2-LOCAL ISOMETRIES OF SOME NEST ALGEBRA[S](#page-0-0)

\mathbf{BO} YU $\mathbf{\Theta}^{\boxtimes}$ and J[I](https://orcid.org/0000-0002-8271-0342)ANKUI LI

(Received 26 September 2023; accepted 3 October 2023)

Abstract

Let *H* be a complex separable Hilbert space with $\dim H \ge 2$. Let *N* be a nest on *H* such that $E_+ \ne E$ for any $E \neq H, E \in \mathcal{N}$. We prove that every 2-local isometry of Alg \mathcal{N} is a surjective linear isometry.

2020 *Mathematics subject classification*: primary 47B49; secondary 47L35.

Keywords and phrases: nest algebra, isometry, 2-local isometry.

1. Introduction

Let *X* be a Banach space and *B*(*X*) the algebra of all bounded linear operators on *X*. Suppose that *S* is a subset of *B*(*X*). Following [\[4,](#page-9-0) [6\]](#page-9-1), a map $\phi : X \to X$ (which is not assumed to be linear) is called a 2-*local S-map* if for any $a, b \in X$, there exists $\phi_{a,b} \in S$, depending on *a* and *b*, such that

$$
\phi_{a,b}(a) = \phi(a)
$$
 and $\phi_{a,b}(b) = \phi(b)$.

Here, *X* is said to be *2-S-reflexive* if every 2-local *S*-map belongs to *S*.

The concept of a 2-local *S*-map dates back to the paper [\[13\]](#page-9-2), where Šemrl investigated 2-local automorphisms and 2-local derivations, motivated by Kowalski and Słodkowski [\[5\]](#page-9-3). Then in [\[8\]](#page-9-4), the earliest investigation of 2-local Iso(*X*)-maps (also called *2-local isometries* in some papers) was carried out by Molnár, where Iso(*X*) denotes the set of all surjective linear isometries of *X*. By an *isometry* of *X*, we mean a function $\varphi : X \to X$ such that $\|\varphi(a) - \varphi(b)\| = \|a - b\|$ for all $a, b \in X$. In [\[8\]](#page-9-4), Molnár proved that $B(H)$ is 2-Iso($B(H)$)-reflexive, where *H* is an infinite-dimensional separable Hilbert space. Recently, there has been a growing interest in 2-Iso(*X*)-reflexive problems for several operator algebras and function algebras (see, for example, $[1, 9, 12]$ $[1, 9, 12]$ $[1, 9, 12]$ $[1, 9, 12]$ $[1, 9, 12]$). However, the $2\text{-}Iso(X)\text{-reflexivity}$ in the context of nest algebras has not yet been considered. In this paper, we study $2\text{-}Iso(X)\text{-reflexivity}$ in some nest algebras.

Throughout, *H* will denote a separable Hilbert space over $\mathbb C$ with dim $H \geq 2$, along with its dual space *H*[∗]. For a subset $S \subseteq H$, we set $S^{\perp} := \{f \in H^* : f(S) = 0\}.$

This research was partly supported by the National Natural Science Foundation of China (Grant No. 11871021.

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

2 B. Yu and J. Li [2]

By a *subspace lattice* on *H*, we mean a collection $\mathcal L$ of closed subspaces of *H* with (0) and *H* in $\mathcal L$ such that, for every family $\{E_r\}$ of elements of $\mathcal L$, both $\setminus \{E_r\}$ and $\setminus \{E_r\}$ belong to L, where $\setminus \{E_r\}$ denotes the closed linear span of $\{E_r\}$ and $\setminus \{E_r\}$ denotes the intersection of ${E_r}$. We say a subspace lattice is a *nest* if it is totally ordered with respect to inclusion. When there is no confusion, we identify the closed subspace and the orthogonal projection on it.

Let $\mathcal L$ be a subspace lattice on *H* and $E \in \mathcal L$. Define

$$
E_{-} = \bigvee \{ F \in \mathcal{L} : F \not\supseteq E \} \quad \text{for } E \neq (0); \quad (0)_{-} = (0),
$$

$$
E_{+} = \bigwedge \{ F \in \mathcal{L} : F \nsubseteq E \} \quad \text{for } E \neq H; \quad H_{+} = H,
$$

$$
\mathcal{J}(\mathcal{L}) = \{ E \in \mathcal{L} : E \neq (0) \text{ and } E_{-} \neq H \}.
$$

If N is a nest on H , then it is not difficult to verify that

$$
H = \bigvee \{ E : E \in \mathcal{J}(\mathcal{N}) \} \quad \text{and} \quad (0) = \bigwedge \{ E_{-} : E \in \mathcal{J}(\mathcal{N}) \}.
$$

It follows that the subspaces $\bigcup \{E : E \in \mathcal{J}(\mathcal{N})\}$ and $\bigcup \{E^{\perp} : E \in \mathcal{J}(\mathcal{N})\}$ are both dense in *H* and *H*[∗], respectively, where $E_{-}^{\perp} = (E_{-})^{\perp}$.

Denote by $B(H)$, $K(H)$ and $F(H)$ the algebra of all bounded linear operators on *H*, the algebra of all compact operators on *H* and the algebra of all bounded finite rank operators on *H*, respectively.

By a *nest algebra* Alg N, we mean the set of all operators in $B(H)$ leaving each element in N invariant, that is, $Alg N = {T \in B(H) : TE \subseteq E \text{ for all } E \in N}$. Denote $F(N) = \text{Alg } N \cap F(H)$ and $K(N) = \text{Alg } N \cap K(H)$.

For $x \in H$ and $f \in H^*$, the rank-one operator $x \otimes f$ is defined as the map $z \mapsto f(z)x$. The following well-known result about rank-one operators will be repeatedly used.

PROPOSITION 1.1 [\[7\]](#page-9-8). *If* $\mathcal L$ *is a subspace lattice, then* $x \otimes y \in \text{Alg } \mathcal L$ *if and only if there exists an element* $E \in \mathcal{L}$ *such that* $x \in E$ *and* $y \in E^{\perp}_{-}$ *.*

2. Main result

Our main result is the following theorem.

