*Provisional—final page numbers to be inserted when paper edition is published

2-LOCAL ISOMETRIES OF SOME NEST ALGEBRAS

BO YU® and JIANKUI LI®

(Received 26 September 2023; accepted 3 October 2023)

Abstract

Let H be a complex separable Hilbert space with dim $H \ge 2$. Let \mathcal{N} be a nest on H such that $E_+ \ne E$ for any $E \ne H, E \in \mathcal{N}$. We prove that every 2-local isometry of Alg \mathcal{N} is a surjective linear isometry.

2020 Mathematics subject classification: primary 47B49; secondary 47L35.

Keywords and phrases: nest algebra, isometry, 2-local isometry.

1. Introduction

Let X be a Banach space and B(X) the algebra of all bounded linear operators on X. Suppose that S is a subset of B(X). Following [4, 6], a map $\phi : X \to X$ (which is not assumed to be linear) is called a 2-local S-map if for any $a, b \in X$, there exists $\phi_{a,b} \in S$, depending on a and b, such that

$$\phi_{a,b}(a) = \phi(a)$$
 and $\phi_{a,b}(b) = \phi(b)$.

Here, X is said to be 2-S-reflexive if every 2-local S-map belongs to S.

The concept of a 2-local S-map dates back to the paper [13], where Šemrl investigated 2-local automorphisms and 2-local derivations, motivated by Kowalski and Słodkowski [5]. Then in [8], the earliest investigation of 2-local Iso(X)-maps (also called 2-local isometries in some papers) was carried out by Molnár, where Iso(X) denotes the set of all surjective linear isometries of X. By an isometry of X, we mean a function $\varphi: X \to X$ such that $\|\varphi(a) - \varphi(b)\| = \|a - b\|$ for all $a, b \in X$. In [8], Molnár proved that B(H) is 2-Iso(B(H))-reflexive, where H is an infinite-dimensional separable Hilbert space. Recently, there has been a growing interest in 2-Iso(X)-reflexive problems for several operator algebras and function algebras (see, for example, [1, 9, 12]). However, the 2-Iso(X)-reflexivity in the context of nest algebras has not yet been considered. In this paper, we study 2-Iso(X)-reflexivity in some nest algebras.

Throughout, H will denote a separable Hilbert space over \mathbb{C} with dim $H \ge 2$, along with its dual space H^* . For a subset $S \subseteq H$, we set $S^{\perp} := \{ f \in H^* : f(S) = 0 \}$.

This research was partly supported by the National Natural Science Foundation of China (Grant No. 11871021.

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

By a *subspace lattice* on H, we mean a collection \mathcal{L} of closed subspaces of H with (0) and H in \mathcal{L} such that, for every family $\{E_r\}$ of elements of \mathcal{L} , both $\bigvee \{E_r\}$ and $\bigwedge \{E_r\}$ belong to \mathcal{L} , where $\bigvee \{E_r\}$ denotes the closed linear span of $\{E_r\}$ and $\bigwedge \{E_r\}$ denotes the intersection of $\{E_r\}$. We say a subspace lattice is a *nest* if it is totally ordered with respect to inclusion. When there is no confusion, we identify the closed subspace and the orthogonal projection on it.

Let \mathcal{L} be a subspace lattice on H and $E \in \mathcal{L}$. Define

$$E_{-} = \bigvee \{ F \in \mathcal{L} : F \not\supseteq E \} \quad \text{for } E \neq (0); \quad (0)_{-} = (0),$$

$$E_{+} = \bigwedge \{ F \in \mathcal{L} : F \not\subseteq E \} \quad \text{for } E \neq H; \quad H_{+} = H,$$

$$\mathcal{J}(\mathcal{L}) = \{ E \in \mathcal{L} : E \neq (0) \text{ and } E_{-} \neq H \}.$$

If N is a nest on H, then it is not difficult to verify that

$$H = \bigvee \{E : E \in \mathcal{J}(\mathcal{N})\} \quad \text{and} \quad (0) = \bigwedge \{E_- : E \in \mathcal{J}(\mathcal{N})\}.$$

It follows that the subspaces $\bigcup \{E : E \in \mathcal{J}(\mathcal{N})\}\$ and $\bigcup \{E_{-}^{\perp} : E \in \mathcal{J}(\mathcal{N})\}\$ are both dense in H and H^* , respectively, where $E_{-}^{\perp} = (E_{-})^{\perp}$.

Denote by B(H), K(H) and F(H) the algebra of all bounded linear operators on H, the algebra of all compact operators on H and the algebra of all bounded finite rank operators on H, respectively.

By a *nest algebra* Alg \mathcal{N} , we mean the set of all operators in B(H) leaving each element in \mathcal{N} invariant, that is, Alg $\mathcal{N} = \{T \in B(H) : TE \subseteq E \text{ for all } E \in \mathcal{N}\}$. Denote $F(\mathcal{N}) = \text{Alg } \mathcal{N} \cap F(H)$ and $K(\mathcal{N}) = \text{Alg } \mathcal{N} \cap K(H)$.

For $x \in H$ and $f \in H^*$, the rank-one operator $x \otimes f$ is defined as the map $z \mapsto f(z)x$. The following well-known result about rank-one operators will be repeatedly used.

PROPOSITION 1.1 [7]. If \mathcal{L} is a subspace lattice, then $x \otimes y \in \text{Alg } \mathcal{L}$ if and only if there exists an element $E \in \mathcal{L}$ such that $x \in E$ and $y \in E^{\perp}$.

