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Fetal N requirements increase with gestational age. During 
the final trimester, human fetal weight dramatically increases 
from approximately 1 kg at 27 weeks to 3.5kg at term, 
exhibiting a growth rate of 30-35 g/d (Schneider, 1996) and 
an amino acid requirement of 4MOmmol/d (Smith, 1986). 
The ultimate source of amino acid-N for the fetus is the 
maternal circulation. Any evaluation of fetal amino acid 
requirements, however, must take into account the require- 
ments and metabolism of maternal amino acids by the 
placenta. The close interrelationship between placental and 
fetal amino acid absorption and metabolism is exemplified by 
the high N H 3  production (Holzman er al. 1977) and glutamine 
synthetase (EC 6.3.1.2; Dierks-Ventling et al. 1971) activity 
of the placenta. Placental cytotrophoblasts and syncytiotro- 
phoblasts are known to catabolize large amounts of glutamate 
by both amino transferase and deamination pathways 
(Broeder et al. 1994). This metabolism has led to the concept 
that placenta is the 'functional fetal liver', until the fetus 
develops these metabolic capacities (Remesar et al. 1980; 
Battaglia, 1992; Hay, 1995). 

The present review describes the expression of amino 
acid transport proteins that mediate the transfer of cationic 
amino acids, glutamine and glutamate into and across the 
placenta. Knowledge of how the normal pattern of 
placental amino acid transport expression is regulated 
may facilitate the design of nutritional strategies to address 
pathological states of fetal development and N metabolism 
associated with intrauterine growth retardation (IUGR). 
IUGR, which may be defined as birth weight less than the 
10th percentile for gestational age, affects a large number 
of births annually in the USA (Golde, 1989). The 
deleterious effects of IUGR are not limited to the perinatal 
period, and may present increased risks for diabetes, 
coronary disease and stroke (Barker, 1994). 

In primates and higher rodents, the chorio-allantoic 
placenta is of the haemochorial type in which maternal 
blood comes into direct contact with the placental villous 
surface. In human subjects (haemomonochorial placenta), 
the barrier to nutrient passage between maternal and fetal 
circulation is the syncytiotrophoblast (Smith er al. 1992), 
with its apical (microvillus), maternal-facing, and basal, 
fetal-facing, plasma membrane subdomains. In rats (hae- 
motrichorial placenta), the apical membrane of the layer I1 

syncytiotrophoblast and the basal membrane of the layer 111 
syncytiotrophoblast of the chorio-allantoic placenta repre- 
sent the structural and functional barriers to substrate 
passage between maternal and fetal circulations respec- 
tively (Davies & Glasser, 1968; Metz, 1980). The structure 
of the haemochorial placentas of human subjects and rats 
differ from the epithelio-chorial and syndesmo-chorial 
placentas found in the sheep, pig and cow, in which 
nutrients derived from the maternal circulation must 
traverse maternal uterine tissue before reaching the fetal 
circulation (Munro, 1985). These differences in placental 
structure must be considered when comparing experimental 
models of placental amino acid absorption. 

Mediated amino acid transport by the placenta 

Cationic amino acids 

Lysine and arginine demonstrate high fetal : maternal 
concentrations in many species (Yudilevich & Sweiry, 
1985). Cationic amino acid transport across the placenta 
has been documented in both human subjects and rats 
(Wheeler & Yudilevich, 1989; Furesz er al. 1991, 1995; 
Eleno er al. 1994; Malandro er al. 1994), and the mRNA 
that encode proteins associated with systems yt (cationic 
amino acid transporter 1; Albritton et al. 1989), bo-+, 
(neutral and basic amino acid transporter; Tate er al. 1992; 
Bertran et al. 1992), and y+L (heavy chain of the 4F2 
surface antigen; Wells er al. 1992; Fei er al. 1995; Novak et 
al. 1997) have been detected by Northern blot analysis. 
Na+-independent system y+ activity (White & Christensen, 
1982; White, 1985) has been described in human and rat 
placenta (Furesz er al. 1991, 1995; Malandro er al. 1994). A 
Na+-dependent system B".+-like activity is present in the 
rat placental apical membrane, but not in the basal 
membrane, nor in the apical or basal membranes derived 
from human placenta (Furesz er al. 1991, 1995; Malandro 
et al. 1994). Rat and human placentas also contain a 
leucine-inhibitable Na+-independent cationic amino acid 
transport activity. Originally thought to be consistent with 
system bo*+ (Van Winkle et al. 1988; Furesz er al. 1991; 
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Malandro et al. 1994), this activity now appears to be 
system y+L (Deves et al. 1992; Eleno et al. 1994; Novak et 
al. 1997). 