THEOREM 2.1. Let N be a nest on H such that $E_+ \neq E$ for any $E \neq H, E \in N$. If ϕ is a
2-local isometry of Alg N, then ϕ is a surjective linear isometry *2-local isometry of* Alg ^N*, then* φ *is a surjective linear isometry.*

The proof of Theorem [2.1](#page-1-0) will be organised in a series of lemmas. In what follows, N is a nest on *H* such that $E_+ \neq E$ for any $E \neq H$, $E \in N$ and ϕ is a 2-local isometry of Alg M. For A, $B \in \text{Alg}$ M, the symbol ϕ_{Lip} stands for a surjective linear isometry from Alg N. For $A, B \in Alg N$, the symbol $\phi_{A,B}$ stands for a surjective linear isometry from Alg N to itself such that $\phi_{A,B}(A) = \phi(A)$ and $\phi_{A,B}(B) = \phi(B)$. For a nest M, we denote by M^{\perp} the nest ${I - E : E \in M}$. A conjugation is a conjugate linear map on *H* such that $J^2 = I$ and $\langle Jx, y \rangle = \langle Jy, x \rangle$ for all $x, y \in H$.

Proposition [2.2](#page-2-0) below is cited from the paper by Moore and Trent [\[11\]](#page-9-9) where they summarise the results in [\[2,](#page-9-10) [10\]](#page-9-11) and characterise the surjective linear isometries on nest algebras.

PROPOSITION 2.2. Let M be a nest on H and ρ : Alg $M \rightarrow$ Alg M be a surjective *linear isometry. Then there are unitary operators U and V in B*(*H*) *such that U and U*[∗] *lie in* AlgM*. Moreover, one of the following cases holds:*

- (1) $\rho(A) = UV^*AV$ for every $A \in Alg\ M$ and the map $E \mapsto V^*EV$ is an order *isomorphism of* M*;*
- (2) $\rho(A) = UV^*JA^*JV$ for every $A \in Alg\mathcal{M}$, where *J* is a conjugation on *H* such that *JE* = *EJ for each E* ∈ M *and the map E* → *V*[∗]*JEJV is an order isomorphism from* M *onto* M^{\perp} *.*

REMARK 2.3. (1) It can be easily verified that the map $T \mapsto JT^*J$ is a *-anti-isomorphism of *B*(*H*) and *J* maps an orthonormal basis onto another orthonormal basis.

(2) For any $a, b \in H$,

$$
\langle (Jf \otimes Jx)a, b \rangle = \langle \langle a, Jx \rangle \langle f, b \rangle = \langle a, Jx \rangle \langle Jf, b \rangle = \langle x, Ja \rangle \langle Jb, f \rangle
$$

= $\langle \langle Jb, f \rangle x, Ja \rangle = \langle (x \otimes f)Jb, Ja \rangle = \langle a, J(x \otimes f)Jb \rangle$,

so $(Jf \otimes Jx)^* = J(x \otimes f)J$.

(3) If ρ is a surjective linear isometry of Alg M, then according to Proposition [2.2,](#page-2-0) for any rank-one operator $x \otimes f \in Alg\mathcal{M}$, ρ maps $x \otimes f$ to either $UV^*x \otimes V^*f$ or $UV^*Jf \otimes V^*Jx$, both of which are also rank-one operators. Since every finite rank operator in Alg M can be written as a sum of finitely many rank-one operators in Alg M and ρ preserves linear independence, it follows that ρ preserves the rank of a finite rank operator. Since ρ^{-1} is also a surjective linear isometry, ρ preserves the rank in both directions.

LEMMA 2.4. ϕ *is rank preserving and* $\phi|_{F(N)}$ *is linear.*

PROOF. It follows from Remark [2.3](#page-2-1) that ϕ is rank preserving. According to Proposition [2.2,](#page-2-0) $\phi_{A,B}(X) = U_{A,B}V_{A,B}^*XV_{A,B}$ or $\phi_{A,B}(X) = U_{A,B}V_{A,B}^*JX^*JV_{A,B}$, where $U_{A,B}$
and $V_{A,B}$ are unitary operators in $B(H)$ depending on A. B and $U_{A,B}U^*$, lie in Alg N and $V_{A,B}$ are unitary operators in $B(H)$ depending on A, B and $U_{A,B}$, $U_{A,B}^*$ lie in Alg N.

First, we show that ϕ is complex homogeneous. For any $A \in Alg\mathcal{N}$ and $\lambda \in \mathbb{C}$, $\phi(\lambda A) = \phi_{A,\lambda A}(\lambda A) = \lambda \phi_{A,\lambda A}(A) = \lambda \phi(A).$

Next, we prove that ϕ is additive on $F(N)$. For any $A, B \in F(N)$, since ϕ is rank preserving, $\phi(A)$ and $\phi(B)$ are in $F(N)$. We claim that tr $(\phi(A)\phi(B)^*) = \text{tr}(AB^*)$. Indeed, if $\phi_{AB}(X) = I_{AB}V^*$. χ_{BA} then if $\phi_{A,B}(X) = U_{A,B}V_{A,B}^*XV_{A,B}$, then

$$
\text{tr}(\phi(A)\phi(B)^*) = \text{tr}(U_{A,B}V_{A,B}^*AV_{A,B}V_{A,B}^*B^*V_{A,B}U_{A,B}^*) = \text{tr}(AB^*).
$$

If $\phi_{A,B}(X) = U_{A,B}V_{A,B}^*JX^*JV_{A,B}$, then

$$
\begin{split} \text{tr}(\phi(A)\phi(B)^*)&=\text{tr}(U_{A,B}V_{A,B}^*JA^*JV_{A,B}V_{A,B}^*(JB^*J)^*V_{A,B}U_{A,B}^*)\\ &=\text{tr}(U_{A,B}V_{A,B}^*JA^*JV_{A,B}V_{A,B}^*JBJV_{A,B}U_{A,B}^*)=\text{tr}(JA^*BJ)=\text{tr}(AB^*). \end{split}
$$

Thus, for any $A, A' \in F(\mathcal{N})$, by the linearity of tr,

$$
tr((\phi(A + A') - \phi(A) - \phi(A'))\phi(B)^*) = tr(((A + A') - A - A')B^*) = 0.
$$

By replacing *B* with $A + A'$, *A* and A' , we obtain

tr(
$$
(\phi(A + A') - \phi(A) - \phi(A'))(\phi(A + A') - \phi(A) - \phi(A'))^* = 0
$$
.

