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1. Let £(t) be integrable L(-w, w) and periodic with
period 2w and let

0
1
(1.1) —a + X (a cosnt + b sinnt)
2 o 1 n n

be its Fourier series. The series

© o
(1.2) Z nlb cosnt-a sinnt)= = n B (t)
n=1 n n 1 n

obtained by term by term differentiation of the series (1.1) is
called the derived Fourier series of f .

Suppose that (A) = () ) is a triangular matrix, i.e.
n

y k

)‘n k- 0 for k>n+ 1, which defines a regular sequence to

sequence transformation [cf. 1, page 43, theorem 2].

It {sn} denotes the partial sum of the series (41.2) then

the (A ) transforms {tn} are given by

"
i
M

n . M,k 51.<

=
]

and the series (1.2) is said to be summable (A ) to the sum s,
if tn—> s as n=> o .,
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Summability ( A) of the series (1.1) has been considered
by Petersen [2]. In this note we consider the summability (A)
of the series (1.2).

2. We write

Y (t) = f(x+t) £( t be o
x x-t), g(t) = Teint/?

and prove

THEOREM A. I (A) is a regular sequence to sequence
triangular matrix such that

n
(2.1) kz:Z k(log k) I)\n,k -y k+1l = O (log n)
and if
(2.2) fﬂ ..l_g_l(li)_l du = o (log 1/t) (t = 0+) ,
t

then t = o (logmn).
—/ n

We remark (as is readily proved using integration by parts)
that (2.2) implies

(2.3) fot lg(u)] du=o (tlog1/t) (t—~ o+,

while (2.2) is implied by

(2. 4) S5 let)] au= o (t~ 04) .

For simplicity in the proof of the theorem, we shall de-
note
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sin (k +4)t

k
sin t/2 _d 2 _
(2.5) Dk(t) T 2w dt { sint/2 3 Lk(t) - r%1 Dr.(t) :
Then we can show that
sint/2 d s §k+1 )t/2
Ll = 1;1“/  { = 2 o
sin” t/2
and making use of the elementary inequalities
sin pu sin pu 2
l l<p, I ~ Yl T, (p=1,2,3,..0),
sin u sin u | sin u|
2u/m< sinu<u (0<u< 7/2),
it is easy to prove that
(2.6) D] < 2k, |L ()] <2k® (k=1,2,3,...;t real) ;
k 2 ’ k 2 ) ’ ) b ?
Zk
(2.7) L, (0] < (k=1,2,3,...; 0< t<m)

3. Proof of Theorem A: It is easy to see that

r Br(x) ='11; ‘gn {f(x+t) - f(x-t)} r sin rt dt

so that, if {s } denotes the sequence of partial sums of the
n

series (1.2) and Dn(t) is defined by (2.5), then

1 T o
-5 = -= f G (t) = r sin rt dt
n m 0 bd r=1
n
1 ™ d 1 )
= = {) by (t) at {2+IE1 cos rt} dt

81

https://doi.org/10.4153/CMB-1967-009-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-009-2

it

m
f g(t) Dn(t) dt

0
3.1
(3.1) 1/n2 _
:(f +f ) g(t) D (t) dt
0 1/n2 o
= Pn + Qn, say.
n
Therefore, Itnl =| = )‘n,k i
k=1
n n
3.2 = +
©-2) < | ot M Pl * o Mot e |
1 1
Now ]Pnl <3n.o(~5 2logn), by (2.5) and (2.4)

n
=0o(1) as n=> « ;

thus {Pn} is a null sequence and hence, since ()‘n k) is regu-~

lar,

(3.3) IJ1I=O(1) as n=>w.

Since ()\n ) is regular, we may assurne without loss of

, k

generality that )\n =0 for k =1,2 . By definitions (2.5) and

, k
(3.1), and applying partial summation,

n
J = z A
2 k=3 n, k Qk
n f-rr
= = 2 g(t) {L (t)- L (t)} dt
k=3 n, k 1/kZ k k-1
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n
= Z (\

™
g(t) L, (t)dt
- 2 k

- ) [
n, k n, k+1 1/k

n 1/k2
- 2 J g(t) L, (t)dt
k=2 n, k+1 1/(k+1)2 k
= I1 +I2 , say .
Now
1,1 §| | /" lee] 2 at, by (2.7)
< A -\ g(t)] = dt, by (2.
1 k=2 n, k n, k+1 1/k2 t
n
(3.4) -
= of = lxn’k—xn’k+ilk.210gk}, by (2.2)
k=2
= o(logn), by (2.1).
n 1/k2
Ao nls = [y If 0 le@] o]
k=2
n 1 1
(3.5) <= |z 2 k% o(— 2 log k),by (2.6) and (2.3)
- n, k+1 ' 2 2
k=2 k
= o(log n),

since the matrix (\ k) is regular.
n

’

It now follows, on substituting (3.3), (3.4), (3.5) into (3.2),
that t = o(log n), and the proof of the theorem is complete.
n

: . = 1
4. Inparticular if we choose ln, k= 7Hl for k<n

and zero for k> n, the (A) method of summability reduces
to the (C, 1) method of summability. Also this choice of
()\n k) satisfies all the conditions imposed on the matrix in our
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theorem, so that the theorem A reduces to

THEOREM B. I {tn} denotes the (C,1) mean of the

series (1.2) and if

as t—= Q0+,
u _-.-.

fw "LEM‘L du = o (log 1/t)
t

then tn=o(logn) as n-—>o

The theorem B generalizes a theorem due to Mohanty and
Nanda [3].

I am thankful to Professor Q.I. Rahman for his kind help
and to the referee for some useful suggestions.
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