Glutamine 

Glutamine is the most abundant amino acid in both fetal 
and adult serum (Cetin et al. 1988; Economides et al. 
1989). In the fetus, glutamine is extensively metabolized as 
a substrate for synthesis of purines and pyrimidines and 
oxidized for metabolic energy (Windmueller & Spaeth, 
1974). Utero-placental uptake of glutamine exceeds 
delivery to the fetus, indicating that the placenta also 
metabolizes glutamine (Liechty et al. 1991). In hepato- 
cytes, system N (Kilberg et al. 1980) is responsible for the 
Na+-dependent transport of glutamine, histidine and, to a 
lesser extent, asparagine. Although the presence of a 
system N-like activity in human microvillous membrane 
vesicles was reported (Karl et al. 1989), Novak & 
Beveridge (1997) have suggested that this activity may 
instead reflect transport by system y fL .  In the latter study, 
glutamine transport was greater in the maternal-facing 
(apical) membranes than in fetal-facing (basal) plasma 
membranes (Novak & Beveridge, 1997). 

Glutamate 

Although a ‘non-essential’ amino acid, glutamate plays an 
important role in placental and fetal metabolism. In vitro, 
the human placenta is capable of absorbing 49% of the 
glutamate present in fetal perfusate and is thought to 
metabolize 80% of that absorbed (Schneider et al. 1979). 
In an ovine in vivo model, the placental trophoblast has 
been shown to extract nearly 90% of circulating fetal 
glutamate in a single circulatory passage (Vaughn et al. 
1993, to metabolize rapidly absorbed glutamate by 
decarboxylation and oxidization (Moores et al. 1994), and 
to return about 6 % of the absorbed glutamate to the fetus as 
glutamine by the action of placental glutamine synthetase 
(Battaglia, 1992). This synthesized glutamine, along with 
the glutamine absorbed from the maternal circulation, is 
released into the fetal circulation where it is utilized by the 
fetal liver, and other tissues, as a source of N. In the liver, 
the primary site of fetal glutamine metabolism, there is 
rapid conversion of plasma glutamine to glutamate 
(Vaughn et al. 1995). Collectively, these processes illustrate 
the importance of glutamate absorption by the placenta and 
define a feto-placental ‘glutamine-glutamate cycle’ (Schnei- 
der et al. 1979; Vaughn et al. 1995), which acts to shuttle 
amino acid-N to the fetus in the form of glutamine and to 
return glutamate to the placenta. Much of the returned 
glutamate is oxidized for metabolic fuel, thus sparing 
glucose for use by the fetus (Moores et al. 1994; Takata et 
al. 1994). Glutamate also may be used to generate NADPH 
for placental fatty acid and steroid synthesis (Moores et al. 
1994; Vaughn et al. 1995). Another important consequence 
of placental glutamate uptake from the fetal circulation may 
be the protection of the fetus from potentially neurotoxic 
levels of glutamate (Broeder et al. 1994). 