It follows that $\phi(A + A') - \phi(A) - \phi(A') = 0$, which means that ϕ is additive on $F(\mathcal{N})$ $F(N)$.

By Lemma [2.4](#page-2-2) and [\[3,](#page-9-12) Corollary 2.2] where Hou and Cui characterise rank-1 preserving linear maps between nest algebras acting on Banach spaces, we can easily prove Lemma [2.5.](#page-3-0)

LEMMA 2.5. *One of the following statements holds.*

(1) *There exist injective linear transformations*

$$
D: \bigcup \{E: E \in \mathcal{J}(\mathcal{N})\} \to H \quad and \quad C: \bigcup \{E_{-}^{\perp}: E \in \mathcal{J}(\mathcal{N})\} \to H^*
$$

such that $\phi(x \otimes f) = Dx \otimes Cf$ *for every* $x \otimes f \in F(N)$ *.* (2) *There exist injective linear transformations*

$$
D: \bigcup \{ E^{\perp}_{-} : E \in \mathcal{J}(\mathcal{N}) \} \to H \quad and \quad C: \bigcup \{ E : E \in \mathcal{J}(\mathcal{N}) \} \to H^*
$$

such that $\phi(x \otimes f) = Df \otimes Cx$ *for every* $x \otimes f \in F(N)$ *.*

By categorising and discussing the two cases in Lemma [2.5,](#page-3-0) we can obtain the following result.

LEMMA 2.6. *One of the following statements holds.*

- (1) *There exist unitary operators* $C, D \in B(H)$ *such that* $\phi(A) = DAC^*$ *for any* $A \in K(\mathcal{N})$.
- (2) *There exist bounded conjugate linear operators* C, D *such that* $CJ, DJ \in B(H)$ *are unitary operators and* $\phi(A) = (DJ)JA^*J(CJ)^*$ *for any* $A \in K(N)$ *.*

PROOF. We consider two cases.

Case 1. If Lemma [2.5\(](#page-3-0)1) holds, then based on the assumption on N , there exist injective linear transformations $D: \bigcup \{E : E \in \mathcal{J}(\mathcal{N})\} \to H$ and $C: H^* \to H^*$ such that $\phi(x \otimes f) = Dx \otimes Cf$ for every $x \otimes f \in F(N)$. Thus, for any $x \otimes f \in Alg N$,

$$
||Dx|| ||Cf|| = ||Dx \otimes Cf|| = ||\phi(x \otimes f) - \phi(0)|| = ||x \otimes f - 0|| = ||x|| ||f||.
$$

Fix $x_0 \neq 0 \in (0)_+$. Then $x_0 \otimes f$ is in Alg N for any $f \neq 0, f \in ((0)_+)^\perp = H^*$. It follows that $||Dx_0|| ||Cf|| = ||x_0|| ||f||$. So $||Cf||/||f|| = ||x_0||/||Dx_0||$ for any $f \neq 0, f \in H^*$, which means that $C \in R(H^*)$ and $||C|| = ||x_0||/||Dx_0||$ which means that *C* ∈ *B*(*H*[∗]) and $||C|| = ||x_0||/||Dx_0||$.

For any $E \in \mathcal{J}(\mathcal{N})$, fix $f_0 \neq 0, f \in E^{\perp}$. Then $x \otimes f_0 \in \text{Alg}\,\mathcal{N}$ for any $x \neq 0, x \in E$. It follows that $||Dx|| ||Cf_0|| = ||x|| ||f_0||$. Therefore, $||Dx||/||x|| = ||f_0||/||Cf_0|| = ||Dx_0||/||x_0||$, which means that $||D|_E|| = ||Dx_0||/||x_0||$. Since $\cup \{E : E \in \mathcal{J}(\mathcal{N})\}$ is dense in *H*, we can extend *D* to an operator in *B*(*H*) also denoted by *D* such that $||Dx||/||x|| = ||Dx_0||/||x_0||$ for any $x \neq 0$, $x \in H$. So we can assume that *C*, *D* are isometries. Since ϕ is an isometry, by the linearity of $\phi|_{\mathcal{L}(A)}$ and the continuity of ϕ , we have $\phi(A) = DA C^*$ for all $A \in K(\mathcal{N})$. the linearity of $\phi|_{F(N)}$ and the continuity of ϕ , we have $\phi(A) = DAC^*$ for all $A \in K(N)$.

[5] 2-local isometries 5

By the Riesz–Frechet theorem, *H*[∗] can be identified with *H* through a conjugate linear surjective isometry. For any $E \neq H$, $E \in \mathcal{N}$, we have $(E_{+})_{-} = E$ by the hypothesis on N. Thus, *x* is in $(E_+)^\perp$ for any $x \in E_+ \ominus E$, and so $x \otimes x \in \text{Alg } \mathcal{N}$. Let $\mathcal{N} = \{E_j : j \in \mathcal{N} \}$ $Ω$ } and ${e'_i : i ∈ Λ_j}$ be an orthonormal basis of $(E_j)_+ ⊕ E_j$. Then $K := \sum_{i,j} e'_i ⊗ e'_j$ $\int_{i}^{j} / (i \cdot j)$ is a compact operator in Alg N . Moreover, K is an injective operator with dense range. We claim that $\phi(K)$ is also an injective operator with dense range.

For the case when $\phi(K) = U_{K,0} V_{K,0}^* K V_{K,0}$, since $U_{K,0}$, $V_{K,0}$ are unitary operators, K) is also an injective operator with dense range $\phi(K)$ is also an injective operator with dense range.