2. Main result

Our main result is the following theorem.

THEOREM 2.1. Let N be a nest on H such that $E_+ \neq E$ for any $E \neq H, E \in N$. If ϕ is a 2-local isometry of Alg N, then ϕ is a surjective linear isometry.

The proof of Theorem 2.1 will be organised in a series of lemmas. In what follows, \mathcal{N} is a nest on H such that $E_+ \neq E$ for any $E \neq H, E \in \mathcal{N}$ and ϕ is a 2-local isometry of Alg \mathcal{N} . For $A, B \in \text{Alg } \mathcal{N}$, the symbol $\phi_{A,B}$ stands for a surjective linear isometry from Alg \mathcal{N} to itself such that $\phi_{A,B}(A) = \phi(A)$ and $\phi_{A,B}(B) = \phi(B)$. For a nest \mathcal{M} , we denote by \mathcal{M}^{\perp} the nest $\{I - E : E \in \mathcal{M}\}$. A conjugation is a conjugate linear map on H such that $J^2 = I$ and $\langle Jx, y \rangle = \langle Jy, x \rangle$ for all $x, y \in H$.

Proposition 2.2 below is cited from the paper by Moore and Trent [11] where they summarise the results in [2, 10] and characterise the surjective linear isometries on nest algebras.

PROPOSITION 2.2. Let M be a nest on H and ρ : Alg $M \to Alg$ M be a surjective linear isometry. Then there are unitary operators U and V in B(H) such that U and U^* lie in Alg M. Moreover, one of the following cases holds:

- (1) $\rho(A) = UV^*AV$ for every $A \in \text{Alg } \mathcal{M}$ and the map $E \mapsto V^*EV$ is an order isomorphism of \mathcal{M} ;
- (2) $\rho(A) = UV^*JA^*JV$ for every $A \in Alg \mathcal{M}$, where J is a conjugation on H such that JE = EJ for each $E \in \mathcal{M}$ and the map $E \mapsto V^*JEJV$ is an order isomorphism from \mathcal{M} onto \mathcal{M}^{\perp} .

REMARK 2.3. (1) It can be easily verified that the map $T \mapsto JT^*J$ is a *-anti-isomorphism of B(H) and J maps an orthonormal basis onto another orthonormal basis.

(2) For any $a, b \in H$,

$$\langle (Jf \otimes Jx)a, b \rangle = \langle \langle a, Jx \rangle Jf, b \rangle = \langle a, Jx \rangle \langle Jf, b \rangle = \langle x, Ja \rangle \langle Jb, f \rangle$$
$$= \langle \langle Jb, f \rangle x, Ja \rangle = \langle (x \otimes f)Jb, Ja \rangle = \langle a, J(x \otimes f)Jb \rangle,$$

so $(Jf \otimes Jx)^* = J(x \otimes f)J$.

(3) If ρ is a surjective linear isometry of Alg \mathcal{M} , then according to Proposition 2.2, for any rank-one operator $x \otimes f \in \text{Alg } \mathcal{M}$, ρ maps $x \otimes f$ to either $UV^*x \otimes V^*f$ or $UV^*Jf \otimes V^*Jx$, both of which are also rank-one operators. Since every finite rank operator in Alg \mathcal{M} can be written as a sum of finitely many rank-one operators in Alg \mathcal{M} and ρ preserves linear independence, it follows that ρ preserves the rank of a finite rank operator. Since ρ^{-1} is also a surjective linear isometry, ρ preserves the rank in both directions.

LEMMA 2.4. ϕ is rank preserving and $\phi|_{F(N)}$ is linear.

PROOF. It follows from Remark 2.3 that ϕ is rank preserving. According to Proposition 2.2, $\phi_{A,B}(X) = U_{A,B}V_{A,B}^*XV_{A,B}$ or $\phi_{A,B}(X) = U_{A,B}V_{A,B}^*JX^*JV_{A,B}$, where $U_{A,B}$ and $V_{A,B}$ are unitary operators in B(H) depending on A, B and $U_{A,B}$, $U_{A,B}^*$ lie in Alg N.

First, we show that ϕ is complex homogeneous. For any $A \in \text{Alg } \mathcal{N}$ and $\lambda \in \mathbb{C}$, $\phi(\lambda A) = \phi_{A,\lambda A}(\lambda A) = \lambda \phi_{A,\lambda A}(A) = \lambda \phi(A)$.

Next, we prove that ϕ is additive on $F(\mathcal{N})$. For any $A, B \in F(\mathcal{N})$, since ϕ is rank preserving, $\phi(A)$ and $\phi(B)$ are in $F(\mathcal{N})$. We claim that $\operatorname{tr}(\phi(A)\phi(B)^*) = \operatorname{tr}(AB^*)$. Indeed, if $\phi_{A,B}(X) = U_{A,B}V_{A,B}^*XV_{A,B}$, then

$$\operatorname{tr}(\phi(A)\phi(B)^*) = \operatorname{tr}(U_{A,B}V_{A,B}^*AV_{A,B}V_{A,B}^*B^*V_{A,B}U_{A,B}^*) = \operatorname{tr}(AB^*).$$

If $\phi_{A,B}(X) = U_{A,B}V_{A,B}^*JX^*JV_{A,B}$, then

$$\begin{split} \operatorname{tr}(\phi(A)\phi(B)^*) &= \operatorname{tr}(U_{A,B}V_{A,B}^*JA^*JV_{A,B}V_{A,B}^*(JB^*J)^*V_{A,B}U_{A,B}^*) \\ &= \operatorname{tr}(U_{A,B}V_{A,B}^*JA^*JV_{A,B}V_{A,B}^*JBJV_{A,B}U_{A,B}^*) = \operatorname{tr}(JA^*BJ) = \operatorname{tr}(AB^*). \end{split}$$