Absorption of glutamate is thought to occur by 
concentrative transport mechanisms, because the milli- 

molar placental concentrations of anionic amino acids far 
exceed the micromolar concentrations detected in maternal 
and fetal blood (Dierks-Ventling et al. 1971; Phillipps et al. 
1978; Schneider et al. 1979). Five complimentary DNA 
(GLAST1, GLT1, EAAC I ,  EAAT4, EAAT5) thought to 
encode proteins capable of Na+-dependent, D-aspartate- 
inhibitable glutamate-aspartate transport activity, termed 
system Xi, (Gazzola et al. 1981), have been cloned (Kanai 
& Hediger, 1992; Pines et al. 1992; Storck et al. 1992; 
Fairman et al. 1995; Amza et al. 1997). The detection of 
mRNA for all glutamate transport proteins except EAAT5 
in human placenta (Arriza et al. 1994; Fairman et al. 1995; 
Nakayama et al. 1996) suggests that they contribute to the 
system Xi, activity in placental vesicles (Moe & Smith, 
1989; Hoeltzli et al. 1990). In the rat, over the last 
trimester, we have observed an increase in the steady-state 
mRNA levels for GLAST1, GLT1, EAACl and EAAT4, 
and determined that Na+-dependent glutamate transport 
across the apical and basal plasma membrane of labyrinth 
tissue during the last trimester is primarily a function of 
system Xi,  activity, in a manner that was consistent with a 
differential expression of GLAST1, GLTl and EAACl 
proteins (Malandro et al. 1996; Matthews et al. 1997). 

The previously mentioned studies address only transport 
processes at the syncytiotrophoblast layer. Maternal-fetal 
interactions, however, also occur elsewhere within the 
placenta. Maternal blood directly bathes spongiotropho- 
blast basophilic cells, glycogen cells and junctional giant 
cells (Davies & Glasser, 1968). Each of these cell types is 
thought to have specific functions, perhaps the best 
described of which is the production of endocrine 
hormones by the junctional giant cells of the rat and 
mouse placenta (Lee et al. 1988; Faria et al. 1991; 
Yamaguchi et al. 1994; Soares et al. 1996). Consistent 
with these findings, we have observed unique patterns of 
expression for GLT1, GLAST and EAACl proteins, 
throughout the chorio-allantoic rat placenta (Matthews et al. 
1997). 

Patterns of increased placental amino acid transport 
with gestational age in the rat 

Fetal : maternal serum arginine and glutamine values 
increase with gestational age (Economides et al. 1989; 
Bernardini et al. 1991), which suggests that the capacity for 
concentrative transfer of these nutrients by the placenta 
increases with gestational age. To determine potential 
mechanisms responsible for this phenomenon, the relative 
increase in the activity of amino acid transport systems that 
recognize cationic and neutral substrates was determined in 
the apical and basal membranes of the rat syncytiotrophoblast 
(Table 1). The type and membrane-specific distribution of 
transporter activity at day 20 in the rat are similar to that 
observed for the term human placenta (Smith et al. 1992; 
Moe, 1995), except for the presence of Na+-dependent 
system B”,+ in the apical membrane (Furesz et al. 1991, 
1995). All amino acid transport systems monitored displayed 
an increased transport capacity near term (day 20), as 
compared with the beginning of the third trimester (day 14). 
The concomitant and marked increase in apical Na+- 
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dependent system Bo3+ and Na '-independent systems yi and 
y+L will facilitate an increased flux of cationic amino acids 
from the maternal circulation into the placenta. The 
subsequent high levels of cytosolic cationic amino acids will 
permit their downhill transfer across the basal membrane into 
the fetal circulation, thus meeting the increased demands of 
both tissues for these essential amino acids. Analogously, 
increases in the apical membrane transport capacity of both 
systems A and go'+, along with the increase in system y+L 
capacity in the basal membrane, will ensure the potential for 
an increase in the translocation of glutamine (and other small 
neutral amino acids) into the placenta and fetus. Collectively, 
these observations suggest that the increased fetal : maternal 
serum cationic and neutral amino acid values during the final 
trimester of gestation, the period of greatest growth by the rat 
and human placenta and fetus (Schneider, 1996), is facilitated 
by an increased capacity for amino acid transport across both 
plasma membranes. 

