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A Short Note on Short Pants
Hugo Parlier

Abstract. It is a theorem of Bers that any closed hyperbolic surface admits a pants decomposition
consisting of curves of bounded length where the bound only depends on the topology of the surface.
The question of the quantification of the optimal constants has been well studied, and the best upper
bounds to date are linear in genus, due to a theorem of Buser and Seppälä. The goal of this note is to
give a short proof of a linear upper bound that slightly improves the best known bound.

1 Introduction

A pants decomposition of a hyperbolic surface is a maximal collection of disjoint
simple closed geodesics that, as its name indicates, decomposes the surface into three-
holed spheres or pairs of pants. In the case of closed surfaces of genus g ≥ 2, a pants
decomposition contains 3g − 3 curves which decompose the surface into 2g − 2
pairs of pants. Any surface admits an infinite number of pants decompositions and
even up to homeomorphism the number of different types of pants decomposition
grows quickly (roughly like g!). Bers proved that there exists a constant Bg that only
depends on the genus g such that any closed hyperbolic surface of genus g has a pants
decomposition with all curves of length less than Bg .

The first notable step in the direction of quantifying Bg was obtained by Buser [4],
where upper bounds of order g log g and lower bounds of order

√
g were established.

The first upper bounds linear in g were obtained by Buser and Seppälä [6], and Buser
extended these bounds to the case of variable curvature [5]. The best bounds known
to date [5, Theorem 5.1.4] are 6

√
3π(g − 1), so the best known linear factor is ap-

proximately 18.4.
It should also be noted that the direct method of computing the optimal constant

in each genus seems out of reach, as the only known constant is B2, a result of Gen-
dulphe [7].

The goal of this note is to offer a short proof of a linear upper bound that provides
a slight improvement on previously known bounds.

Theorem 1.1 Every closed hyperbolic surface of genus g ≥ 2 has a pants decomposi-
tion with all curves of length at most

4π(g − 1) + 4Rg ,

where Rg is a logarithmic function in g which can be taken to be

Rg = arccosh
1√

2 sin π
12g−6

< log(4g − 2) + arcsinh 1.
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The theorem provides an improvement on the factor in front of the genus from
approximately 18.4 to approximately 12.6. The true growth rate of Bg remains un-
known. It follows from the bounds in the closed case that surfaces with n cusps and
genus g also have short pants decompositions, where the bounds depend on n and g
this time. For fixed genus and growing number of cusps, the growth rate of the opti-
mal constants is known to grow like

√
n (see [1, 2]), which seems to indicate that the

growth rate for the closed surfaces might be of order
√

g. However, if one considers
sums of lengths of curves in a pants decomposition instead of the maximum length,
then the case of cusps is very different from the genus case (compare [2, 8]).

2 Preliminaries

To a curve γ or a free homotopy class [γ] of curve on a topological surface Σ we
associate a length function `S(γ) which associates to a hyperbolic structure S on Σ
the length of the unique closed geodesic in [γ]. A first tool that we shall use is the
following lemma, which in particular will allow us to restrict the proof of the main
theorem to the case of surfaces with systole of length at least 2 arcsinh 1.

Lemma 2.1 (Length Expansion Lemma) Let Σ be a topological surface with n > 0
boundary curves γ1, . . . , γn. For any hyperbolic surface S ∼= Σ and any (ε1, . . . , εn) ∈
(R+)n \ {0} there exists a hyperbolic surface S ′ ∼= Σ with

`S ′(γ1) = `S(γ1) + ε1, . . . , `S ′(γn) = `S(γn) + εn

and such that any nontrivial simple closed curve γ ⊂ Σ satisfies

`S ′(γ) > `S(γ).

This result seems to have been known for a long time, as it is claimed in [11] (also
see [10] for a direct proof and [9] for a stronger version).

The following result, due to Bavard [3], is sharp.

Lemma 2.2 (Pointed Systoles) For any x ∈ S, S a closed hyperbolic surface of genus g,
there exists a geodesic loop δx based in x such that

`(δx) ≤ 2 arccosh
1

2 sin π
12g−6

.

What Bavard actually proves is that the above value is a sharp bound on the di-
ameter of the largest embedded open disk of the surface. A weaker version of this
lemma can be obtained by comparing the area of an embedded disk to the area of the
surface. The area of D an embedded disk of radius r on a hyperbolic surface is the
same as the area of such a disk in the hyperbolic plane, so

area(D) = 2π(cosh r − 1).

Comparing this to area(S) = 4π(g − 1) shows that

r < 2 log
(

2g − 1 +
√

2g(2g − 2)
)
< 2 log(4g − 2).
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This weaker bound can be found in [5, Lemma 5.2.1], but note that the order of
growth of this bound is the same as in Bavard’s result.

