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Real Hypersurfaces in Complex Projective
Space Whose Structure Jacobi Operator Is
of Codazzi Type

Juan de Dios Pérez, Florentino G. Santos and Young Jin Suh

Abstract. We prove the non existence of real hypersurfaces in complex projective space whose structure

Jacobi operator is of Codazzi type.

1 Introduction

Let CPm, m ≥ 2, be a complex projective space endowed with the metric g of constant

holomorphic sectional curvature 4. Let M be a connected real hypersurface of CPm

without boundary. Let J denote the complex structure of CPm and N a locally defined

unit normal vector field on M. Then − JN = ξ is a tangent vector field to M called

the structure vector field on M. We also call D the maximal holomorphic distribution

on M, that is, the distribution on M given by all vectors orthogonal to ξ at any point

of M.

The study of real hypersurfaces in nonflat complex space forms is a classical topic

in differential geometry. The classification of homogeneous real hypersurfaces in

CPm was obtained by Takagi, see [15–17], and is given by the following list:

A1 Geodesic hyperspheres.

A2 Tubes over totally geodesic complex projective spaces.

B Tubes over complex quadrics and RPm.

C Tubes over the Segre embedding of CP1 × CPn, where 2n + 1 = m and m ≥ 5.

D Tubes over the Plücker embedding of the complex Grassmann manifold G(2, 5).

In this case m = 9.

E Tubes over the cannonical embedding of the Hermitian symmetric space

SO(10)/U (5). In this case m = 15.

Other examples of real hypersurfaces are ruled real ones, introduced by Kimura

[6]. Take a regular curve γ in CPm with tangent vector field X. At each point of γ there

is a unique complex projective hyperplane cutting γ so as to be orthogonal not only

to X but also to JX. The union of these hyperplanes is called a ruled real hypersurface.

It will be an embedded hypersurface locally, although globally it will, in general, have

self-intersections and singularities. Equivalently, a ruled real hypersurface is such

that D is integrable or g(AD, D) = 0, where A denotes the shape operator of the

immersion. For further examples of ruled real hypersurfaces, see [8].
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348 J. de Dios Pérez, F. G. Santos and Y. J. Suh

Except for these real hypersurfaces, there are very few examples of real hypersur-

faces in CPn.

On the other hand, Jacobi fields along geodesics of a given Riemannian mani-

fold (M̃, g̃) satisfy a very well-known differential equation. This classical differential

equation naturally inspires the so-called Jacobi operator. That is, if R̃ is the curva-

ture operator of M̃ and X is any tangent vector field to M̃, the Jacobi operator (with

respect to X) at p ∈ M, R̃X ∈ End(TpM̃), is defined as (R̃XY )(p) = (R̃(Y, X)X)(p)

for all Y ∈ TpM̃, being a selfadjoint endomorphism of the tangent bundle TM̃ of M̃.

Clearly, each tangent vector field X to M̃ provides a Jacobi operator with respect to X.

The study of Riemannian manifolds by means of their Jacobi operators has been

developed following several ideas. For instance, Chi [1] pointed out that (locally)

symmetric spaces of rank 1 (among them complex space forms) satisfy that all the

eigenvalues of R̃X have constant multiplicities and are independent of the point and

the tangent vector X. The converse is a well-known problem which has been studied

by many authors, although it is still open.

Let M be a real hypersurface in a complex projective space, and let ξ be the struc-

ture vector field on M. We will call the Jacobi operator on M with respect to ξ, the

structure Jacobi operator on M. Then the structure Jacobi operator Rξ ∈ End(TpM)

is given by (Rξ(Y ))(p) = (R(Y, ξ)ξ)(p) for any Y ∈ TpM, p ∈ M, where R de-

notes the curvature operator of M in CPm. Some papers devoted to studying several

conditions on the structure Jacobi operator of a real hypersurface in CPm are [2–4].

Recently, we proved the non-existence of real hypersurfaces in CPm with parallel

structure Jacobi operator [10]. We have studied distinct conditions on the structure

Jacobi operator (Lie parallelism, Lie ξ-parallelism, D-parallelism, and so on) [11–14].

