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A CARDINAL STRUCTURE THEOREM FOR AN ULTRAPOWER 

BY 

ARTHUR W. APTER 

ABSTRACT. In this note, we construct a model with a normal measure 
U over a measurable cardinal K SO that the cardinal structures of V and 
V"/U are the same <2K. We then show that it is possible to construct a 
model where this is not true. 

Ultrapowers have proven to be a very useful and powerful tool for set theorists in 
recent years. The entire litany of their applications is both extensive and well known. 

Structurally-speaking, ultrapowers tend to be quite "thin" when compared with their 
underlying universe, i.e., they tend to omit many sets which the underlying universe 
possesses. For example, if K is a measurable cardinal, U is a normal ultrafilter on K, 
and V is the universe, then VK/U is "thin" in that it is K closed but not K+ closed. 
Indeed, for M the transitive collapse of the above ultrapower, j : V—» M the associated 
elementary embedding, / ' K + CE M. 

It can be of some interest to determine the nature of the cardinal structure of the 
ultrapower VK/U. In general, it is true that ( K 4 ) M = (K f)v (this follows easily from 
the K closure of M), but if 2K > K + , one might wonder as to what the cardinal structure 
above K+ of VK/U looks like. However, as V N "2K < J(K) < (2K)+", the cardinal 
structure of M can coincide with the cardinal structure of V at most through 2K. 

The purpose of this note is to show that if K is supercompact, then it is possible to 
force and obtain a measure U on K SO that for any arbitrary cardinal 8 > K with 
cof(8) > K, the cardinal structure of the transitive collapse of VK/U and V coincide 
exactly through 8, and V \= "2K = 8". Specifically, we prove the following 

THEOREM. Suppose that V \= "K is a supercompact cardinal and 8 > K is a cardinal 
with cof(8) > K". Then there is a generic extension V D V so that: 

1. V N= " 2 K = 8" . 
2. There is a normal measure U on K so that the cardinals < 8 m V are exactly the 

cardinals ^ 8 in the transitive collapse ofVK/U. 

To prove this theorem, let V be as above. By a theorem of Laver [1], we assume that 
V f= "2K = K + " and that K remains supercompact in any generic extension of V by a 
K directed closed partial ordering. In particular, as the standard Cohen partial ordering 
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P for making 2K = 8 is K directed closed, V = Vp will be so that V t= "2K = 8 and K 
is supercompact". 

In V, let U be any normal ultrafilter on PK(8), and let U = U | K be the restriction 
ultrafilter to K. For M the transitive collapse of VK/U and M' the transitive collapse of 
Vp«ib)/U, a theorem of Menas [2] shows that there is an elementary embedding 
k\M -> M so that the least ordinal moved by k is ( (2 [ K ] < K )+ )M = (2K)+M (by the 
inaccessibility of K in M). 

As V N "2K = 8" and M is 8 closed, M N " 2 K > 8". (A further argument will show 
that M 1= "2K = 8".) Thus, if 7 < 8 is a cardinal inM, thenM' 1= "K('Y) is a cardinal", 
i.e., M' N "7 is a cardinal". Since M' is 8 closed, V \= "7 is a cardinal". This proves 
the theorem. 

We remark that an observation of Woodin can be used to show that it is possible to 
construct a model V with a normal measure U on K SO that the cardinal structure of V 
and VK/Udo not correspond exactly through 2K. Specifically, let us assume that we are 
forcing over the above model V with the partial ordering 2 = { / : K + — > 8 : / i s a 
function whose domain has cardinality K}, with the ordering given by C. As Q is K + 

directed closed, there are no new K sequences of ordinals in VQ = V, and U remains 
a normal measure on K in V. Further, from the fact that (̂  N "2K > 8", any ordinal 
a < 8 is represented in VK/U by a function/: K —» K. This implies that if VK/U f= 
"[#] Q [/]"» t n e n IP :^(P) C/(P)} ^ ^» i-e-^ <̂  is a function with domain K whose 
values almost everywhere are subsets of ordinals < K. By the facts that there are no new 
K sequences of ordinals in V and any K sequence of subsets of ordinals < K can be coded 
by a K sequence of ordinals, g can be chosen as an element of V. This means that the 
subsets of any ordinal a < 8 in VK/U are the same as those in VK/U, i.e., any ordinal 
a < 8 which is a cardinal in V or VK/U is a cardinal in VK/U. However, it is clearly 
true that any ordinal in V in the interval ((K + )V, 8] is no longer a cardinal. 

In conclusion, we remark that Woodin can construct ultrapowers which contain a bit 
more information than the ultrapowers constructed above. 
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