The fetal : maternal serum glutamate value also increases 
with gestational age (Economides et al. 1989; Bernardini et 
al. 1991). Recently, we have observed a small increase in 
system Xi, activity from day 14 to day 20 on the basal 
membrane of rat placenta and, in contrast, a large increase in 
system Xi, activity on the apical membrane (Matthews et al. 
1997). When considered in terms of the glucose-sparing 
effect of placental glutamate absorption and oxidation, this 
observation suggests that the placenta primarily increases its 
supply of oxidizable glutamate by increasing its capacity to 
absorb maternal-derived glutamate. 

Effect of a low-protein diet (intrauterine growth 
retardation pregnancy) on placental amino acid 

transport 

Maternal factors that contribute to IUGR in human subjects 
include pathological conditions, alcohol, cocaine, tobacco, 
and malnutrition (Sastry et al. 1989). In IUGR pregnancies of 
unknown aetiology, the uptake of lysine by placental slices 
(Yamaguchi et al. 1978) and the rate of system A-mediated 2- 
amino isobutyric acid transport (Dicke & Henderson, 1988) 
was diminished in placental tissue. Although these in vitro 
investigations support the in vivo observation of impaired 
uptake of 2-amino isobutyric acid from the maternal to the 
fetal circulation (Sybulski & Tremblay, 1967), fetal serum 
levels of alanine, a primary system A substrate, are slightly 
higher in small-for-gestational-age fetuses than in appro- 
priate-for-gestational-age fetuses (Economides et al. 1989). 

Diminished placental blood flow in human subjects is often 
associated with IUGR (Bracero et al. 1989); therefore, 
although protein malnutrition results in smaller fetuses with 
poor developmental outcomes (Rosso, 1980), the relative 
contribution of diminished utero-placental blood flow v. 
specific effects on placental amino acid transport mechanisms 
has not been established. 

In rats, maternal malnutrition-induced IUGR has been 
associated with (a) reduced blood flow in the placenta 
(Rosso & Kava, 1980), (b) reduced rates of amino acid 
transfer to the fetal circulation (Rosso, 1975), and (c) 
reduced fetal and placental weights (Rosso, 1980). Altera- 
tions in the coordinated expression of transporters on the 
apical and basal domains of the placental syncytium may 
critically reduce the trans-epithelia1 flux of amino acids 
across the placenta and (or) through the metabolic cycles 
that exist between the placenta and fetus. The effects of 
low-protein-diet-induced IUGR on the capacity of placental 
amino acid transport systems has been examined using a rat 
model (Table 2; Malandro et al. 1996). System A transport 
capacity was decreased by 55% on the apical plasma 
membrane and 50% on the basal plasma membrane 
subdomains of labyrinth trophoblasts of placentas isolated 
from IUGR dams. The capacity for system ASC-mediated 
transport of neutral amino acids, and system B".' for 
neutral and cationic amino acids, was not altered. However, 
neutral and cationic amino acid transport mediated by 
system y+L (Novak et al. 1997) was reduced by 
approximately 70% on the basal membrane. System y+ 
activity also was reduced (20 %) on the apical membrane, 
which was consistent with the concomitant decrease in total 
steady-state cationic amino acid transporter 1 mRNA iso- 
lated from the whole chorio-allantoic placenta. In basal, but 
not apical, plasma membranes, Na+-dependent glutamate 
uptake and EAACl mRNA were decreased (about 50 %) in 
placentas isolated from IUGR dams (Malandro et al. 1996). 