For the case when $\phi(K) = U_{K,0} V_{K,0}^* J K^* J V_{K,0}$, since Ker $K = (\text{Ran } K^*)^{\perp}$, K^* is an ective operator with dense range As *L* is a conjugate linear isometry it follows that injective operator with dense range. As *J* is a conjugate linear isometry, it follows that $\phi(K)$ is also an injective operator with dense range.

Therefore, $\phi(K) = \sum_{i,j} De_i^j \otimes Ce_i^j/(i \cdot j)$ is an injective operator with dense range, ich implies *D* and *C* have dense ranges. Consequently *D* and *C* are surjective which implies *D* and *C* have dense ranges. Consequently, *D* and *C* are surjective isometries (unitary operators).

Case 2. If Lemma [2.5\(](#page-3-0)2) holds, then there exist injective linear transformations *D* : *H*[∗] → *H* and *C* : $\bigcup \{E \in \mathbb{N} \mid E_{-} \neq H\}$ → *H*[∗] such that $\phi(x \otimes f) = Df \otimes Cx$ for every $x \otimes f \in F(\mathbb{N})$ $x \otimes f \in F(\mathcal{N}).$

According to the Riesz–Frechet theorem, we can consider *D* as an injective conjugate linear transformation from H to H , and C as an injective conjugate linear transformation from $\bigcup \{E \in \mathcal{N} \mid E_{-} \neq H\}$ to *H*. Similarly to Case 1, we can conclude that *DJ* and *CJ* are unitary operators. By Remark [2.3,](#page-2-1)

$$
\phi(x \otimes f) = Df \otimes Cx = (DJ)(Jf \otimes Jx)(CJ)^*
$$

=
$$
(DJ)(J(x \otimes f)J)^*(CJ)^* = (DJ)(J(x \otimes f)^*J)(CJ)^*
$$

for any *x* ⊗ *f* ∈ Alg N. By the linearity of $\phi|_{F(N)}$ and the continuity of ϕ , we have $\phi(A) = (DL)(JA^*J)(CA)^*$ for any $A \in K(N)$. $\phi(A) = (DJ)(JA^*J)(CJ)^*$ for any $A \in K(N)$.

LEMMA 2.7. $\phi(P)\phi(T)^*\phi(P) = \phi(PT^*P)$ *for any* $T \in \text{Alg } \mathcal{N}$ *and any* $P = x \otimes f \in \text{Alg } \mathcal{N}$ Alg N*.*

PROOF. By Lemma [2.2,](#page-2-0) $\phi_{P,T}(X) = U_{P,T}V_{P,T}^*XV_{P,T}$ or $\phi_{P,T}(X) = U_{P,T}V_{P,T}^*JX^*JV_{P,T}$. To simplify the notation denote $U_{P,T}V_{P,T}$ by $U_{P,T}V_{P,T}$ respectively. For $\phi_{P,T}(X) = UV^*YV$ simplify the notation, denote $U_{P,T}$, $V_{P,T}$ by U, V , respectively. For $\phi_{P,T}(X) = UV^*XV$,

$$
\phi(P)\phi(T)^*\phi(P) = UV^*PV(UV^*TV)^*UV^*PV = UV^*PT^*PV = UV^*\langle T^*x, f \rangle PV
$$

= $\langle T^*x, f \rangle UV^*PV = \langle T^*x, f \rangle \phi(P) = \phi(\langle T^*x, f \rangle P) = \phi(PT^*P).$

For $\phi_{PT}(X) = UV^*JX^*JV$, using Remark [2.3,](#page-2-1)

$$
\phi(P)\phi(T)^*\phi(P) = UV^*JP^*JV(UV^*JT^*JV)^*UV^*JP^*JV = UV^*JP^*TP^*JV
$$

= UV^*J(PT^*P)^*JV = UV^*J(\langle T^*x, f\rangle x \otimes f)^*JV
= \langle T^*x, f\rangle UV^*J(x \otimes f)^*JV
= \langle T^*x, f\rangle\phi(P) = \phi(\langle T^*x, f\rangle P) = \phi(PT^*P).

Furthermore, if ϕ is the form in Lemma [2.6\(](#page-3-1)1), then $DPC^*\phi(T)^*DPC^* = DPT^*PC^*$, which implies that which implies that

$$
P(C^*\phi(T)^*D - T^*)P = 0
$$
\n(2.1)

for any $T \in$ Alg N and $P = x \otimes f \in$ Alg N .

If ϕ is the form in Lemma [2.6\(](#page-3-1)2), then it follows that

$$
(DJ)JP^*J(CJ)^*\phi(T)^*(DJ)JP^*J(CJ)^* = (DJ)J(PT^*P)^*J(CJ)^* = (DJ)(JP^*J)(JTJ)(JP^*J)(CI)^*,
$$

which implies that

$$
(JP^*J)((CJ)^*\phi(T)^*(DJ) - (JTJ))(JP^*J) = 0
$$
\n(2.2)

for any *T* ∈ Alg *N* and any $P = x \otimes f \in \text{Alg } N$.

Under the assumption on N , Lemmas [2.8](#page-5-0) and [2.9](#page-5-1) follow from Proposition [2.2.](#page-2-0)

LEMMA 2.8. Let ρ : Alg $N \to$ Alg N *be a suriective linear isometry. If Case (1) in Proposition* [2.2](#page-2-0) *holds for* ρ *, then* V *,* V^* *are in* Alg N *.*

PROOF. It is sufficient to show that $V^*EV = E$ for all $E \in \mathcal{N}$. We prove it by the principle of transfinite induction.

It is evident that $V^*(0)V = (0)$. Moreover, for any given $F \in \mathcal{N}$, if the equation $V^*GV = G$ holds for all $G \in N$ such that $G \prec F$, then because $E \mapsto V^*EV$ is an order isomorphism from N onto N it follows that $V^*FV = F$ isomorphism from N onto N, it follows that $V^*FV = F$.

LEMMA 2.9. Let $\rho : Alg \rightarrow Alg \rightarrow be$ a surjective linear isometry. If Case (2) in *Proposition [2.2](#page-2-0) holds for* ρ*, then the following statements hold.*

- (1) $E_$ ≠ E *for any* $E \neq (0), E \in \mathcal{N}$.
- (2) N *is finite.*
- (3) *We denote* $N = \{E_0, E_1, \ldots, E_n\}$ *where* $(0) = E_0 < E_1 < \cdots < E_n = H$. Then V^* *and V both map* E_i *onto* $I - E_{n-i}$ *for* $0 \le i \le n$.

