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Abstract

Let H be a complex separable Hilbert space with dim H > 2. Let \V be a nest on H such that E, # E for
any E # H, E € N. We prove that every 2-local isometry of Alg N is a surjective linear isometry.

2020 Mathematics subject classification: primary 47B49; secondary 471.35.

Keywords and phrases: nest algebra, isometry, 2-local isometry.

1. Introduction

Let X be a Banach space and B(X) the algebra of all bounded linear operators on X.
Suppose that S is a subset of B(X). Following [4, 6], a map ¢ : X — X (which is not
assumed to be linear) is called a 2-local S-map if for any a, b € X, there exists ¢, € S,
depending on a and b, such that

Pap(a) = ¢la) and ¢, p(D) = G(b).

Here, X is said to be 2-S-reflexive if every 2-local S-map belongs to S.

The concept of a 2-local S-map dates back to the paper [13], where Semrl
investigated 2-local automorphisms and 2-local derivations, motivated by Kowalski
and Stodkowski [5]. Then in [8], the earliest investigation of 2-local Iso(X)-maps (also
called 2-local isometries in some papers) was carried out by Molndar, where Iso(X)
denotes the set of all surjective linear isometries of X. By an isometry of X, we mean
a function ¢ : X — X such that ||¢(a) — @(b)|| = |la — b|| for all a, b € X. In [8], Molnér
proved that B(H) is 2-Iso(B(H))-reflexive, where H is an infinite-dimensional separa-
ble Hilbert space. Recently, there has been a growing interest in 2-Iso(X)-reflexive
problems for several operator algebras and function algebras (see, for example,
[1, 9, 12]). However, the 2-Iso(X)-reflexivity in the context of nest algebras has not
yet been considered. In this paper, we study 2-Iso(X)-reflexivity in some nest algebras.

Throughout, H will denote a separable Hilbert space over C with dim H > 2, along
with its dual space H*. For a subset S C H, we set S* := {f € H* : f(S) = 0}.
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2 B. YuandJ. Li [2]

By a subspace lattice on H, we mean a collection £ of closed subspaces of H with
(0) and H in L such that, for every family {E,} of elements of L, both \/{E,} and A\{E,}
belong to L, where \/{E,} denotes the closed linear span of {E,} and A{E,} denotes
the intersection of {E,}. We say a subspace lattice is a nest if it is totally ordered with
respect to inclusion. When there is no confusion, we identify the closed subspace and
the orthogonal projection on it.

Let £ be a subspace lattice on H and E € L. Define

E.=\/IFeL:F2E} forE#(0); (0 =),
E, = /\{FeL:F;t_E} forE+ H; H,=H,
JL={E€eL:E+(0)and E_ #+ H}.
If N is a nest on H, then it is not difficult to verify that

H= \/{E ‘Ee JN)} and (0) = /\{E_ L Ee JN)L.

It follows that the subspaces | {E : E € J(N)} and |{EL : E € J(N)} are both dense
in H and H*, respectively, where E+ = (E_)*.

Denote by B(H), K(H) and F(H) the algebra of all bounded linear operators on H,
the algebra of all compact operators on H and the algebra of all bounded finite rank
operators on H, respectively.

By a nest algebra Alg N, we mean the set of all operators in B(H) leaving each
element in N invariant, that is, Alg/N = {T € B(H) : TE C E for all E € N'}. Denote
F(N)=AlgN N F(H)and K(N) = Alg N N K(H).

For x € H and f € H*, the rank-one operator x ® f is defined as the map z — f(2)x.
The following well-known result about rank-one operators will be repeatedly used.

PROPOSITION 1.1 [7]. If Lis a subspace lattice, then x ® y € Alg L if and only if there
exists an element E € L such that x € E and y € E=.

2. Main result
Our main result is the following theorem.

THEOREM 2.1. Let N be a nest on H such that E, # E forany E + H Ee N. If ¢ isa
2-local isometry of Alg N, then ¢ is a surjective linear isometry.

The proof of Theorem 2.1 will be organised in a series of lemmas. In what follows,
N is aneston H such that E, # E forany E # H,E € N and ¢ is a 2-local isometry of
Alg N.For A, B € Alg N, the symbol ¢, g stands for a surjective linear isometry from
Alg N to itself such that ¢4 g(A) = ¢(A) and ¢4 s(B) = ¢(B). For a nest M, we denote
by M the nest {I — E : E € M}. A conjugation is a conjugate linear map on H such
that J?> = I and (Jx,y) = (Jy,x) for all x,y € H.