There was a reduction in fetal serum glutamate 
concentration and system Xi, activity in the basal 
placental membrane in the IUGR pregnancies (Malandro 
et al. 1996). In contrast, maternal serum glutamate 
concentrations and the activity of system Xi, in the apical 
membrane was unchanged (Malandro et al. 1996). These 
results may be indicative of substrate-controlled transporter 
localization. The specific mechanisms that sense serum 
amino acid availability and transduce this information into 
differential plasma membrane subdomain expression in the 
placenta have not been described. Amino acid-dependent 

Table 1. Development of cationic and neutral amino acid transport capacity in rat placenta' 
~~ 

Apical membrane Basal membrane 

Gestational age (d) ... 14 20 14 20 Reference 
Transport system 

A + + + +  +I - + +  Novak et a/. (1996) 
Malandro et a/. (1 994) 

Y+ + + + + +  + + +  Malandro et a/. (1994) 
Y'L +I - + +  + + + +  Malandro et a/. (1994); 

Novak et a/. (1997) 

A, Na+-dependent uptake of 2-(methylamino)isobutyric acid; go,+, Na+-dependent uptake of arginine; y+, leucine-resistant Na+-independent arginine uptake; y+L. 

'The absence ( - ) or presence (+) of transport activity measured in the indicated day of gestation of rat placenta. The presence of transport activity, within a 

- B0.f + + + +  - 

leucine-inhibitable Na+-independent arginine uptake. 

transporter system, is qualitatively scaled from '+' to '+ + + +'. 
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Table 2. Effect of low-protein-diet-induced intrauterine growth retardation on rat placental amino acid transport (from 
Malandro et a/. 1996) 

Transport system.. . A ASC got+ Y+L Y+ XAG. 
Membrane 

Apical Decreased* NS NS NS Decreased. NS 
Basal Decreased* NS NS Decreased* NS Decreased' 

A, Na+-dependent uptake of 2-(methylamino)isobutyric acid; ASC, Na+-dependent uptake of serine in the presence of 2- 
(methy1amino)isobutyric acid; go.+, Na+-dependent uptake of arginine; y+L, leucine-inhibitable Na+-independent arginine uptake; 
y+, leucine-resistant Na+-independent arginine uptake; X,&, Na+-dependent uptake of ghtamate. 

There was a significant difference when compared with control, 'P< 0.05. 

changes in gene expression have been documented for a 
number of proteins, including amino acid transporters 
(Shay er al. 1990; Hyatt et al. 1997), although hormone 
signalling is also a likely regulator of amino acid 
transporters in IUGR pregnancies (Warshaw, 1990). 

Hormones and growth factors that are likely to mediate 
the effects on intrauterine growth retardation on 

placental amino acid transport 

The development of null-mutation mice models has 
allowed investigation of the potential role of specific 
hormones and growth factors in IUGR-mediated alteration 
of normal placental and fetal development. Deficiency of 
maternal epidermal growth factor (EGF) causes severe 
IUGR in rats (Kamei et al. 1993), and null mutation of the 
EGF receptor causes placental disruption in homozygous 
fetuses (Sibilia & Wagner, 1995; Threadgill et al. 1995). 
Conversely, administration of EGF to pregnant rats has 
little effect on fetal size (Ali et al. 1990; Jansson & 
Skarland, 1990), and serum levels of EGF have not been 
clearly associated with IUGR. EGF is not produced by the 
fetus through most of gestation (Raaberg et al. 1988; Snead 
er al. 1989); knockout of transforming growth factor a, 
which is thought to interact with the EGF receptor during 
gestation, has little effect on fetal development (Mann et al. 
1993). 

In contrast, growth hormone (GH) and GH receptor are 
present in the fetus (Strosser & Mialhe, 1975; Garcia- 
Aragon et al. 1992; Gluckman et al. 1992), and decreased 
fetal levels of GH in human subjects may cause mild IUGR 
(Gluckman er al. 1992). However, infusion of rat dams with 
an antibody against GH-releasing hormone increases fetal 
weights, in association with elevated insulin-like growth 
factor (1GF)-1 and -2 levels (Spatola et al. 1991). Further 
confounding our understanding of the relationship between 
IUGR and GH are the observations that high doses of 
supplemental GH given to rat dams fed on an energy- 
restricted diet were associated with reduced maternal 
wasting and exacerbated fetal growth retardation (Chiang 
& Nicoll, 1991), and that transgenic mice, which 
constitutively secrete a large amount of GH, produce 
growth-retarded fetuses (Naar er al. 1991). 