Thus, for any $A, A' \in F(\mathcal{N})$, by the linearity of tr,

$$tr((\phi(A+A')-\phi(A)-\phi(A'))\phi(B)^*) = tr(((A+A')-A-A')B^*) = 0.$$

By replacing B with A + A', A and A', we obtain

$$tr((\phi(A+A')-\phi(A)-\phi(A'))(\phi(A+A')-\phi(A)-\phi(A'))^*)=0.$$

It follows that $\phi(A + A') - \phi(A) - \phi(A') = 0$, which means that ϕ is additive on F(N).

By Lemma 2.4 and [3, Corollary 2.2] where Hou and Cui characterise rank-1 preserving linear maps between nest algebras acting on Banach spaces, we can easily prove Lemma 2.5.

LEMMA 2.5. One of the following statements holds.

(1) There exist injective linear transformations

$$D: \bigcup \{E: E \in \mathcal{J}(\mathcal{N})\} \to H \quad and \quad C: \bigcup \{E^{\perp}_{-}: E \in \mathcal{J}(\mathcal{N})\} \to H^{*}$$

such that $\phi(x \otimes f) = Dx \otimes Cf$ for every $x \otimes f \in F(\mathcal{N})$.

(2) There exist injective linear transformations

$$D: \bigcup \{E^{\perp}_{-} : E \in \mathcal{J}(\mathcal{N})\} \to H \quad and \quad C: \bigcup \{E : E \in \mathcal{J}(\mathcal{N})\} \to H^*$$
such that $\phi(x \otimes f) = Df \otimes Cx$ for every $x \otimes f \in F(\mathcal{N})$.

By categorising and discussing the two cases in Lemma 2.5, we can obtain the following result.

LEMMA 2.6. One of the following statements holds.

- (1) There exist unitary operators $C, D \in B(H)$ such that $\phi(A) = DAC^*$ for any $A \in K(N)$.
- (2) There exist bounded conjugate linear operators C, D such that $CJ, DJ \in B(H)$ are unitary operators and $\phi(A) = (DJ)JA^*J(CJ)^*$ for any $A \in K(N)$.

PROOF. We consider two cases.

Case 1. If Lemma 2.5(1) holds, then based on the assumption on \mathcal{N} , there exist injective linear transformations $D: \bigcup \{E: E \in \mathcal{J}(\mathcal{N})\} \to H \text{ and } C: H^* \to H^* \text{ such that } \phi(x \otimes f) = Dx \otimes Cf \text{ for every } x \otimes f \in F(\mathcal{N}). \text{ Thus, for any } x \otimes f \in \text{Alg } \mathcal{N},$

$$||Dx|| \, ||Cf|| = ||Dx \otimes Cf|| = ||\phi(x \otimes f) - \phi(0)|| = ||x \otimes f - 0|| = ||x|| \, ||f||.$$

Fix $x_0 \neq 0 \in (0)_+$. Then $x_0 \otimes f$ is in Alg \mathcal{N} for any $f \neq 0$, $f \in ((0)_+)_-^{\perp} = H^*$. It follows that $||Dx_0|| ||Cf|| = ||x_0|| ||f||$. So $||Cf|| / ||f|| = ||x_0|| / ||Dx_0||$ for any $f \neq 0$, $f \in H^*$, which means that $C \in B(H^*)$ and $||C|| = ||x_0|| / ||Dx_0||$.

For any $E \in \mathcal{J}(\mathcal{N})$, fix $f_0 \neq 0$, $f \in E_-^{\perp}$. Then $x \otimes f_0 \in \text{Alg } \mathcal{N}$ for any $x \neq 0, x \in E$. It follows that $||Dx|| ||Cf_0|| = ||x|| ||f_0||$. Therefore, $||Dx||/||x|| = ||f_0||/||Cf_0|| = ||Dx_0||/||x_0||$, which means that $||D|_E|| = ||Dx_0||/||x_0||$. Since $\bigcup \{E : E \in \mathcal{J}(\mathcal{N})\}$ is dense in H, we can extend D to an operator in B(H) also denoted by D such that $||Dx||/||x|| = ||Dx_0||/||x_0||$ for any $x \neq 0, x \in H$. So we can assume that C, D are isometries. Since ϕ is an isometry, by the linearity of $\phi_{F(\mathcal{N})}$ and the continuity of ϕ , we have $\phi(A) = DAC^*$ for all $A \in K(\mathcal{N})$.

By the Riesz–Frechet theorem, H^* can be identified with H through a conjugate linear surjective isometry. For any $E \neq H, E \in \mathcal{N}$, we have $(E_+)_- = E$ by the hypothesis on \mathcal{N} . Thus, x is in $(E_+)_-^{\perp}$ for any $x \in E_+ \ominus E$, and so $x \otimes x \in \text{Alg } \mathcal{N}$. Let $\mathcal{N} = \{E_j : j \in \Omega\}$ and $\{e_i^j : i \in \Lambda_j\}$ be an orthonormal basis of $(E_j)_+ \ominus E_j$. Then $K := \sum_{i,j} e_j^i \otimes e_j^i / (i \cdot j)$ is a compact operator in Alg \mathcal{N} . Moreover, K is an injective operator with dense range. We claim that $\phi(K)$ is also an injective operator with dense range.