A type (1, 1) tensor T on a real hypersurface M of CPm is of Codazzi type if it

satisfies the Codazzi equation, that is, (∇XT)Y = (∇Y T)X for any X,Y tangent to

M. Naturally, this is a weaker condition than T being parallel. In [7] the authors

studied the so-called real hypersurfaces M with harmonic curvature in CPm. These

real hypersurfaces satisfy that their Ricci tensor S is of Codazzi type. They obtain that

there exist no such real hypersurfaces when the structure vector field ξ is principal.

See also [5].

The purpose of the present paper is to study real hypersurfaces of CPm whose

structure Jacobi operator is of Codazzi type. That is,

(1.1) (∇XRξ)Y = (∇Y Rξ)X

for any X,Y tangent to M. Concretely we prove the following.

Theorem There exist no real hypersurfaces in CPm, m ≥ 3, with Codazzi type structure

Jacobi operator.

2 Preliminaries.

Throughout this paper, all manifolds, vector fields, etc., will be considered of class

C∞ unless otherwise stated. Let M be a connected real hypersurface in CPm, m ≥ 2,
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without boundary. Let N be a locally defined unit normal vector field on M. Let ∇
be the Levi–Civita connection on M and ( J, g) the Kaehlerian structure of CPm.

For any vector field X tangent to M, we write JX = φX + η(X)N , and − JN = ξ.

Then (φ, ξ, η, g) is an almost contact metric structure on M. That is, we have

(2.1) φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY ) = g(X,Y ) − η(X)η(Y )

for any tangent vectors X,Y to M. From (2.1) we obtain φξ = 0, η(X) = g(X, ξ).

From the parallelism of J we get (∇Xφ)Y = η(Y )AX − g(AX,Y )ξ and ∇Xξ = φAX

for any X,Y tangent to M, where A denotes the shape operator of the immersion.

As the ambient space has holomorphic sectional curvature 4, the equations of Gauss

and Codazzi are given, respectively, by

(2.2) R(X,Y )Z = g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY

− 2g(φX,Y )φZ + g(AY, Z)AX − g(AX, Z)AY,

and

(2.3) (∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX,Y )ξ

for any tangent vectors X,Y, Z to M, where R is the curvature tensor of M.

In the sequel we need the following results.

Lemma 2.1 ([9]) If ξ is a principal curvature vector with corresponding principal

curvature α and X ∈ D is principal with principal curvature λ, then φX is principal

with principal curvature (αλ + 2)/(2λ − α).

Lemma 2.2 ([10]) There exist no real hypersurfaces M in CPm, m ≥ 3, such that

the shape operator is given by Aξ = ξ + βU , AU = βξ + (β2 − 1)U , AφU = −φU ,

AX = −X, for any tangent vector X orthogonal to span{ξ,U , φU}, where U is a unit

vector field in D and β is a nonvanishing smooth function defined on M.

3 Some Lemmas

We first prove some lemmas which we will need in the proof of the theorem.

Lemma 3.1 Let M be a real hypersurface of CPm, m ≥ 2, satisfying (∇ξRξ)X =

(∇XRξ)ξ for any X tangent to M. Then RξφA = −AφRξ .

Proof As Rξ is self-adjoint with respect to g, then ∇ξRξ is also self-adjoint. Thus

g((∇ξRξ)X,Y ) = g(X, (∇ξRξ)Y ) for any X,Y tangent to M. Therefore, in the con-

ditions of the lemma g((∇XRξ)ξ,Y ) = g(X, (∇Y Rξ)ξ). This yields g(Rξ(φAX),Y ) =

g(X, Rξ(φAY )) for any X,Y tangent to M and the lemma follows.

Lemma 3.2 There exist no Hopf real hypersurfaces M in CPm, m ≥ 2, satisfying

RξφA = −AφRξ .
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Proof If M is Hopf, then Aξ = αξ, where α is a locally constant function on M. Let

X ∈ D such that AX = λX. As Rξ(φAX) = −AφRξ(X), we get λφX + αλAφX =

−AφX − αλAφX. As by Lemma 2.1 AφX = ((αλ + 2)/(2λ − α))φX, this yields

λ(1 + α((αλ + 2)/(2λ − α))) = −(1 + αλ)((αλ + 2)/(2λ − α)).