PROOF. (1) In the nest N^{\perp} , we denote $E_{+}^{N^{\perp}} = \bigwedge \{F \in N^{\perp} : F \nsubseteq E\}$ for any $E \neq H$, *E* ∈ N^{\perp} , and $E_{-}^{N^{\perp}} = \sqrt{F \in N^{\perp} : F \not\supseteq E}$ for any $E \neq (0), E \in N^{\perp}$.

Since the map $\pi : E \mapsto V^*EV$ is an order isomorphism from N onto N^{\perp} , we have $(I - E)^{N^{\perp}}$ ≠ $(I - E)$ for any $I - E \neq H, I - E \in \mathcal{N}^{\perp}$. So

$$
I - E \neq (I - E)^{N^{\perp}}_{+} = \bigwedge \{ I - F \in \mathcal{N}^{\perp} : I - F > I - E \} = \bigwedge \{ I - F \in \mathcal{N}^{\perp} : F < E \} = I - E_{-}
$$

for any $I - E \neq H, I - E \in \mathcal{N}^{\perp}$. It follows that $E_{-} \neq E$ for any $E \neq (0) \in \mathcal{N}$.

(2) Suppose that N is infinite, then there is a sequence $\{E_i : i \in \mathbb{N}\}\subseteq \mathbb{N}$ such that $E_i \neq (0)$ or *H* for any $i \in \mathbb{N}$ and $E_i \leq E_j$ when $i \leq j$. Let $G = \sqrt{E_i : i \in \mathbb{N}}$. Then $G = \sqrt{E_i : i \in \mathbb{N}}$. Then $G = \sqrt{E_i : i \in \mathbb{N}}$. $G_{-} = \bigvee \{F \in \mathcal{N} : F < G\} \supseteq \bigvee \{E_i : i \in \mathbb{N}\} = G$ which contradicts $G_{-} \neq G$. This implies that \mathcal{N} is finite that N is finite.

[7] 2-local isometries 7

(3) Since $E \mapsto V^*JEJV$ is an order isomorphism from N onto N^{\perp} and $EJ = JE$ for any $E \in \mathcal{N}$, we obtain $E_i \mapsto V^*E_iV = I - E_{n-i}$ for $0 \le i \le n$. Since *V* is a unitary operator, it follows that *V*[∗] and *V* both map E_i onto $I - E_{n-i}$ for $0 \le i \le n$.

Using the characterisation of the $\phi_{A,B}$ provided by Proposition [2.2,](#page-2-0) we divide the proof of Theorem [2.1](#page-1-0) into two lemmas based on whether N is isomorphic to N^{\perp} .

LEMMA 2.10. If N is not order isomorphic to N^{\perp} , then ϕ is a surjective linear *isometry.*

PROOF. Since N is not order isomorphic to N^{\perp} , every surjective linear isometry of Alg N is of the form in Proposition [2.2\(](#page-2-0)1). We distinguish two cases according to Lemma [2.6.](#page-3-1)

Case 1. Suppose that Lemma [2.6\(](#page-3-1)1) holds, that is, $\phi(A) = DAC^*$ for every $A \in K(N)$ where *C*, *D* are unitary operators. We claim that *C* and *D* are both in Alg $N \cap Alg N^{\perp}$.

For any fixed $E \in \mathcal{N}$, if $x \neq 0, x \in E$ and $f \neq 0, f \in E_{-}^{\perp}$, then it follows from $\phi(x \otimes f) = Dx \otimes Cf = U_{T,x \otimes f} V_{T,x \otimes f}^*(x \otimes f) V_{T,x \otimes f}$ that

$$
Dx = \lambda_{T,x\otimes f} U_{T,x\otimes f} V_{T,x\otimes f}^* x \quad \text{and} \quad Cf = \frac{1}{\overline{\lambda}_{T,x\otimes f}} V_{T,x\otimes f}^* f,
$$

where $\lambda_{T,x\otimes f} \in \mathbb{C}$ is on the unit circle.

By Proposition [2.2](#page-2-0) and Lemma [2.8,](#page-5-0) $U_{T,x\otimes f}$, $V_{T,x\otimes f}$ are both in Alg $\mathcal{N} \cap \text{Alg } \mathcal{N}^{\perp}$. Fix $x_0 \neq 0, x_0 \in (0)_+$. Then $x_0 \otimes f$ is in Alg N for any $f \neq 0, f \in H$. Thus, for any *E* ≠ (0), *E* ∈ *N*, we have $Cf = V^*_{T,x_0 \otimes f} f/\overline{\lambda}_{T,x_0 \otimes f}$ ∈ *E* for any $f \neq 0, f \in E$. Also, for any *E* ≠ *H*, *E* ∈ *N*, we have $Cf = V^*_{T,x_0 \otimes f} f / \overline{\lambda}_{T,x_0 \otimes f}$ ∈ *E*[⊥] for any $f \neq 0, f \in E^{\perp}$. This shows that *C* is in Alg $N \cap \Delta$ lg $\Delta^{l\perp}$ that *C* is in Alg $N \cap$ Alg N^{\perp} .

For any fixed $E \in \mathcal{J}(\mathcal{N})$, there exists an $f_0 \neq 0, f_0 \in E^{\perp}$. It follows that $Dx =$ $\lambda_{T,x\otimes f_0} U_{T,x\otimes f_0} Y_{T,x\otimes f_0}^* x \in E$ for any $x \neq 0, x \in E$, which means that $D \in \text{Alg } \mathcal{N}$.

Fix $E \subseteq \mathcal{F}(\mathcal{N})$. Then, for any $y \in E$ and any $x \in E^{\perp} \cap (1 + [E : E \subseteq \mathcal{F}(\mathcal{N})])$.