For the case when $\phi(K) = U_{K,0}V_{K,0}^*KV_{K,0}$, since $U_{K,0}, V_{K,0}$ are unitary operators, $\phi(K)$ is also an injective operator with dense range.

For the case when $\phi(K) = U_{K,0}V_{K,0}^*JK^*JV_{K,0}$, since $\operatorname{Ker} K = (\operatorname{Ran} K^*)^{\perp}$, K^* is an injective operator with dense range. As J is a conjugate linear isometry, it follows that $\phi(K)$ is also an injective operator with dense range.

Therefore, $\phi(K) = \sum_{i,j} De_i^j \otimes Ce_i^j/(i \cdot j)$ is an injective operator with dense range, which implies D and C have dense ranges. Consequently, D and C are surjective isometries (unitary operators).

Case 2. If Lemma 2.5(2) holds, then there exist injective linear transformations $D: H^* \to H$ and $C: \bigcup \{E \in \mathcal{N} \mid E_- \neq H\} \to H^*$ such that $\phi(x \otimes f) = Df \otimes Cx$ for every $x \otimes f \in F(\mathcal{N})$.

According to the Riesz-Frechet theorem, we can consider D as an injective conjugate linear transformation from H to H, and C as an injective conjugate linear transformation from $\bigcup \{E \in \mathcal{N} \mid E_- \neq H\}$ to H. Similarly to Case 1, we can conclude that DJ and CJ are unitary operators. By Remark 2.3,

$$\phi(x \otimes f) = Df \otimes Cx = (DJ)(Jf \otimes Jx)(CJ)^*$$
$$= (DJ)(J(x \otimes f)J)^*(CJ)^* = (DJ)(J(x \otimes f)^*J)(CJ)^*$$

for any $x \otimes f \in \text{Alg } \mathcal{N}$. By the linearity of $\phi|_{F(\mathcal{N})}$ and the continuity of ϕ , we have $\phi(A) = (DJ)(JA^*J)(CJ)^*$ for any $A \in K(\mathcal{N})$.

LEMMA 2.7. $\phi(P)\phi(T)^*\phi(P) = \phi(PT^*P)$ for any $T \in \text{Alg } \mathcal{N}$ and any $P = x \otimes f \in \text{Alg } \mathcal{N}$.

PROOF. By Lemma 2.2, $\phi_{P,T}(X) = U_{P,T}V_{P,T}^*XV_{P,T}$ or $\phi_{P,T}(X) = U_{P,T}V_{P,T}^*JX^*JV_{P,T}$. To simplify the notation, denote $U_{P,T}, V_{P,T}$ by U, V, respectively. For $\phi_{P,T}(X) = UV^*XV$,

$$\phi(P)\phi(T)^*\phi(P) = UV^*PV(UV^*TV)^*UV^*PV = UV^*PT^*PV = UV^*\langle T^*x, f\rangle PV$$
$$= \langle T^*x, f\rangle UV^*PV = \langle T^*x, f\rangle \phi(P) = \phi(\langle T^*x, f\rangle P) = \phi(PT^*P).$$

For $\phi_{P,T}(X) = UV^*JX^*JV$, using Remark 2.3,

$$\phi(P)\phi(T)^*\phi(P) = UV^*JP^*JV(UV^*JT^*JV)^*UV^*JP^*JV = UV^*JP^*TP^*JV$$

$$= UV^*J(PT^*P)^*JV = UV^*J(\langle T^*x, f \rangle x \otimes f)^*JV$$

$$= \langle T^*x, f \rangle UV^*J(x \otimes f)^*JV$$

$$= \langle T^*x, f \rangle \phi(P) = \phi(\langle T^*x, f \rangle P) = \phi(PT^*P).$$

6 B. Yu and J. Li [6]

Furthermore, if ϕ is the form in Lemma 2.6(1), then $DPC^*\phi(T)^*DPC^* = DPT^*PC^*$, which implies that

$$P(C^*\phi(T)^*D - T^*)P = 0 (2.1)$$

for any $T \in Alg \mathcal{N}$ and $P = x \otimes f \in Alg \mathcal{N}$.

If ϕ is the form in Lemma 2.6(2), then it follows that

$$(DJ)JP^*J(CJ)^*\phi(T)^*(DJ)JP^*J(CJ)^* = (DJ)J(PT^*P)^*J(CJ)^*$$

= $(DJ)(JP^*J)(JTJ)(JP^*J)(CJ)^*$,

which implies that

$$(JP^*J)((CJ)^*\phi(T)^*(DJ) - (JTJ))(JP^*J) = 0$$
(2.2)

for any $T \in Alg \mathcal{N}$ and any $P = x \otimes f \in Alg \mathcal{N}$.

Under the assumption on N, Lemmas 2.8 and 2.9 follow from Proposition 2.2.

LEMMA 2.8. Let ρ : Alg $\mathcal{N} \to \text{Alg } \mathcal{N}$ be a surjective linear isometry. If Case (1) in Proposition 2.2 holds for ρ , then V, V^* are in Alg \mathcal{N} .

PROOF. It is sufficient to show that $V^*EV = E$ for all $E \in \mathcal{N}$. We prove it by the principle of transfinite induction.

It is evident that $V^*(0)V = (0)$. Moreover, for any given $F \in \mathcal{N}$, if the equation $V^*GV = G$ holds for all $G \in \mathcal{N}$ such that G < F, then because $E \mapsto V^*EV$ is an order isomorphism from \mathcal{N} onto \mathcal{N} , it follows that $V^*FV = F$.