Proposition 2.2 below is cited from the paper by Moore and Trent [11] where they
summarise the results in [2, 10] and characterise the surjective linear isometries on
nest algebras.
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PROPOSITION 2.2. Let M be a nest on H and p : Alg M — Alg M be a surjective
linear isometry. Then there are unitary operators U and V in B(H) such that U and U*
lie in Alg M. Moreover, one of the following cases holds:

(1) p(A) = UV*AV for every A € AlgM and the map E v V*EV is an order
isomorphism of M;

(2) p(A) = UV*JA*JV for every A € Alg M, where J is a conjugation on H such that
JE = EJ for each E € M and the map E +— V*JEJV is an order isomorphism
from M onto M*.

REMARK 2.3. (1) It can be easily verified that the map 7w JT*J is a
*-anti-isomorphism of B(H) and J maps an orthonormal basis onto another
orthonormal basis.

(2) Forany a,b € H,

((Jf®JIx)a,b) = (a, Jx)J f,b) = {a,Jx){Jf,b) = (x,Ja)Jb, )
= ((Jb, fHix,Jay = {(x® f)Jb,Ja) = (a,J](x® f)Jb),
so(JfJx)* =J(x® f)J.

(3) If p is a surjective linear isometry of Alg M, then according to Proposition 2.2,
for any rank-one operator x® f € Alg M, p maps x® f to either UV*x® V*f or
UV*Jf ® V*Jx, both of which are also rank-one operators. Since every finite rank
operator in Alg M can be written as a sum of finitely many rank-one operators in
Alg M and p preserves linear independence, it follows that p preserves the rank of a
finite rank operator. Since p~! is also a surjective linear isometry, p preserves the rank
in both directions.

LEMMA 2.4. ¢ is rank preserving and ¢|r is linear.

PROOF. It follows from Remark 2.3 that ¢ is rank preserving. According to
PI‘OpOSitiOIl 22, ¢A,B(X) = UA,BVZ’BXVA,B or ¢A,B(X) = UA,BVA*’BJX*JVA,B, where UA,B
and V, p are unitary operators in B(H) depending on A, B and Uy 5, Uy p lie in Alg N.

First, we show that ¢ is complex homogeneous. For any A € Alg/N and 1 € C,
P(AA) = Paa(AA) = APaa(A) = AP(A).

Next, we prove that ¢ is additive on F(N). For any A, B € F(N), since ¢ is rank
preserving, ¢(A) and ¢(B) are in F(N'). We claim that tr(¢(A)p(B)*) = tr(AB*). Indeed,
if ¢A,B(X) = UA,BVA*’BXVA,By then

tr(p(A)p(B)*) = tr(Ua sV pAVa sV sB Va U, ) = tr(AB").
If ¢4.5(X) = Ua gV} gJX"JV4 p, then
tr(p(A)p(B)*) = tr(Ua pVy gJA"IVaVy g(UB*J) Vs Uy p)
= tr(Ua gV gJA"IVa V) gJBIVa Uy p) = tr(JA"BJ) = tr(AB").
Thus, for any A,A” € F(N), by the linearity of tr,
(A + A”) = ¢(A) — p(A")$(B)") = r((A + A") —A - A")B") = 0.
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By replacing B with A + A’, A and A’, we obtain

U((GA +A") = $(A) — FANGA +A') = $(A) — $(A")") = 0.
It follows that ¢(A +A’) — ¢p(A) — ¢p(A’) = 0, which means that ¢ is additive on
F(N). i

By Lemma 2.4 and [3, Corollary 2.2] where Hou and Cui characterise rank-1
preserving linear maps between nest algebras acting on Banach spaces, we can easily
prove Lemma 2.5.

LEMMA 2.5. One of the following statements holds.
(1) There exist injective linear transformations
D:| JE:E€TW) > H and C:| JIEX:Ec JN) - H'

such that p(x ® ) = Dx Q@ Cf for every x® f € F(N).
(2) There exist injective linear transformations

D:| JEL EeTN) > H and C:( JIE:Ee TN - H
such that ¢(x ® f) = Df ® Cx for every x® f € F(N).

By categorising and discussing the two cases in Lemma 2.5, we can obtain the
following result.