Fix $E \in \mathcal{J}(\mathcal{N})$. Then, for any $y \in E$ and any $x \in E^{\perp} \cap (\bigcup \{F : F \in \mathcal{J}(\mathcal{N})\})$,

$$
\langle x, D^*y \rangle = \langle Dx, y \rangle = \langle \lambda_{T, x \otimes f} U_{T, x \otimes f} V_{T, x \otimes f}^* x, y \rangle
$$

=
$$
\langle x, \lambda_{T, x \otimes f}^* V_{T, x \otimes f} U_{T, x \otimes f}^* y \rangle \in \langle x, E \rangle = \{0\}.
$$

So $D^*E \perp (E^{\perp} \cap (\bigcup \{F : F \in \mathcal{J}(\mathcal{N})\})$. Since $E^{\perp} \cap (\bigcup \{F : F \in \mathcal{J}(\mathcal{N})\})$ is dense in E^{\perp} , it follows that D^* ∈ Alg N. This completes the claim.

For any $T \in \text{Alg } \mathcal{N}$, denote $G := C^* \phi(T)^* D - T^*$. By [\(2.1\)](#page-5-2), $f(Gx)x \otimes f = 0$ for any $F : \mathcal{N} \otimes f \in \text{Alg } \mathcal{N}$. Thus G maps F , into F for any $F \neq H$, $F \in \mathcal{N}$. It is clear that G is *P* = *x* ⊗ *f* ∈ Alg *N*. Thus, *G* maps E_+ into *E* for any $E \neq H$, $E \in N$. It is clear that *G* is in Alg N^{\perp} , and hence *G* maps every $E^{\perp} \in N^{\perp}$ into E^{\perp} . It follows that *G* maps $E_{+} \ominus E =$ $E_+ \cap E^{\perp}$ into $E \cap E^{\perp}$ for any $E \neq H, E \in \mathcal{N}$ which yields $G = 0$ and $\phi(T) = DTC^*$.

Case 2. Suppose that Lemma [2.6\(](#page-3-1)2) holds, that is, $\phi(x \otimes f) = Df \otimes C_x$ for every *x* ⊗ *f* ∈ Alg *N* where *C*, *D* are conjugate linear operators such that *CJ*, *DJ* ∈ *B*(*H*) are unitary operators.

Then for $x_0 \neq 0, x_0 \in (0)_+$ and linear independent $f_1, f_2 \in H$,

$$
\phi(x_0 \otimes f_1) = Df_1 \otimes Cx_0 = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* x_0 \otimes V_{x_0 \otimes f_1, x_0 \otimes f_2}^* f_1
$$

and

$$
\phi(x_0 \otimes f_2) = Df_2 \otimes Cx_0 = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* x_0 \otimes V_{x_0 \otimes f_1, x_0 \otimes f_2}^* f_2.
$$

It follows that Df_1 and Df_2 are linearly dependent which leads to a contradiction.

In conclusion, $\phi(T) = DTC^*$ for any $T \in Alg N$ and it is clear that ϕ is a surjective ear isometry of Alg N. linear isometry of Alg N .

LEMMA 2.11. *If* N *is order isomorphic to* N^{\perp} *, then* ϕ *is a surjective linear isometry.*

PROOF. According to Lemma [2.9,](#page-5-1) N is finite; denote $N = \{E_0, E_1, \ldots, E_n\}$ where $(0) = E_0 < E_1 < \cdots < E_n = H$. We distinguish two cases according to Lemma [2.6.](#page-3-1)

Case 1. Suppose that Lemma [2.6\(](#page-3-1)1) holds, that is, $\phi(A) = DAC^*$ for every $A \in K(N)$ where *C*, *D* are unitary operators. In this case, for any $E \in \mathcal{J}(\mathcal{N})$ satisfying dim E^{\perp} > 1, fix $x_0 \neq 0$, $x_0 \in E$. For any linearly independent $f_1, f_2 \in E^{\perp}$, we have $x_0 \otimes f_1, x_0 \otimes f_2 \in \text{Alg } \mathcal{N}.$

We claim that $\phi_{x_0 \otimes f_1, x_0 \otimes f_2}$ is not of the form in Proposition [2.2\(](#page-2-0)2). Otherwise,

$$
\phi(x_0 \otimes f_1) = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* J(x_0 \otimes f_1)^* J V_{x_0 \otimes f_1, x_0 \otimes f_2} = Dx_0 \otimes Cf_1
$$

and

$$
\phi(x_0 \otimes f_2) = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* J(x_0 \otimes f_2)^* J V_{x_0 \otimes f_1, x_0 \otimes f_2} = Dx_0 \otimes Cf_2.
$$

It follows that f_1 and f_2 are linear dependent, leading to a contradiction.

Thus, for any *f*₁ ≠ 0, *f*₁ ∈ *H*, there exist $x_0 \neq 0, x_0 \in (0)_+$ and $f_2 \neq 0, f_2 \in H$ such that

$$
\phi(x_0 \otimes f_1) = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^*(x_0 \otimes f_1) V_{x_0 \otimes f_1, x_0 \otimes f_2} = Dx_0 \otimes Cf_1.
$$

Hence, $Dx_0 = \lambda_{x_0 \otimes f_1, x_0 \otimes f_2} U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* X_0$ and $Cf_1 = V_{x_0 \otimes f_1, x_0 \otimes f_2}^* f_1 / \overline{\lambda}_{x_0 \otimes f_1, x_0 \otimes f_2}$
for some $\lambda_{x_0 \otimes f_1, x_0 \otimes f_2} \in \mathbb{C}$ on the unit circle. By th for some $\lambda_{x_0\otimes f_1,x_0\otimes f_2} \in \mathbb{C}$ on the unit circle. By the arbitrariness of f_1 and $V_{x_0\otimes f_1,x_0\otimes f_2}^* \in$ Alg $N \cap$ Alg N^{\perp} , we obtain $C \in$ Alg $N \cap$ Alg N^{\perp} .