LEMMA 2.9. Let ρ : Alg $\mathcal{N} \to \text{Alg } \mathcal{N}$ be a surjective linear isometry. If Case (2) in Proposition 2.2 holds for ρ , then the following statements hold.

- (1) $E_{-} \neq E$ for any $E \neq (0), E \in \mathcal{N}$.
- (2) \mathcal{N} is finite.
- (3) We denote $N = \{E_0, E_1, ..., E_n\}$ where $(0) = E_0 < E_1 < \cdots < E_n = H$. Then V^* and V both map E_i onto $I E_{n-i}$ for $0 \le i \le n$.

PROOF. (1) In the nest \mathcal{N}^{\perp} , we denote $E_{+}^{\mathcal{N}^{\perp}} = \bigwedge \{ F \in \mathcal{N}^{\perp} : F \not\subseteq E \}$ for any $E \neq H$, $E \in \mathcal{N}^{\perp}$, and $E_{-}^{\mathcal{N}^{\perp}} = \bigvee \{ F \in \mathcal{N}^{\perp} : F \not\supseteq E \}$ for any $E \neq (0), E \in \mathcal{N}^{\perp}$.

Since the map $\pi: E \mapsto V^*EV$ is an order isomorphism from \mathcal{N} onto \mathcal{N}^{\perp} , we have $(I-E)^{\mathcal{N}^{\perp}}_{\perp} \neq (I-E)$ for any $I-E \neq H, I-E \in \mathcal{N}^{\perp}$. So

$$I - E \neq (I - E)_{+}^{\mathcal{N}^{\perp}} = \bigwedge \{I - F \in \mathcal{N}^{\perp} : I - F > I - E\} = \bigwedge \{I - F \in \mathcal{N}^{\perp} : F < E\} = I - E_{-} + E = I - E_{-} + E$$

for any $I - E \neq H, I - E \in \mathcal{N}^{\perp}$. It follows that $E_{-} \neq E$ for any $E \neq (0) \in \mathcal{N}$.

(2) Suppose that \mathcal{N} is infinite, then there is a sequence $\{E_i : i \in \mathbb{N}\} \subseteq \mathcal{N}$ such that $E_i \neq (0)$ or H for any $i \in \mathbb{N}$ and $E_i < E_j$ when i < j. Let $G = \bigvee \{E_i : i \in \mathbb{N}\}$. Then $G_- = \bigvee \{F \in \mathcal{N} : F < G\} \supseteq \bigvee \{E_i : i \in \mathbb{N}\} = G$ which contradicts $G_- \neq G$. This implies that \mathcal{N} is finite.

(3) Since $E \mapsto V^*JEJV$ is an order isomorphism from \mathcal{N} onto \mathcal{N}^{\perp} and EJ = JE for any $E \in \mathcal{N}$, we obtain $E_i \mapsto V^*E_iV = I - E_{n-i}$ for $0 \le i \le n$. Since V is a unitary operator, it follows that V^* and V both map E_i onto $I - E_{n-i}$ for $0 \le i \le n$.

Using the characterisation of the $\phi_{A,B}$ provided by Proposition 2.2, we divide the proof of Theorem 2.1 into two lemmas based on whether N is isomorphic to N^{\perp} .

LEMMA 2.10. If N is not order isomorphic to N^{\perp} , then ϕ is a surjective linear isometry.

PROOF. Since \mathcal{N} is not order isomorphic to \mathcal{N}^{\perp} , every surjective linear isometry of Alg \mathcal{N} is of the form in Proposition 2.2(1). We distinguish two cases according to Lemma 2.6.

Case 1. Suppose that Lemma 2.6(1) holds, that is, $\phi(A) = DAC^*$ for every $A \in K(N)$ where C, D are unitary operators. We claim that C and D are both in Alg $N \cap Alg N^{\perp}$.

For any fixed $E \in \mathcal{N}$, if $x \neq 0, x \in E$ and $f \neq 0, f \in E_{-}^{\perp}$, then it follows from $\phi(x \otimes f) = Dx \otimes Cf = U_{T,x \otimes f} V_{T,x \otimes f}^*(x \otimes f) V_{T,x \otimes f}$ that

$$Dx = \lambda_{T,x \otimes f} U_{T,x \otimes f} V_{T,x \otimes f}^* x \quad \text{and} \quad Cf = \frac{1}{\overline{\lambda}_{T,x \otimes f}} V_{T,x \otimes f}^* f,$$

where $\lambda_{T,x\otimes f} \in \mathbb{C}$ is on the unit circle.

By Proposition 2.2 and Lemma 2.8, $U_{T,x\otimes f}$, $V_{T,x\otimes f}$ are both in Alg $\mathcal{N}\cap \text{Alg }\mathcal{N}^\perp$. Fix $x_0 \neq 0, x_0 \in (0)_+$. Then $x_0 \otimes f$ is in Alg \mathcal{N} for any $f \neq 0, f \in \mathcal{H}$. Thus, for any $E \neq (0), E \in \mathcal{N}$, we have $Cf = V_{T,x_0\otimes f}^* f/\overline{\lambda}_{T,x_0\otimes f} \in E$ for any $f \neq 0, f \in E$. Also, for any $E \neq H, E \in \mathcal{N}$, we have $Cf = V_{T,x_0\otimes f}^* f/\overline{\lambda}_{T,x_0\otimes f} \in E^\perp$ for any $f \neq 0, f \in E^\perp$. This shows that C is in Alg $\mathcal{N}\cap \text{Alg }\mathcal{N}^\perp$.