LEMMA 2.6. One of the following statements holds.

(1) There exist unitary operators C,D € B(H) such that ¢(A) = DAC* for any
A € K(N).

(2) There exist bounded conjugate linear operators C, D such that CJ,DJ € B(H) are
unitary operators and ¢(A) = (DJ)JA*J(CJ)* for any A € K(N).

PROOF. We consider two cases.

Case 1. If Lemma 2.5(1) holds, then based on the assumption on N, there exist
injective linear transformations D : (J{E: E € J(N)} - H and C: H* — H* such
that p(x ® f) = Dx® Cf forevery x® f € F(N). Thus, forany x® f € AlgN,

IDXICfIl = [IDx @ Cfll = llgx ® f) = @Ol = llx® f = Ol = [l I f1].

Fix xo # 0 € (0);. Then xy® f is in AlgN for any f # 0, f € ((0);)* = H*. It
follows that [IDxoll ICA1l = [xoll I1£11- So ICA/IFN = Ixoll/IDxoll for any f # 0, f € H*,
which means that C € B(H*) and ||C|| = |Ixoll/||Dxol.

For any E € J(N), fix fo #0,f € E*. Then x® fy € Alg N for any x # 0,x € E.
It follows that [|Dx|| |C foll = [IxI| ll foll. Therefore, [IDx]l/Ibdl = [I/oll/IICfoll = IDxoll/l1xoll,
which means that ||D|g|| = ||Dxoll/|lxoll. Since | J{E : E € J(N)} is dense in H, we can
extend D to an operator in B(H) also denoted by D such that ||Dx]|/|[x|| = [|Dxol|/|Ixol| for
any x # 0,x € H. So we can assume that C, D are isometries. Since ¢ is an isometry, by
the linearity of ¢|r(ny and the continuity of ¢, we have ¢(A) = DAC” for all A € K(N).
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By the Riesz—Frechet theorem, H* can be identified with H through a conjugate
linear surjective isometry. For any E # H,E € N, we have (E,)_ = E by the hypothesis
on N. Thus, x is in (E,)* forany x e E, ©FE,andsox®x € AlgN.Let N = {E; : j €
Q} and {eé : i € Aj} be an orthonormal basis of (Ej), © E;. Then K := };; ei ® e{:/(i -7)
is a compact operator in Alg N. Moreover, K is an injective operator with dense range.
We claim that ¢(K) is also an injective operator with dense range.

For the case when ¢(K) = UK,OV]*(’OKVK,O, since Uk, Vi are unitary operators,
¢(K) is also an injective operator with dense range.

For the case when ¢(K) = UK,OVI*(’OJK*JVK,O, since Ker K = (RanK*)*, K* is an
injective operator with dense range. As J is a conjugate linear isometry, it follows that
#(K) is also an injective operator with dense range.

Therefore, ¢(K) = 3;; Deﬁ. ® Ce’l./ (i-j) is an injective operator with dense range,
which implies D and C have dense ranges. Consequently, D and C are surjective
isometries (unitary operators).

Case 2. If Lemma 2.5(2) holds, then there exist injective linear transformations D :
H* - H and C:\J{E € N | E- # H} — H* such that ¢(x® f) = Df ® Cx for every
x® f e F(N).

According to the Riesz—Frechet theorem, we can consider D as an injective
conjugate linear transformation from H to H, and C as an injective conjugate linear
transformation from (J{E € N | E_ # H} to H. Similarly to Case 1, we can conclude
that DJ and CJ are unitary operators. By Remark 2.3,

d(x® f)=Df @ Cx = (DI f ® Jx)(CI)*
= (DN HN(CH" = (DHJ(x® f)I)NCI)
for any x® f € Alg N. By the linearity of ¢|r) and the continuity of ¢, we have
#(A) = (DJ)JA*J)(CJ)* for any A € K(N). mi
LEMMA 2.7. ¢(P)P(T)*¢p(P) = ¢(PT*P) for any T € AlgN and any P=x® f €
AlgN.