Consider a hyperbolic surface S possibly with geodesic boundary. In the free ho-
motopy class of a simple closed geodesic loop γx based at a point x ∈ S lies a unique
simple closed geodesic γ (possibly a cusp or a boundary geodesic). In the event
where γ is not a cusp, it will be useful to bound the Hausdorff distance between
γ and x.

Lemma 2.3 Let S, γx, γ be as above. Then

max
y∈γ

d(x, y) < arccosh
(

cosh
`(γx)

2
coth

`(γ)

2

)
.

Proof Note that γx and γ bound a cylinder that can be cut into two tri-rectangles
with consecutive sides of length `(γ)/2 and d(γx, γ), as in Figure 1.

d(γx, γ)
`(γ)

2

`(γx)
2

Figure 1: From a geodesic loop to a closed geodesic.

Hyperbolic trigonometry in the tri-rectangle implies

sinh d(γx, γ) sinh
`(γ)

2
< 1.

Now the maximum distance between x and γ is at most the length of the diagonal
of the tri-rectangle. By hyperbolic trigonometry in one of the right angles triangles
bounded by this diagonal, for all y ∈ γ we obtain:

cosh d(x, y) ≤ cosh d(γx, γ) cosh
`(γx)

2
,

which via equation 2 becomes

d(x, y) < arccosh

(
cosh

(
arcsinh

1

sinh `(γ)
2

)
cosh

`(γx)

2

)

= arccosh
(

cosh
`(γx)

2
coth

`(γ)

2

)
.
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It is the following corollary of these lemmas that we shall use in the sequel. It is
obtained by replacing `(γx) by Bavard’s bound, replacing `(γ) with 2 arcsinh 1, and
by a simple manipulation.

Corollary 2.4 Let γx be the shortest geodesic loop based in x ∈ S a closed surface and
γ the unique closed geodesic in its homotopy class. If `(γ) ≥ 2 arcsinh 1, then for all
y ∈ γ

d(x, y) < Rg := arccosh
1√

2 sin π
12g−6

.

A further small manipulation gives the following rougher upper bound on this
distance where the order of growth is more apparent:

Rg < log(4g − 2) + arcsinh 1.

3 Proof of Main Theorem

We begin with any surface S ∈ Mg , and our goal is to find a pants decomposition
of S that contains all simple closed geodesics of S of length ≤ 2 arcsinh 1 and which
has relatively short length. Recall that all simple closed geodesics of length less than
2 arcsinh 1 are disjoint, and it is for this reason that this value appears. Note that S
may have a pants decomposition of shorter length which does not contain all simple
closed geodesics of length ≤ 2 arcsinh 1, but we restrict ourselves to searching for
those that do. We’ll call such pants decompositions admissible pants decompositions.

As we are only looking among admissible pants decompositions, we can imme-
diately apply Lemma 2.1 to deform our surface S to a new surface S ′ with all simple
closed geodesics of length greater or equal to 2 arcsinh 1 and with the length of all
curves γ lying in admissible pants decompositions of length at least `S(γ). (If S al-
ready had this property, then S ′ = S.)

We now construct algorithmically a pants decomposition of S ′. The algorithm has
two main steps and a fail-safe step.

The algorithm is initiated as follows. Consider x1 ∈ S ′ and let γx1 be the shortest
geodesic loop based at x1. We set γ1 to be the unique closed geodesic in the same
free homotopy class and we cut S ′ along γ1 to obtain a surface with (possibly discon-
nected) boundary

S1 := S ′ \ γ1.

Note that as such S1 is an open surface, but we could equivalently treat it as a compact
surface with two simple closed geodesic boundary curves by considering its closure
(but not its closure inside S). We will proceed in the sequel in a similar way.

Main Step 1 Choose xk+1 ∈ Sk with d(xk+1, ∂Sk) > Rg . Consider γxk+1 , the shortest
geodesic loop in xk+1. Observe that in light of Corollary 2.4, γxk+1 is not freely homo-
topic to any of the boundary curves of Sk. Set γk+1 to be the unique simple closed
geodesic in the same free homotopy class, and consider the surface

S ′k+1 := Sk \ γk+1.

https://doi.org/10.4153/CMB-2013-026-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-026-4


874 H. Parlier

We remove any pair of pants from S ′k+1 to obtain Sk+1.
If there are no more remaining x ∈ Sk with d(x, ∂Sk) > Rg , we proceed to the

next main step; otherwise the step is repeated. For further reference we note that all
curves created in this step have length at most

2 arccosh
1

2 sin π
12g−6

,

and thus in particular have length strictly less than 2Rg .