Similarly, for any *E* ∈ *N* with dim *E* > 1, fix *f*₀ ∈ *E*[⊥]. Let *x*₁, *x*₂ ∈ *E* be any independent elements. It is impossible for ϕ as as to be in the form of linearly independent elements. It is impossible for $\phi_{x_1 \otimes f_0, x_2 \otimes f_0}$ to be in the form of Lemma [2.2\(](#page-2-0)2). Thus, for any $x_1 \neq 0$, $x_1 \in H$, there exist $f_0 \neq 0$, $f_0 \in H^{\perp}$ and $x_2 \neq$ $0, x_2 \in H$ such that

$$
\phi(x_1 \otimes f_0) = U_{x_1 \otimes f_0, x_2 \otimes f_0} V_{x_1 \otimes f_0, x_2 \otimes f_0}^*(x_1 \otimes f_0) V_{x_1 \otimes f_0, x_2 \otimes f_0} = Dx_1 \otimes Cf_0.
$$

It follows that *D* ∈ Alg *N* ∩ Alg N^{\perp} .

For any $T \in Alg N$, denote $G := C^* \phi(T)^* D - T^*$. Using a similar method to that I emma 2.10, we see that G mans $F \oplus F = F \oplus F^{\perp}$ into $F \oplus F^{\perp}$ for any $F \neq H$ in Lemma [2.10,](#page-6-0) we see that *G* maps $E_+ \ominus E = E_+ \cap E_-^\perp$ into $E \cap E_-^\perp$ for any $E \neq H$, $E \in \mathcal{N}$, which yields $G = 0$ and $\phi(T) = DTC^*$.

Case 2. Suppose that Lemma [2.6\(](#page-3-1)2) holds, that is, $\phi(x \otimes f) = Df \otimes C_x$ for every $x \otimes f \in$ Alg N where *C*, *D* are conjugate linear operators such that *CJ*, *DJ* \in *B*(*H*) are unitary operators.

In this case, for any $E \in \mathcal{J}(\mathcal{N})$ with dim $E^{\perp} > 1$, fix $x_0 \in E$. For any linearly lenendent $f_1, f_2 \in E^{\perp}$, ro ⊗ $f_1, x_0 \otimes f_2$ are in Alg \mathcal{N} . It is impossible for ϕ_0, ϕ_1, ϕ_2 to the independent $f_1, f_2 \in E^{\perp}, x_0 \otimes f_1, x_0 \otimes f_2$ are in Alg N. It is impossible for $\phi_{x_0 \otimes f_1, x_0 \otimes f_2}$ to be in the form of Proposition 2.2(1) Otherwise be in the form of Proposition [2.2\(](#page-2-0)1). Otherwise,

$$
\phi(x_0 \otimes f_1) = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* x_0 \otimes V_{x_0 \otimes f_1, x_0 \otimes f_2}^* f_1 = Df_1 \otimes Cx_0
$$

and

$$
\phi(x_0 \otimes f_2) = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* x_0 \otimes V_{x_0 \otimes f_1, x_0 \otimes f_2}^* f_2 = Df_2 \otimes Cx_0,
$$

implying that f_1 , f_2 are linear dependent, which leads to a contradiction.

Thus, for any *f*₁ ≠ 0, *f*₁ ∈ *H*, there exist $x_0 \neq 0, x_0 \in (0)_+$ and $f_2 \neq 0, f_2 \in H$ such that

$$
\phi(x_0 \otimes f_1) = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* J(x_0 \otimes f_1)^* J V_{x_0 \otimes f_1, x_0 \otimes f_2} = Df_1 \otimes Cx_0.
$$

So $Df_1 = \lambda_{x_0 \otimes f_1, x_0 \otimes f_2} U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* Jf_1$ and $Cx_0 = V_{x_0 \otimes f_1, x_0 \otimes f_2}^* Jx_0 / \overline{\lambda}_{x_0 \otimes f_1, x_0 \otimes f_2}$ for some $\lambda_{x_0 \otimes f_1, x_0 \otimes f_2} \in \mathbb{C}$ on the unit circle. According to Lemma [2.9,](#page-5-1) $V_{x_0 \otimes f_1, x_0 \otimes f_2}^*$ and $V_{x_0 \otimes f_1, x_0 \otimes f_2}$ and $V_{x_0 \otimes f_1}$ and $F_{x_0 \otimes f_2}$ and $F_{x_0 \otimes f_1}$ and $F_{x_0 \otimes f_2}$ for x *V*_{x0}⊗*f*₁,*x*₀⊗*f*₂ both map E_i onto $I - E_{n-i}$ for $0 \le i \le n$. Since $EJ = JE$ for any $E \in N$, by the arbitrariness of f_1 and $U_{x_0 \otimes f_1, x_0 \otimes f_2} \in \text{Alg } \mathcal{N} \cap \text{Alg } \mathcal{N}^{\perp}$, we see that *D* maps E_i into *I* − E_{n-i} and *I* − E_i into E_{n-i} for $0 \le i \le n$, respectively.

Similarly, for any *E* ∈ N with dim *E* > 1, fix f_0 ∈ E_{\perp}^{\perp} . For any linearly independent $x_0 \in E$, $x_1 \otimes f_0$, $x_2 \otimes f_0$ are in Alg N. It is impossible for ϕ , ϕ as a so to be in the *x*₁, *x*₂ ∈ *E*, *x*₁ ⊗ *f*₀, *x*₂ ⊗ *f*₀ are in Alg *N*. It is impossible for $\phi_{x_1 \otimes f_0, x_2 \otimes f_0}$ to be in the form of Proposition [2.2\(](#page-2-0)1). Thus, for any $x_1 \neq 0, x_1 \in H$, there exist $f_0 \neq 0, f_0 \in H^{\perp}$ and $x_2 \neq 0, x_2 \in H$ such that

$$
\phi(x_1 \otimes f_0) = U_{x_1 \otimes f_0, x_2 \otimes f_0} V_{x_1 \otimes f_0, x_2 \otimes f_0}^* J(x_1 \otimes f_0)^* J V_{x_1 \otimes f_0, x_2 \otimes f_0} = Df_0 \otimes C x_1.
$$