For any fixed $E \in \mathcal{J}(\mathcal{N})$, there exists an $f_0 \neq 0, f_0 \in E_-^{\perp}$. It follows that $Dx = \lambda_{T,x \otimes f_0} U_{T,x \otimes f_0} V_{T,x \otimes f_0}^* x \in E$ for any $x \neq 0, x \in E$, which means that $D \in \text{Alg } \mathcal{N}$.

Fix $E \in \mathcal{J}(\mathcal{N})$. Then, for any $y \in E$ and any $x \in E^{\perp} \cap (\bigcup \{F : F \in \mathcal{J}(\mathcal{N})\})$,

$$\begin{split} \langle x, D^*y \rangle &= \langle Dx, y \rangle = \langle \lambda_{T, x \otimes f} U_{T, x \otimes f} V_{T, x \otimes f}^* x, y \rangle \\ &= \langle x, \lambda_{T, x \otimes f}^* V_{T, x \otimes f} U_{T, x \otimes f}^* y \rangle \in \langle x, E \rangle = \{0\}. \end{split}$$

So $D^*E \perp (E^{\perp} \cap (\bigcup \{F : F \in \mathcal{J}(\mathcal{N})\}))$. Since $E^{\perp} \cap (\bigcup \{F : F \in \mathcal{J}(\mathcal{N})\})$ is dense in E^{\perp} , it follows that $D^* \in \text{Alg } \mathcal{N}$. This completes the claim.

For any $T \in \text{Alg } \mathcal{N}$, denote $G := C^* \phi(T)^* D - T^*$. By (2.1), $f(Gx)x \otimes f = 0$ for any $P = x \otimes f \in \text{Alg } \mathcal{N}$. Thus, G maps E_+ into E for any $E \neq H, E \in \mathcal{N}$. It is clear that G is in Alg \mathcal{N}^{\perp} , and hence G maps every $E^{\perp} \in \mathcal{N}^{\perp}$ into E^{\perp} . It follows that G maps $E_+ \oplus E = E_+ \cap E^{\perp}$ into $E \cap E^{\perp}$ for any $E \neq H, E \in \mathcal{N}$ which yields G = 0 and $\phi(T) = DTC^*$.

Case 2. Suppose that Lemma 2.6(2) holds, that is, $\phi(x \otimes f) = Df \otimes Cx$ for every $x \otimes f \in \text{Alg } \mathcal{N}$ where C, D are conjugate linear operators such that $CJ, DJ \in B(H)$ are unitary operators.

Then for $x_0 \neq 0, x_0 \in (0)_+$ and linear independent $f_1, f_2 \in H$,

$$\phi(x_0 \otimes f_1) = Df_1 \otimes Cx_0 = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* x_0 \otimes V_{x_0 \otimes f_1, x_0 \otimes f_2}^* f_1$$

and

$$\phi(x_0 \otimes f_2) = Df_2 \otimes Cx_0 = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* x_0 \otimes V_{x_0 \otimes f_1, x_0 \otimes f_2}^* f_2.$$

It follows that Df_1 and Df_2 are linearly dependent which leads to a contradiction.

In conclusion, $\phi(T) = DTC^*$ for any $T \in \text{Alg } \mathcal{N}$ and it is clear that ϕ is a surjective linear isometry of Alg \mathcal{N} .

LEMMA 2.11. If N is order isomorphic to N^{\perp} , then ϕ is a surjective linear isometry.

PROOF. According to Lemma 2.9, \mathcal{N} is finite; denote $\mathcal{N} = \{E_0, E_1, \dots, E_n\}$ where $(0) = E_0 < E_1 < \dots < E_n = H$. We distinguish two cases according to Lemma 2.6.

Case 1. Suppose that Lemma 2.6(1) holds, that is, $\phi(A) = DAC^*$ for every $A \in K(\mathcal{N})$ where C, D are unitary operators. In this case, for any $E \in \mathcal{J}(\mathcal{N})$ satisfying $\dim E_-^{\perp} > 1$, fix $x_0 \neq 0, x_0 \in E$. For any linearly independent $f_1, f_2 \in E_-^{\perp}$, we have $x_0 \otimes f_1, x_0 \otimes f_2 \in Alg \mathcal{N}$.

We claim that $\phi_{x_0 \otimes f_1, x_0 \otimes f_2}$ is not of the form in Proposition 2.2(2). Otherwise,

$$\phi(x_0 \otimes f_1) = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* J(x_0 \otimes f_1)^* J V_{x_0 \otimes f_1, x_0 \otimes f_2} = Dx_0 \otimes Cf_1$$

and

$$\phi(x_0 \otimes f_2) = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* J(x_0 \otimes f_2)^* J V_{x_0 \otimes f_1, x_0 \otimes f_2} = Dx_0 \otimes Cf_2.$$

It follows that f_1 and f_2 are linear dependent, leading to a contradiction.

