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Abstract

Let F be a subfield of the complex numbers and f(x) = x® + ax® + bx* + cx> + bx> + ax + 1 € F[x] an
irreducible polynomial. We give an elementary characterisation of the Galois group of f(x) as a transitive
subgroup of S¢. The method involves determining whether three expressions involving a, b and ¢ are perfect
squares in F and whether a related quartic polynomial has a linear factor. As an application, we produce
one-parameter families of reciprocal sextic polynomials with a specified Galois group.
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1. Introduction

Let F be a subfield of the complex numbers and f(x) € F[x] an irreducible polynomial
of degree n. Identifying the Galois group, Gal(f), of f(x) as a transitive subgroup of S,
is a fundamental problem in computational algebra. In general, this is a difficult task;
most modern approaches are based on [9, 10]. However, when f(x) has a special form,
the computation can be more straightforward.

For example, Galois groups of even quartic polynomials (x* + ax> + b), even sextic
polynomials (x% + ax* + bx> + ¢) and doubly even octic polynomials (x® + ax* + b)
have elementary characterisations (see for example [, 2]). In each case, the charac-
terisation leverages information about the index-2 subfield of the field defined by the
polynomial.

A natural extension of this technique is to irreducible reciprocal polynomials,
which are polynomials satisfying f(x) = x" - f(1/x), since the field extension defined
by such a polynomial also has an index-2 subfield (see Theorem 2.1). Note that if
fx) =25, fix' is a reciprocal polynomial, then f; = f,_;; that is, the sequence of
coefficients {f;} forms a palindrome.

In this setting, some similar characterisations of Gal(f) are known. The following
classical result of Dickson determines the Galois group of an irreducible reciprocal
quartic polynomial by testing the squareness of two elements of F (see [4]). In the
theorem, as in the rest of the paper, we will use the following standard convention for
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describing groups: C, denotes the cyclic group of order n, D, the dihedral group of
order 2n, and A, and S, the alternating and symmetric groups on # letters, respectively.
We also use X to denote a direct product, > a semidirect product and  a wreath product.

THEOREM 1.1 (Dickson). Let x* + ax® + bx> + ax + 1 € F[x] be irreducible. Then
Gal(f) is isomorphic to:

» Cy X Cy ifand only if (b + 2)* — 4a? is a square in F;

o Cyifand only if (b + 2)* — 4a*)(a* — 4b + 8) is a square in F;

Dy if and only if neither (b + 2)* — 4a® nor (b + 2)*> — 4a*)(a* — 4b + 8) is a square
inF.

Since reciprocal polynomials of odd degree are reducible (they have —1 as a root),
the next logical case to consider is Galois groups of irreducible reciprocal sextic
polynomials; that is, those of the form x® + ax® + bx* + cx® + bx® + ax + 1 € F[x]. The
purpose of this paper is to provide a similar characterisation, reflecting the spirit of
Theorem 1.1. In doing so, we will generalise the results in [6, 7], which verify that
certain families of irreducible reciprocal sextic polynomials with rational coefficients
have Galois group isomorphic to either S3, Dg or S4 X Cj.

The remainder of the paper is organised as follows. In Section 2, we collect several
results concerning field extensions defined by reciprocal polynomials and their Galois
groups; these will be used to prove our main theorem in Section 3. Our main result,
Theorem 3.5, gives a characterisation of the Galois group of x° + ax® + bx* + cx® +
bx* + ax + 1 that depends only on the squareness of three elements whose expressions
involve a, b and ¢, along with whether or not a related quartic polynomial has a linear
factor. As an application, we provide one-parameter families of reciprocal sextics for
each possible Galois group (see Theorem 3.7).

2. Preliminary results

In this section, we let f(x) € F[x] be a monic irreducible reciprocal polynomial of
degree n = 2m, and we let L = F(a) where f(a) = 0. We collect results about L and
Gal(f) that are used later in the paper.

The reader is referred to [8] for an elementary overview of several standard facts
about reciprocal polynomials. One such result shows there exists a polynomial g(x) of
degree m such that f(x) = X" - g(x + 1/x) (see [8, Proposition 2.0.16]). It turns out that
g(x) is the minimal polynomial of @ + 1/a. This result is straightforward to establish
and shows L has an index-2 subfield. For convenience, we include a proof.

THEOREM 2.1. The minimal polynomial, g(x), of B = a + 1/a has degree m. Thus, L
has a subfield, K = F(B), of index 2.