Thus α 6= 0 and (1 + α2)λ2 + 2αλ + 1 = 0. As such a λ cannot exist, we have a

contradiction.

Proposition 3.3 Let M be a real hypersurface in CPm, m ≥ 3, satisfying (1.1). Then

its shape operator is given by Aξ = αξ + βU , AU = βξ + ((β2 − 1)/α)U , AφU =

−(1/α)φU , AX = λX, where λ2 + 2αλ + 1 = 0, α and β are nonnull functions

on M, α2 6= 1, U is a unit vector field in D and X is any unit vector field in DU =

span{ξ,U , φU}⊥.

Proof By Lemma 3.2, M cannot be Hopf. Thus, at least locally, there exist a unit

U ∈ D and functions α, β on M, β being nonnull, such that Aξ = αξ + βU . From

now on, all the computations are made in a neighbourhood of any point.

From Lemma 3.1, Rξ(φAξ) = 0. Then by the Gauss equation (2.2),

(3.1) Rξ(φU ) = 0, α 6= 0, AφU = −(1/α)φU .

Then (3.1) and Lemma 3.1 give Rξ(φAφU ) = 0, and developing this equality we have

(3.2) Rξ(U ) = 0, AU = βξ + ((β2 − 1)/α)U .

From (3.1) and (3.2) we conclude that DU is A-invariant. Let X ∈ DU such that

AX = λX. From Lemma 3.1 we get

(3.3) (2αλ + 1)AφX = −λφX.

If there exists X ∈ DU for which λ vanishes at some point of M, then AX = 0 on a

neighbourhood of such a point. From (3.3) also AφX = 0. The Codazzi equation

gives (∇XA)φX − (∇φXA)X = −2ξ. If we develop it and take its scalar product with

ξ, we get

(3.4) g([X, φX],U ) = 2/β.

From (1.1) we have ∇XRξ(φX) − Rξ(∇XφX) = ∇φXRξ(X) − Rξ(∇φXX). Taking

its scalar product with U and bearing in mind (3.2), we obtain g([X, φX],U ) = 0,

which contradicts (3.4). Thus from (3.3), if X ∈ DU is such that AX = λX, then

λ 6= 0, and AφX = −(λ/(2αλ + 1))φX.

We could have −λ = λ/(2αλ + 1). This yields αλ = −1. Starting with the

same Codazzi equation as above and taking its scalar product with ξ, respectively U ,

implies g([X, φX],U ) = −2/(α2β), respectively g([X, φX],U ) = −2/β, and we can

conclude α2
= 1. If α = 1, then AX = −X and AφX = −φX. If there exists another

Y ∈ DU such that AY = µY , then AφY = −(µ/(2µ + 1))φY . The Codazzi equation
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gives (∇Y A)φY − (∇φY A)Y = −2ξ. If we develop this equality and take its scalar

product with ξ, we get

(3.5) g([Y, φY ],U ) = 2(2µ2 + 2µ + 1)/β(2µ + 1),

and its scalar product with U yields

(3.6) − µ((1/(2µ + 1))g(∇Y φY,U ) + g(∇φY Y,U ))

= (β2 − 1)g([Y, φY ],U ) − βµ + (βµ)/(2µ + 1).

On the other hand, ∇φY Rξ(Y ) − Rξ(∇φY Y ) = ∇Y Rξ(φY ) − Rξ(∇Y φY ). Taking its

scalar product with U and bearing in mind (3.1), we obtain

(3.7) (1 + µ)(g(∇φY Y,U ) − (1/(2µ + 1))g(∇Y φY,U )) = 0.

From (3.7), if µ 6= −1,

(3.8) g(∇φY Y,U ) = (1/(2µ + 1))g(∇Y φY,U ).

From (3.6) and (3.8) we get

(3.9) β(2µ + 1)g(∇φY Y,U ) = µ.

From (3.5) and (3.9) we have

(3.10) g(∇Y φY,U ) = (4µ2 + 5µ + 2)/β(2µ + 1).