PROOF. By Lemma 2.2, ¢p’T(X) = UP,TV;’TXVP,T or ¢p,T(X) = UPQTV;,TJX*JVP,T. To
simplify the notation, denote Up 1, Vpr by U, V, respectively. For ¢p r(X) = UV*XV,

o(PYH(T) ¢(P) = UV*PV(UV*TV)"UV*PV = UV*PT*PV = UV*(T"*x, [ )PV
=(T"x, HUV'PV =(T"x, [)p(P) = ¢(T"x, [)P) = ¢(PT"P).
For ¢pr(X) = UV*JX*JV, using Remark 2.3,
d(PYH(T) p(P) = UV*JP*JV(UVIT*JVY"UV*JP*JV = UV*JP*TP*JV
= UV*J(PT'P)"JV = UV J(T*x, f)x® f)'JV
=L(T*x, HUV*I(x® )TV
=(T"x, /Yp(P) = ¢(T"x, f)P) = (PT"P).
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Furthermore, if ¢ is the form in Lemma 2.6(1), then DPC*¢(T)*DPC* = DPT*PC*,
which implies that

P(C*H(T)'D-THP =0 @2.1)

forany 7 € AlgN and P =x® f € AlgN.
If ¢ is the form in Lemma 2.6(2), then it follows that

(DI)JP*J(CI)*¢(T)*(DI)JIP*J(CIY* = (DJ)J(PT*P)*J(CJ)*
= (DI)JP*DYJTI)JP*J)(CT)",

which implies that
JP*DH(CH* (T (D) — JTI)IP*T) =0 (2.2)
forany 7 € AlgN andany P =x® f € AlgN. |

Under the assumption on N, Lemmas 2.8 and 2.9 follow from Proposition 2.2.

LEMMA 2.8. Let p : AlgN — Alg N be a surjective linear isometry. If Case (1) in
Proposition 2.2 holds for p, then V, V* are in AlgN.

PROOF. It is sufficient to show that V*EV = E for all E € N. We prove it by the
principle of transfinite induction.

It is evident that V*(0)V = (0). Moreover, for any given F € N, if the equation
V*GV = G holds for all G € N such that G < F, then because E — V*EV is an order
isomorphism from N onto N, it follows that V*FV = F. |

LEMMA 2.9. Let p : AlgN — Alg N be a surjective linear isometry. If Case (2) in
Proposition 2.2 holds for p, then the following statements hold.

(1) E_#EforanyE # (0),E e N.

(2) N is finite.

(3) We denote N ={Ey,E,,...,E,} where (0)=Ey<E| <---<E,=H. Then V*
and V both map E; onto I — E,_; for 0 <i < n.

PROOF. (1) In the nest N+, we denote EQ’L =ANFeN*+:F¢E)} for any E # H,
Ee N* and EN" = \/{(Fe N* : F 2 E} forany E # (0), E € N*.

Since the map 7 : E + V*EV is an order isomorphism from N onto N, we have
(I-EY #(—-E)foranyl -E+ H,I-EeN*.So

I—Ei(l—E)ﬁ’Lz/\{I—FeNl:I—F>I—E}=/\{I—FENL:F<E}=I—E,

forany I — E # H,I — E € N*. It follows that E_ # E for any E # (0) € N.

(2) Suppose that N is infinite, then there is a sequence {E; : i € N} C N such that
E; #(0) or H for any i € N and E; < E; when i <j. Let G = \/{E;:i € N}. Then
G- =V{FeN:F<G}2V|{E; :ieN} = Gwhich contradicts G_ # G. This implies
that NV is finite.
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(3) Since E +— V*JEJV is an order isomorphism from N onto N* and EJ = JE
for any £ € N, we obtain E; — V*E;V =1 - E,_; for 0 <i < n. Since V is a unitary
operator, it follows that V* and V both map E; onto I — E,,_; for 0 < i < n. O

Using the characterisation of the ¢4 p provided by Proposition 2.2, we divide the
proof of Theorem 2.1 into two lemmas based on whether N is isomorphic to N+,

LEMMA 2.10. If N is not order isomorphic to N*, then ¢ is a surjective linear
isometry.

PROOF. Since N is not order isomorphic to N+, every surjective linear isometry of
Alg N is of the form in Proposition 2.2(1). We distinguish two cases according to
Lemma 2.6.

Case 1. Suppose that Lemma 2.6(1) holds, that is, ¢(A) = DAC* for every A € K(N)
where C, D are unitary operators. We claim that C and D are both in Alg N N Alg N*.

For any fixed E€ N, if x#0,x€ E and f #0, f € E*, then it follows from
dx®f)=DxCf = UT,x®fV;’x®f(x® HVr s that

Dx = A1.07UraafVigx and Cf = _;V;X@ff )
TxQf
where A7 ,g; € C is on the unit circle.