Thus, for any $f_1 \neq 0$, $f_1 \in H$, there exist $x_0 \neq 0$, $x_0 \in (0)_+$ and $f_2 \neq 0$, $f_2 \in H$ such that

$$\phi(x_0 \otimes f_1) = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* (x_0 \otimes f_1) V_{x_0 \otimes f_1, x_0 \otimes f_2} = Dx_0 \otimes Cf_1.$$

Hence, $Dx_0 = \lambda_{x_0 \otimes f_1, x_0 \otimes f_2} U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* x_0$ and $Cf_1 = V_{x_0 \otimes f_1, x_0 \otimes f_2}^* f_1 / \overline{\lambda}_{x_0 \otimes f_1, x_0 \otimes f_2}$ for some $\lambda_{x_0 \otimes f_1, x_0 \otimes f_2} \in \mathbb{C}$ on the unit circle. By the arbitrariness of f_1 and $V_{x_0 \otimes f_1, x_0 \otimes f_2}^* \in Alg \mathcal{N} \cap Alg \mathcal{N}^{\perp}$, we obtain $C \in Alg \mathcal{N} \cap Alg \mathcal{N}^{\perp}$.

Similarly, for any $E \in \mathcal{N}$ with $\dim E > 1$, fix $f_0 \in E_-^\perp$. Let $x_1, x_2 \in E$ be any linearly independent elements. It is impossible for $\phi_{x_1 \otimes f_0, x_2 \otimes f_0}$ to be in the form of Lemma 2.2(2). Thus, for any $x_1 \neq 0, x_1 \in H$, there exist $f_0 \neq 0, f_0 \in H_-^\perp$ and $x_2 \neq 0, x_2 \in H$ such that

$$\phi(x_1 \otimes f_0) = U_{x_1 \otimes f_0, x_2 \otimes f_0} V_{x_1 \otimes f_0, x_2 \otimes f_0}^*(x_1 \otimes f_0) V_{x_1 \otimes f_0, x_2 \otimes f_0} = Dx_1 \otimes Cf_0.$$

It follows that $D \in Alg \mathcal{N} \cap Alg \mathcal{N}^{\perp}$.

For any $T \in \text{Alg } \mathcal{N}$, denote $G := C^* \phi(T)^* D - T^*$. Using a similar method to that in Lemma 2.10, we see that G maps $E_+ \ominus E = E_+ \cap E^\perp$ into $E \cap E^\perp$ for any $E \neq H$, $E \in \mathcal{N}$, which yields G = 0 and $\phi(T) = DTC^*$.

Case 2. Suppose that Lemma 2.6(2) holds, that is, $\phi(x \otimes f) = Df \otimes Cx$ for every $x \otimes f \in Alg \mathcal{N}$ where C, D are conjugate linear operators such that $CJ, DJ \in B(H)$ are unitary operators.

In this case, for any $E \in \mathcal{J}(\mathcal{N})$ with $\dim E_-^{\perp} > 1$, fix $x_0 \in E$. For any linearly independent $f_1, f_2 \in E_-^{\perp}, x_0 \otimes f_1, x_0 \otimes f_2$ are in Alg \mathcal{N} . It is impossible for $\phi_{x_0 \otimes f_1, x_0 \otimes f_2}$ to be in the form of Proposition 2.2(1). Otherwise,

$$\phi(x_0 \otimes f_1) = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* x_0 \otimes V_{x_0 \otimes f_1, x_0 \otimes f_2}^* f_1 = Df_1 \otimes Cx_0$$

and

$$\phi(x_0 \otimes f_2) = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* x_0 \otimes V_{x_0 \otimes f_1, x_0 \otimes f_2}^* f_2 = Df_2 \otimes Cx_0,$$

implying that f_1 , f_2 are linear dependent, which leads to a contradiction.

Thus, for any $f_1 \neq 0$, $f_1 \in H$, there exist $x_0 \neq 0$, $x_0 \in (0)_+$ and $f_2 \neq 0$, $f_2 \in H$ such that

$$\phi(x_0 \otimes f_1) = U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* J(x_0 \otimes f_1)^* J V_{x_0 \otimes f_1, x_0 \otimes f_2} = Df_1 \otimes Cx_0.$$

So $Df_1 = \lambda_{x_0 \otimes f_1, x_0 \otimes f_2} U_{x_0 \otimes f_1, x_0 \otimes f_2} V_{x_0 \otimes f_1, x_0 \otimes f_2}^* Jf_1$ and $Cx_0 = V_{x_0 \otimes f_1, x_0 \otimes f_2}^* Jx_0 / \overline{\lambda}_{x_0 \otimes f_1, x_0 \otimes f_2}$ for some $\lambda_{x_0 \otimes f_1, x_0 \otimes f_2} \in \mathbb{C}$ on the unit circle. According to Lemma 2.9, $V_{x_0 \otimes f_1, x_0 \otimes f_2}^*$ and $V_{x_0 \otimes f_1, x_0 \otimes f_2}$ both map E_i onto $I - E_{n-i}$ for $0 \le i \le n$. Since EJ = JE for any $E \in \mathcal{N}$, by the arbitrariness of f_1 and $U_{x_0 \otimes f_1, x_0 \otimes f_2} \in Alg \mathcal{N} \cap Alg \mathcal{N}^\perp$, we see that D maps E_i into $I - E_{n-i}$ and $I - E_i$ into E_{n-i} for $0 \le i \le n$, respectively.