Now (3.8), (3.9) and (3.10) imply µ = (4µ2 +5µ+2)/(2µ+1). Thus µ2 +2µ+1 = 0.

Its unique solution is µ = −1, but from Lemma 2.2 this kind of real hypersurface

does not exist.

A similar reasoning gives the same result if α = −1. Therefore, for X ∈ DU , we

have AX = λX, λ 6= 0, λα 6= 1 and AφX = −(λ/(2αλ + 1))φX.

The Codazzi equation applied to X and φX after taking its scalar product with ξ,

respectively U , yields

(3.11) g([X, φX],U ) = 2((1 + α2)λ2 + 2αλ + 1)/β(2αλ + 1),

respectively,

(3.12) − λ((1/2αλ + 1)g(∇XφX,U ) + g(∇φXX,U ))

= ((β2 − 1)/α)g([X, φX],U ) − βλ + (βλ/(2αλ + 1)).

From (1.1), ∇φXRξ(X) − Rξ(∇φXX) = ∇XRξ(φX) − Rξ(∇XφX). Taking its scalar

product with U and bearing in mind (3.1), we get

(3.13) (1 + αλ)(g(∇φXX,U ) − (1/(2αλ + 1)g(∇XφX,U )) = 0.
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But as 1 + αλ 6= 0, (3.13) gives

(3.14) g(∇φXX,U ) = (1/(2αλ + 1))g(∇XφX,U ).

From (3.12) and (3.14) we obtain

(3.15) g(∇φXX,U ) = αλ/β(2αλ + 1).

From (3.11) and (3.15) we have g(∇XφX,U ) = (2(1 +α2)λ2 + 5αλ+ 2)/β(2αλ+ 1).

From 3.14 and 3.15, this yields 2(1 + α2)λ2 + 5αλ + 2 = (2αλ + 1)αλ. From this,

λ2 + 2αλ + 1 = 0, and this finishes the proof.

Lemma 3.4 Let M be a real hypersurface in CPm, m ≥ 3 satisfying (1.1). Then

grad(α) = ((3β/α) + αβ − βg(∇ξφU ,U ))φU ,

grad(β) = ((β2 − 1)/α2) + β2 − (β2/α)g(∇ξφU ,U ))φU ,

where α, β and U are as in Proposition 3.3.

Proof Let X ∈ DU such that AX = λX and AφX = −(λ/(2αλ + 1))φX. Then

from Proposition 3.3, AφX = −(1/λ)φX. The Codazzi equation yields (∇XA)ξ −
(∇ξA)X = −φX. Developing this equality and taking its scalar product with ξ,

respectively U , we get

X(α) + βg(∇ξX,U ) = 0,(3.16)

X(β) + (((β2 − 1)/α) − λ)g(∇ξX,U ) = 0.(3.17)

As (∇U Rξ)ξ = (∇ξRξ)U , from (3.1) and (3.2) we have Rξ(∇ξU ) = 0. Thus 0 =

g(∇ξU , Rξ(X)) = (1 + αλ)g(∇ξU , X). As λα 6= −1, we obtain

(3.18) g(∇ξU , X) = 0.

From (3.16), (3.17) and, (3.18) we have

(3.19) X(α) = X(β) = 0

for any X ∈ DU . As (∇ξRξ)X = (∇XRξ)ξ, we get ∇ξ((1 + αλ)X) − Rξ(∇ξX) =

−λRξ(φX), and taking its scalar product with X, we obtain

(3.20) λξ(α) + αξ(λ) = 0.

But from Proposition 3.3, λ2 + 2αλ + 1 = 0. Thus

(3.21) λξ(λ) + λξ(α) + αξ(λ) = 0.
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From (3.20) and (3.21) we get

(3.22) ξ(α) = ξ(λ) = 0.

Once more, the Codazzi equation gives (∇ξA)U − (∇U A)ξ = φU . Developing it,

from Proposition 3.3 and taking its scalar product with ξ, we have

(3.23) ξ(β) = U (α).

As (∇XRξ)U = (∇U Rξ)X, if we take its scalar product with X ∈ DU we obtain

(3.24) (1 + αλ)g(∇XU , X) = −λU (α) − αU (λ),

and from Proposition 3.3,

(3.25) (1 + αλ)g(∇XU , X) = λU (λ).