By Proposition 2.2 and Lemma 2.8, Ur,gf, Vraey are both in Alg N N Alg N*.
Fix xo # 0,x0 € (0);. Then xo ® f is in AlgN for any f # 0, f € H. Thus, for any
E+#(0),Ee N,wehave Cf = V;’x()@ff/z”o@f € Eforany f # 0, f € E. Also, for any
E#H,EeN,wehave Cf = V; o f/Ar.er € E* forany f # 0, f € E*. This shows
that C is in Alg N N Alg N*.

For any fixed E € J(N), there exists an fy # 0, fy € E*. It follows that Dx =
A1 205 UT s fy V;,x&ﬂ)x € E for any x # 0, x € E, which means that D € Alg N.

Fix E € J(N). Then, forany y € E and any x € E- N (J{F : F € J(N)}),

(x, D"y} = (Dx,y) = {720 Urxaf V1 1% ¥)
= <X, /l*T,x®AfVT,x®fU;,x®.f'y> € <X, E) = {O}

SoD*E L (E*N(U{F : F € JIN)D). Since EX N (({F : F € J(N)}) is dense in E*,
it follows that D* € Alg N. This completes the claim.

For any T € Alg N, denote G := C*¢(T)*D — T*. By (2.1), f(Gx)x® f = 0 for any
P=x® f € Alg N. Thus, G maps E, into E for any E # H,E € N. Itis clear that G is
in Alg N+, and hence G maps every E* € N+ into E*. It follows that G maps E, © E =
E. N E*into ENE* forany E #+ H, E € N which yields G = 0 and ¢(T) = DTC".

Case 2. Suppose that Lemma 2.6(2) holds, that is, ¢(x® f) = Df ® Cx for every
x® f € Alg N where C, D are conjugate linear operators such that CJ, DJ € B(H) are
unitary operators.
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Then for xy # 0,xp € (0), and linear independent f|, f> € H,

¢()C0 ® fl) = Dfl ® CxO = Uxo®f1 Xo®f> V;()@fl ,x0®f2x0 ® V«:O@fl ,x0®f2fl

and

¢(X() ® f2) = Df2 ® C.X() = UX41®fl Xo® f V;)@fl Jo@fzxo ® V:()@fl ,x0®f2f2‘

It follows that D f; and D f; are linearly dependent which leads to a contradiction.
In conclusion, ¢(T) = DTC* for any T € Alg N and it is clear that ¢ is a surjective
linear isometry of Alg N. ]

LEMMA 2.11. If N is order isomorphic to N*, then ¢ is a surjective linear isometry.

PROOF. According to Lemma 2.9, N is finite; denote N = {Ey, E,...,E,} where
(0)=Ey<E| <---<E, = H. We distinguish two cases according to Lemma 2.6.

Case 1. Suppose that Lemma 2.6(1) holds, that is, ¢(A) = DAC* for every A € K(N)
where C,D are unitary operators. In this case, for any E € J(N) satisfying
dimE* > 1, fix xo # 0,xp € E. For any linearly independent fi, f» € E*, we have
X ® fi,x0® f» € AlgN.

We claim that ¢, g, s, is not of the form in Proposition 2.2(2). Otherwise,

P(x0 ® f1) = Unefivoeh Vigasfi o %0 ® 1) IVaefi xops = Dxo ® Cfi

and

¢(x0 ® f2) = Uxo®f1 Xo®f2 V;o&fl ,xg®f2‘](x0 ® fZ)*JVx0®f1 Xo®f = Dxo ® CfZ'

It follows that f; and f; are linear dependent, leading to a contradiction.
Thus, for any f] # 0, fi € H, there exist xy # 0,xp € (0); and f; # 0, f € H such
that

P(x0 ® f1) = Unefines Vo xon (X0 ® D) Vefixes = Dxo® Cfi.

Hence, Dxy = AX()@f] x08f: Uxo®fi x0® 2 V;)@,f] xo® X0 and Cfi = V;o®f| ,x(,®f2f1 //1,r0®f| X0®f>
for some Ayef.xep, € C on the unit circle. By the arbitrariness of f; and VI . . €
Alg N N Alg N+, we obtain C € Alg N N Alg N+,

Similarly, for any E € N with dimE > 1, fix fy € EX. Let x;,x; € E be any
linearly independent elements. It is impossible for ¢, ¢, v,0f t0 be in the form of
Lemma 2.2(2). Thus, for any x; # 0,x; € H, there exist fo #0, fy € H- and x, #
0,x, € H such that

(1 ® fo) = Unieinesh Viofnen X1 ® J0)Vasfxuen = Dx1 ® Cf.