Similarly, for any $E \in \mathcal{N}$ with dim E > 1, fix $f_0 \in E^{\perp}_-$. For any linearly independent $x_1, x_2 \in E$, $x_1 \otimes f_0, x_2 \otimes f_0$ are in Alg \mathcal{N} . It is impossible for $\phi_{x_1 \otimes f_0, x_2 \otimes f_0}$ to be in the form of Proposition 2.2(1). Thus, for any $x_1 \neq 0, x_1 \in H$, there exist $f_0 \neq 0, f_0 \in H^{\perp}_-$ and $x_2 \neq 0, x_2 \in H$ such that

$$\phi(x_1 \otimes f_0) = U_{x_1 \otimes f_0, x_2 \otimes f_0} V_{x_1 \otimes f_0, x_2 \otimes f_0}^* J(x_1 \otimes f_0)^* JV_{x_1 \otimes f_0, x_2 \otimes f_0} = Df_0 \otimes Cx_1.$$

So $Df_0 = \lambda_{x_1 \otimes f_0, x_2 \otimes f_0} U_{x_1 \otimes f_0, x_2 \otimes f_0} V_{x_1 \otimes f_0, x_2 \otimes f_0}^* J f_0$ and $Cx_1 = V_{x_1 \otimes f_0, x_2 \otimes f_0}^* J x_1 / \overline{\lambda}_{x_1 \otimes f_0, x_2 \otimes f_0}$ for some $\lambda_{x_1 \otimes f_0, x_2 \otimes f_0} \in \mathbb{C}$ on the unit circle. Since $V_{x_1 \otimes f_0, x_2 \otimes f_0}^* V_{x_1 \otimes f_0, x_2 \otimes f_0}$ both map E_i onto $I - E_{n-i}$ for any $0 \le i \le n$ and EJ = JE for any $E \in \mathcal{N}$, by the arbitrariness of x_1 , we see that C maps E_i into $I - E_{n-i}$ and $I - E_i$ into E_{n-i} for all $0 \le i \le n$, respectively.

By (2.2), $(JP^*J)((CJ)^*\phi(T)^*(DJ) - (JTJ))(JP^*J) = 0$ for any $T \in \text{Alg } \mathcal{N}$ and any $P = x \otimes f \in \text{Alg } \mathcal{N}$. So $\langle ((CJ)^*\phi(T)^*(DJ) - JTJ)Jf, Jx \rangle = 0$ for all $P = x \otimes f \in \text{Alg } \mathcal{N}$ which means that $((CJ)^*\phi(T)^*(DJ) - JTJ)$ maps $(E_i)^{\perp}$ into $(E_i)^{\perp}$.

Moreover, for any $E_i \in \mathcal{N}$,

$$E_i \xrightarrow{DJ} I - E_{n-i} \xrightarrow{\phi(T)^*} I - E_{n-i} \xrightarrow{(CJ)^*} E_i,$$

and JTJ maps E_i into E_i . It follows that $((CJ)^*\phi(T)^*(DJ) - JTJ)$ maps $E_i \cap (E_i)^{\perp}$ into $E_i \cap E_i^{\perp} = \{0\}$. So $((CJ)^*\phi(T)^*(DJ) - JTJ) = 0$, which implies that $\phi(T) = (DJ)JT^*J(CJ)^*$ for any $T \in \text{Alg } \mathcal{N}$. It is easy to check that $\phi(T)$ is a surjective linear isometry.

Combining Lemmas 2.10 and 2.11 completes the proof of Theorem 2.1.

References

- [1] H. Al-Halees and R. Fleming, 'On 2-local isometries on continuous vector-valued function spaces', J. Math. Anal. Appl. **354**(1) (2009), 70–77.
- [2] J. Arazy and B. Solel, 'Isometries of nonselfadjoint operator algebras', J. Funct. Anal. 90(2) (1990), 284–305.
- [3] J. Hou and J. Cui, 'Rank-1 preserving linear maps on nest algebras', *Linear Algebra Appl.* **369** (2003), 263–277.
- [4] A. Jiménez-Vargas, L. Li, A. M. Peralta, L. Wang and Y.-S. Wang, '2-local standard isometries on vector-valued Lipschitz function spaces', J. Math. Anal. Appl. 461(2) (2018), 1287–1298.
- [5] S. Kowalski and Z. Słodkowski, 'A characterization of multiplicative linear functionals in Banach algebras', *Studia Math.* **67**(3) (1980), 215–223.
- [6] L. Li, S. Liu and W. Ren, '2-local isometries on vector-valued differentiable functions', *Ann. Funct. Anal.* **14**(4) (2023), Article no. 70.
- [7] W. E. Longstaff, 'Strongly reflexive lattices', J. Lond. Math. Soc. (2) 11(4) (1975), 491–498.
- [8] L. Molnár, '2-local isometries of some operator algebras', *Proc. Edinb. Math. Soc.* (2) **45**(2) (2002), 349–352.
- [9] L. Molnár, 'On 2-local *-automorphisms and 2-local isometries of B(H)', J. Math. Anal. Appl. 479(1) (2019), 569–580.
- [10] R. L. Moore and T. T. Trent, 'Isometries of nest algebras', J. Funct. Anal. 86(1) (1989), 180–209.
- [11] R. L. Moore and T. T. Trent, 'Isometries of certain reflexive operator algebras', *J. Funct. Anal.* **98**(2) (1991), 437–471.
- [12] M. Mori, 'On 2-local nonlinear surjective isometries on normed spaces and C*-algebras', Proc. Amer. Math. Soc. 148(6) (2020), 2477–2485.
- [13] P. Šemrl, 'Local automorphisms and derivations on *B(H)*', *Proc. Amer. Math. Soc.* **125**(9) (1997), 2677–2680.

BO YU, School of Mathematics, East China University of Science and Technology, Shanghai 200237, PR China e-mail: modeace@163.com

JIANKUI LI, School of Mathematics, East China University of Science and Technology, Shanghai 200237, PR China e-mail: jkli@ecust.edu.cn