From the Codazzi equation, (∇U A)X−(∇XA)U = 0. Its scalar product with X yields

(3.26) U (λ) + ((αλ − β2 + 1)/α)g(∇XU , X) = 0.

Now (3.25) and (3.26) imply (α + α2λ + αλ2 − λβ2 + λ)U (λ) = 0. If U (λ) = 0,

then from (3.25), g(∇XU , X) = 0, and from (3.24), U (α) = 0. Therefore, (3.23) also

gives ξ(β) = 0. If U (λ) 6= 0, then α+α2λ+αλ2−λβ2 +λ = 0. As, from Proposition

3.3, λ2
= −2αλ − 1, we have λ(α2 + β2 − 1) = 0. This means α2 + β2

= 1. Thus

αξ(α) + βξ(β) = 0, and from (3.22), ξ(β) = 0. So we have proved that always

(3.27) ξ(β) = U (α) = 0.

But g((∇ξA)U − (∇U A)ξ,U ) = 0. From (3.22) and (3.27) we get

(3.28) U (β) = 0.

Now the Codazzi equation implies (∇ξA)φU − (∇φU A)ξ = −U . If we take its scalar

product with ξ, respectively U , we obtain

(φU )(α) = (3β/α) + αβ − βg(∇ξφU ,U ),(3.29)

(φU )(β) = ((β2 − 1)/α2) + β2 − (β2/α)g(∇ξφU ,U ).(3.30)

The proof finishes if we look at (3.19), (3.22), (3.27), (3.28), (3.29) and (3.30).
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4 Proof of the Theorem

From Lemma 3.4 we have ∇X grad(α) = X(δ)φU + δ∇XφU , for any X tangent to M,

where δ = (3β/α) + αβ − βg(∇ξφU ,U ). Thus

0 = g(∇X grad(α),Y ) − g(∇Y grad(α), X)

= X(δ)g(φU ,Y ) − Y (δ)g(φU , X) + δ(g(∇XφU ,Y ) − g(∇Y φU , X))

for any X,Y tangent to M. If we take Y = ξ, we get

0 = −ξ(δ)g(φU , X) + δ(g(∇XφU , ξ) − g(∇ξφU , X))

for any X tangent to M. Now take X = U . We have

δ(((1 − β2)/α) − g(∇ξφU ,U )) = 0.

Thus either δ = 0 or g(∇ξφU ,U ) = (1 − β2)/α. Thus

(4.1) g(∇ξφU ,U ) = (α2 + 3)/α or g(∇ξφU ,U ) = (1 − β2)/α.

The same reasoning applied to grad(β) gives

(4.2) g(∇ξφU ,U ) = (α2β2 + β2 − 1)/αβ2 or g(∇ξφU ,U ) = (1 − β2)/α.

If we suppose g(∇ξφU ,U ) 6= (1−β2)/α, then from (4.1) and (4.2) we have 2β2+1 =

0, which is impossible. Thus g(∇ξφU ,U ) = (1 − β2)/α. Then (3.29) and (3.30)

become

(φU )(α) = (α2 + β2 + 2)β/α,(4.3)

(φU )(β) = (β4 + α2β2 − 1)/α2.(4.4)

From the Codazzi equation, (∇ξA)U − (∇U A)ξ = φU . Its scalar product with φU ,

bearing in mind (4.3), yields

(4.5) g(∇U φU ,U ) = (2β2 − β4 − 1)/α2β.

As from the Codazzi equation (∇U A)φU − (∇φU A)U = −2ξ, if we take its scalar

product with U , from (4.3) and (4.4) we get

(4.6) g(∇U φU ,U ) = (β2 − β4 − 4α2)/α2β.

From (4.5) and (4.6) we have

(4.7) 4α2 + β2
= 1.

From (4.7) we obtain 4α(φU )(α) + β(φU )(β) = 0. Then (4.3) and (4.4) imply

(4.8) β2 − α2
= 1.

From (4.7) and (4.8) we obtain α = 0, which contradicts Proposition 3.3 and finishes

the proof.
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