It follows that D € Alg N N Alg N1,

For any T € Alg N, denote G := C*¢(T)*D — T*. Using a similar method to that
in Lemma 2.10, we see that G maps E. © E = E, N E* into ENE* for any E # H,
E € N, which yields G = 0 and ¢(T) = DTC".
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Case 2. Suppose that Lemma 2.6(2) holds, that is, ¢(x® f) = Df ® Cx for every
xQ® f € Alg N where C, D are conjugate linear operators such that CJ, DJ € B(H) are
unitary operators.

In this case, for any E € J(N) with dimE* > 1, fix xy € E. For any linearly
independent fi, f> € EX, xo ® fi,x0 ® f> are in Alg N. It is impossible for ¢y ef vef tO
be in the form of Proposition 2.2(1). Otherwise,

¢(X() ® fl) = Ux0®f1,xo®f2 V;)@fl ,X0®fz-x0 ® V;()@fl ,x0®fzfl = Dfl ® CX()
and
P(x0 ® f2) = Unefineh Vaofi xuon0 ® Viesxep /2 = D2 ® Cxo,

implying that fi, f, are linear dependent, which leads to a contradiction.
Thus, for any f; # 0, f; € H, there exist xy # 0,xp € (0), and f, # 0, f, € H such
that

P(x0 ® f1) = Uxpefi voehs Vaga sy xm o %0 ® 1) IVnefi xeps = Dfi ® Cxo.

So Df] = /lx()@fl,xo@fz Uxo®f1,x0®f2 V;ﬁo@.fi,x()@fz‘]fl and CXO = V;()@fl,x0®f2‘]x0//lx0®fl’x0®ﬁ for

some Ayef .5, € C on the unit circle. According to Lemma 2.9, VI . 5 and
Viefixss, both map E; onto [ — E,_; for 0 < i < n. Since EJ = JE for any E € N, by

the arbitrariness of fi and Uyef xepn € AlgN N Alg N*, we see that D maps E; into
I-FE, ;and I - E;into E,_; for 0 < i < n, respectively.

Similarly, for any E € N with dimE > 1, fix fy € E*. For any linearly independent
x1,X% € E, x1 ® fo, X2 ® fo are in Alg N. It is impossible for ¢y, s v,ef to be in the
form of Proposition 2.2(1). Thus, for any x; # 0,x; € H, there exist fo # 0, fy € H*
and x, # 0,x, € H such that

P(x1 ® f0) = Uxiefymafs Viefyusond ®1 ® ) IViefwen = Dfo ® Cxi.

So Dfy = @000 le®fox2®foV:@fo,xZ@fOJfO and Cx; = V;®f0’)(2®ﬁ]-]xl//lx1®fo,xz®f(, for
some Ay ef.x0f € C on the unit circle. Since V. o «. Vxop.es both map E; onto
I—-E,_;forany 0 <i<nand EJ = JE for any E € N, by the arbitrariness of x|, we
see that C maps E; into I — E,,_; and I — E; into E,_; for all 0 < i < n, respectively.

By (2.2), (JP*D)(CI)*¢(T)"(DJ) — (JT)))(JP*J) =0 for any T € Alg /N and any
P=x® feAlgN.So ((CIy*¢(T)(DJ)—JT])Jf,Jxy=0forall P=xQ® f € AlgN
which means that ((CJ)*¢(T)*(DJ) — JTJ) maps (E;)* into (E;)™*.

Moreover, for any E; € N,

DJ &(T)" n:
E,—I-E, ;i —[-E,; — E

and JTJ maps E; into E;. It follows that ((CJ)*¢(T)*(DJ) — JTJ) maps E; N (E;)*
into E; NE; ={0}. So ((C))*¢(T)*(DJ)—JTJ)=0, which implies that ¢(T) =
(DNJT*J(CJ)* for any T € Alg N. It is easy to check that ¢(T) is a surjective linear
isometry. ]

Combining Lemmas 2.10 and 2.11 completes the proof of Theorem 2.1.
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