Main Step 2 All x ∈ Sk satisfy d(x, ∂Sk) ≤ Rg . Consider a point xk+1 ∈ Sk such that
there are two distinct geodesic paths that realize the distance from xk+1 to ∂Sk. This
provides a nontrivial simple path c ′ from ∂Sk to ∂Sk, where by nontrivial we mean
that Sk \ c ′ does not include a disk. In particular, in the free homotopy class of c ′ with
end points allowed to glide on the same boundary curves, there is a unique simple
geodesic arc c of minimal length, perpendicular at both end points to ∂Sk.

There are two possible topological configurations for c depending on whether c is
a path between two distinct boundary curves or not (see Figure 2 for an illustration).

α1 α2

α̃

α

α̃1
α̃2

c

c

Figure 2: The two topological types for path c.

Case 1 If c is a path between distinct boundary curves α1 and α2, then c ∪ α1 ∪ α2

is contained in a unique pair of pants (α1, α2, α̃). We set γk+1 := α̃ and S ′k+1 :=
Sk \ (α1, α2, α̃).

Case 2 If c is a path with endpoints on a single boundary curve α, then c ∪ α is
contained in a unique pair of pants (α, α̃1, α̃2).

If α̃1 6= α̃2, then we set γk+1 := α̃1, γk+2 := α̃2 and S ′k+2 := Sk \ (α1, α2, α̃).
If α̃1 = α̃2 then (α1, α2, α̃) is contained in a one-holed torus T and we set γk+1 :=

α̃1 and S ′k+1 := Sk \ T.
The algorithm continues until γ3g−3 is constructed, i.e., when a full pants decom-

position is obtained.
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Lengths of Curves Begin by observing that in both types of steps described above,
at each step we have

`(∂Sk+1) < `(∂Sk) + 4Rg .

Indeed: if Sk+1 is obtained by cutting along a curve as in Step 1, then the length of
the curve is strictly shorter than 2Rg and the boundary increases by at most twice this
length.

If Sk+1 is obtained as in Step 2, Case 1, then the curve α̃ is of length at most

`(α1) + `(α2) + 4Rg .

As Sk+1 is obtained by removing the pair of pants with curves α1, α2 and α̃, the
boundary of Sk+1 no longer contains α1 and α2 and the boundary length increases
by at most 4Rg . In Step 2, Case 2, one argues similarly.

In order to ensure that the length of the constructed curves does not surpass the
desired length, the algorithm contains a fail-safe step.

Fail-safe Step At any step, if `(∂Sk) ≥ 4π(g−1), then the next curve is constructed
following a slightly different procedure that we describe here. First observe that if

`(∂Sk) ≥ 4π(g − 1)

with Sk obtained as above, then

`(∂Sk) < 4π(g − 1) + 4Rg ,

as at every step boundary length cannot increase by more than 4Rg .
We consider an r-neighborhood of ∂Sk. For small enough r, this neighborhood is

a union of cylinders around the boundary curves. We let r grow until the topology
changes, i.e., until the cylinder first bump into each other. We choose one of the
geodesic paths c created at the bumping point.

Here we use an area argument to bound the length of c. The area of an embedded
r-neighborhood of `(∂Sk) is at most that of the surface, thus

`(∂Sk) sinh r < 4π(g − 1).

By assumption this implies r < arcsinh 1 and thus `(c) < 2 arcsinh 1.
As before, there are two topological types for c, Case 1 and Case 2 as above. In

both cases, we borrow the notation from above, but we argue slightly differently for
the lengths.

In Case 1 we have a pair of pants with boundary curves α1, α2 and α̃ which we
decompose into two right angles hexagons. By the hexagon relations we have

cosh
`(α̃)

2
= sinh

`(α1)

2
sinh

`(α2)

2
cosh `(c)− cosh

`(α1)

2
cosh

`(α2)

2

< sinh
`(α1)

2
sinh

`(α2)

2
3− cosh

`(α1)

2
cosh

`(α2)

2

< cosh
( `(α1)

2
+
`(α2)

2

)
.
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From this, we have `(α̃) < `(α1) + `(α2). So at this step we have `(∂Sk+1) < `(∂Sk).
A similar (and easier) argument shows that the same conclusion holds in Case 2 by
looking at a pentagon decomposition of the pants (α, α̃1, α̃2).

Note that after a fail-safe step the boundary length decreases so it is possible that
we return to Main Step 2, but otherwise we continue to create curves while decreasing
the total boundary length.

All the curves γk created are at some point boundary curves of a surface S ′k from
Main Step 1, a boundary curve of a surface Sk from Main Step 2, or a boundary
curve of Sk from the fail-safe step. As such, their lengths are all bounded by the total
boundary lengths of these surfaces. Thus `(γk) < 4π(g − 1) + 4Rg and the theorem
is proved.
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Inc., Boston, MA, 1992.
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