Insulin, also, is a critical fetal growth factor and fetal 
pancreatectomy causes profound growth retardation (Fow- 
den er al. 1989). Null mutation of the fetal insulin receptor 
substrate-1 gene, involved in signalling from both the 
insulin receptor and IGF- 1 receptor, produced profound 
IUGR (Araki er al. 1994), as did homozygous nonsense 

mutation of the human insulin receptor (Krook et al. 1993). 
Surprisingly, null mutation of the mouse insulin receptor 
produces little or no effect on intrauterine growth, which 
suggests that the growth-promoting effects of insulin in the 
mouse are mediated, at least in part, through the IGF-1 
receptor (Accili et al. 1996; Joshi et al. 1996). Therefore, 
IGF- 1, IGF-2 and the IGF- 1 receptor must be considered as 
potential effectors of IUGR, as the mRNA for all three are 
expressed in the developing rat placenta (Pescovitz et al. 
1991; Zhou & Bondy, 1992; Redline et al. 1993). 

IGF- 1 mRNA expression peaks within the rat placenta at 
approximately day 10 of gestation, and is either absent or in 
low quantities after day 14 (Pescovitz et al. 1991; Redline 
er al. 1993). Placental IGF-2 expression begins at 
approximately 1Od of gestation, rising to a maximum and 
stable level by day 15 (Pescovitz er al. 1991; Zhou & 
Bondy, 1992; Redline et al. 1993). Whereas maternal 
serum IGF-1 levels peak at mid-gestation and then fall by 
approximately 50 %, maternal serum IGF-2 levels are low 
or undetectable throughout gestation (Gargosky et al. 
1990). Fetal IGF-1 concentrations are correlated with fetal 
growth in the human subject (Lassarre et a2. 1991; Leger 
et al. 1996). 

Most in vivo studies have involved the administration of 
pharmacological doses of the hormone or growth factor to 
the mother; therefore, effects of fetal secretion are largely 
unknown. In addition, it is difficult to rule out secondary 
effects of the infused hormone or growth factor; for 
example, the regulatory effects of GH or EGF on IGF-1 
production (Chernausek et al. 1991; Rotwein et al. 1993). 
Null mutations of growth factors or hormones and receptors 
of these ligands help to clarify these issues. Null mutations 
of IGF-1, IGF-2, and IGF-1 receptor (which mediates fetal 
effects of IGF-1 and, to a significant degree, IGF-2) result 
in severe IUGR (DeChiara et al. 1990; Baker et al. 1993; 
Liu et al. 1993; Lopez et al. 1996). IGF-Zknockout mice 
also have small placentas (DeChiara et al. 1990). Using 
null-mutation mouse models, our initial investigations 
indicate that IGF-2 and IGF-1 receptor differentially affect 
the expression profiles of specific anionic amino acid 
transporters through transcription and post-translation 
events (DA Novak, JC Matthews, MJ Beveridge, A 
Efstratiadis, E Dialynas, A Bartke and MS Kilberg, 
unpublished results). 

In summary, the study of placental amino acid transport 
regulation is in its infancy. Some of this information is 
contradictory. The results of whole-tissue flux studies, 
using stable isotopes, has generated new theories of 
maternal-placental-fetal amino acid metabolism. Using 
newly-developed molecular reagents, several laboratories 
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have begun to  determine the cellular distribution and 
relative abundance of amino acid transporter mRNA and 
the proteins responsible for these activities in the placenta. 
Likewise, studies using null-mutation and transgenic mice 
to mimic IUGR and other pathological states have begun to 
describe the hormonal or growth factor control over 
expression of amino acid transport in placental tissue 
during normal and disease states. 
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