So $Df_0 = \lambda_{x_1 \otimes f_0, x_2 \otimes f_0} U_{x_1 \otimes f_0, x_2 \otimes f_0} V_{x_1 \otimes f_0, x_2 \otimes f_0}^* Jf_0$ and $Cx_1 = V_{x_1 \otimes f_0, x_2 \otimes f_0}^* Jf_1 / \overline{\lambda}_{x_1 \otimes f_0, x_2 \otimes f_0}$ for some $\lambda_{x_1 \otimes f_0, x_2 \otimes f_0}$ ∈ C on the unit circle. Since $V^*_{x_1 \otimes f_0, x_2 \otimes f_0}$, $V_{x_1 \otimes f_0, x_2 \otimes f_0}$ both map E_i onto $I - F$ for any $0 \le i \le n$ and $FI - IF$ for any $F \in \mathcal{N}$ by the arbitrariness of x_1 , we *I* − *E*_{*n*−*i*} for any $0 \le i \le n$ and *EJ* = *JE* for any *E* ∈ *N*, by the arbitrariness of *x*₁, we see that *C* maps E_i into $I - E_{n-i}$ and $I - E_i$ into E_{n-i} for all $0 \le i \le n$, respectively.

By [\(2.2\)](#page-5-3), $(JP^*J)((CI)^* \phi(T)^* (DJ) - (JTJ))(JP^*J) = 0$ for any $T \in Alg \mathcal{N}$ and any $T \in Alg \mathcal{N}$ and $\phi(T)^* \phi(T)^* (DJ) - (TT) Jf(f \mathcal{N}) = 0$ for all $P = r \otimes f \in Alg \mathcal{N}$ $P = x \otimes f \in \text{Alg } N$. So $\langle ((C J)^* \phi(T)^* (DJ) - J T J) J f, Jx \rangle = 0$ for all $P = x \otimes f \in \text{Alg } N$
which means that $((C D^* \phi(T)^* (DD - J T J) \text{ maps } (F_i)^{\perp} \text{ into } (F_i)^{\perp})$ which means that $((CJ)^*\phi(T)^*(DJ) - JTJ)$ maps $(E_i)^{\perp}$ into $(E_i)^{\perp}$.
Moreover for any $F \in \mathcal{N}$

Moreover, for any $E_i \in \mathcal{N}$,

$$
E_i \xrightarrow{DJ} I - E_{n-i} \xrightarrow{\phi(T)^*} I - E_{n-i} \xrightarrow{(CI)^*} E_i,
$$

and *JTJ* maps E_i into E_i . It follows that $((CJ)^*\phi(T)^*(DJ) - JIJ)$ maps $E_i \cap (E_i)^{\perp}$
into $E_i \cap E^{\perp} - J(1)$. So $((CJ)^*\phi(T)^*(DD) - JIJ) = 0$, which implies that $\phi(T) =$ into $E_i \cap E_i^{\perp} = \{0\}$. So $((C\mathcal{J})^* \phi(T)^* (D\mathcal{J}) - J\mathcal{J}\mathcal{J}) = 0$, which implies that $\phi(T) = (D\mathcal{J}T^* \mathcal{U} C \mathcal{D}^*$ for any $T \in \mathcal{A}$ lo \mathcal{N} . It is easy to check that $\phi(T)$ is a surjective linear (*DJ*)*JT*[∗]*J*(*CJ*)^{*} for any *T* ∈ Alg *N*. It is easy to check that $\phi(T)$ is a surjective linear isometry \Box isometry. □

Combining Lemmas [2.10](#page-6-0) and [2.11](#page-7-0) completes the proof of Theorem [2.1.](#page-1-0)

10 **B.** Yu and J. Li [10]

References

- [1] H. Al-Halees and R. Fleming, 'On 2-local isometries on continuous vector-valued function spaces', *J. Math. Anal. Appl.* 354(1) (2009), 70–77.
- [2] J. Arazy and B. Solel, 'Isometries of nonselfadjoint operator algebras', *J. Funct. Anal.* 90(2) (1990), 284–305.
- [3] J. Hou and J. Cui, 'Rank-1 preserving linear maps on nest algebras', *Linear Algebra Appl.* 369 (2003), 263–277.
- [4] A. Jiménez-Vargas, L. Li, A. M. Peralta, L. Wang and Y.-S. Wang, '2-local standard isometries on vector-valued Lipschitz function spaces', *J. Math. Anal. Appl.* 461(2) (2018), 1287–1298.
- [5] S. Kowalski and Z. Słodkowski, 'A characterization of multiplicative linear functionals in Banach algebras', *Studia Math.* 67(3) (1980), 215–223.
- [6] L. Li, S. Liu and W. Ren, '2-local isometries on vector-valued differentiable functions', *Ann. Funct. Anal.* 14(4) (2023), Article no. 70.
- [7] W. E. Longstaff, 'Strongly reflexive lattices', *J. Lond. Math. Soc. (2)* 11(4) (1975), 491–498.
- [8] L. Molnár, '2-local isometries of some operator algebras', *Proc. Edinb. Math. Soc. (2)* 45(2) (2002), 349–352.
- [9] L. Molnár, 'On 2-local *-automorphisms and 2-local isometries of B(H)', *J. Math. Anal. Appl.* 479(1) (2019), 569–580.
- [10] R. L. Moore and T. T. Trent, 'Isometries of nest algebras', *J. Funct. Anal.* 86(1) (1989), 180–209.
- [11] R. L. Moore and T. T. Trent, 'Isometries of certain reflexive operator algebras', *J. Funct. Anal.* 98(2) (1991), 437–471.
- [12] M. Mori, 'On 2-local nonlinear surjective isometries on normed spaces and *C*∗-algebras', *Proc. Amer. Math. Soc.* 148(6) (2020), 2477–2485.
- [13] P. Šemrl, 'Local automorphisms and derivations on *B*(*H*)', *Proc. Amer. Math. Soc.* 125(9) (1997), 2677–2680.

BO YU, School of Mathematics, East China University of Science and Technology, Shanghai 200237, PR China e-mail: modeace@163.com

JIANKUI LI, School of Mathematics, East China University of Science and Technology, Shanghai 200237, PR China e-mail: jkli@ecust.edu.cn