corollary of Proposition A.7,
we obtain the following.

Corollary A.10. Let X be a dualizable object of C. Then, there are canonical isomorphisms
of groups

Exti
C(A⊗X, B) ∼= Exti

C(A, B ⊗X∨).
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