PROOF. Let the roots of f(x) be {a =r,1/r,...,1rm, 1/r,}, and let g(x) be the
polynomial whose roots are {r; + 1/r;} for 1 < i < m. Thus, the degree of g(x) is m and
g(B) = 0. Let h(x) = x™ - g(x + 1/x). It follows that f(x) = h(x) since both polynomials
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TABLE 1. Possible Galois groups of irreducible reciprocal sextic polynomials. Size gives the order of the

group.
T Name Size Generators
6T1 Cs 6 (164253)
6T2 S3 6 (16)(25)(34), (145)(236)
6T3 Dg 12 (36)(45), (135246)
6T4 Ay 12 (154)(263), (34)(56)
6T6 As X Cy 24 (34)(56), (164253)
6T7 Sy 24 (35)(46), (154)(263)
6T8 Sy 24 (154)(263), (12)(36)(45)
6T11 S4 X Cy 48 (12)(3645), (146235)

are monic, are of the same degree and have the same roots. If g(x) were reducible, say
g(x) = k(x) - I(x), then this would imply f(x) is reducible since

Fx) = h(x) = x92Ok(x + 1/x) - x40 1(x + 1/x).

However, this contradicts the irreducibility of f(x). Thus, g(x) is irreducible and is
therefore the minimal polynomial of 3. |

Since subfields of L correspond to block systems of Gal(f) (see [5, Section 1.6] for
more information about block systems), it follows that Gal(f) can be embedded in a
suitable wreath product. In particular, the following is an immediate consequence of
Theorem 2.1 and [5, Theorem 2.6 A].

COROLLARY 2.2. We have Gal(f) is a subgroup of C, ¢ Gal(g) =~ C3' = Gal(g). Thus,
2™ - m! is an upper bound for |Gal(f)|.

3. Galois groups of reciprocal sextics

For the rest of the paper, we let f(x) = x° + ax® + bx* + cx® + bx> + ax + 1 € F[x]
be an irreducible reciprocal polynomial, @ a root of f(x) and L = F(«@). Let g(x)
denote the minimal polynomial of @ + 1/a. Thus, we have the following result as a
consequence of Theorem 2.1.

COROLLARY 3.1. The polynomial g(x) = x> + ax’> + (b — 3)x — 2a + c is irreducible
and defines a cubic subfield K of L.

Since f(x) is irreducible of degree 6, it follows that Gal(f) is a transitive subgroup
of S that is also a subgroup of C; ¢S5 =~ S4 X C;, by Corollary 2.2. Among the 16
transitive subgroups of Sg, only 8 are subgroups of S4 X C,. Table 1 gives information
about these 8 groups: their transitive numbers (as given in [3]), their orders, descriptive
names and generators for (one representative of the conjugacy class of) each group.
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TABLE 2. One sample reciprocal sextic Polynomial in Q[x] for each possible Galois group.

T Name Polynomial

6T1 Cs O+ +1

6T2 Ss O+ 3 +4° + 32+ 1
6T3 Dg P +3°3 +1

6T4 Ay X +40° - -2 +4x+ 1
6T6 Ay X Cy O+ =3 -5 -3 +x+1
6T7 Sy O+t 523+ +1

6T8 S, x4 50t 420 + 57 + 1
6T11 Sy x Cy Ot +23+x2+1

We point out that 6T7 and 6T8 are isomorphic copies of S4 that are distinguished
by their parity; that is, 6T7 contains only even permutations while 6T8 does not; this is
reflected in the table by the respective superscripts of each group’s ‘Name’. Note that
each of these eight groups does appear as a Galois group over Q. See Table 2, which
gives one sample irreducible reciprocal sextic polynomial in Q[x] for each possible
Galois group.

We can determine properties of Gal(f) from properties of Gal(g), as our next
general result shows.

THEOREM 3.2. Let ¢(x) € F[x] be irreducible of degree 6 and p be a root of ¢. Suppose
that F(p) has a subfield M of degree 3 defined by y(x) € F|x]. Then:

(1) Disc(¢) is a perfect square in F if and only if Gal(¢) is either A4 or S};

(2) Disc(y) is a perfect square in F if and only if Gal(¢) is either Cg, Ag or Ag X Cy;

(3) Disc(¢) - Disc(y) is a perfect square in F if and only if Gal(¢) is either S3, A4
orS,.

PROOF. A standard result in Galois theory shows that Gal(¢) is a subgroup of Ag if and
only if Disc(¢) is a square in F. Of the eight possibilities, only A4 and S} are subgroups
of Ag, proving item (1).

Since y is a cubic polynomial, another standard result in Galois theory shows
Gal(y) ~ Cs if and only if Disc(y) is a perfect square. Under the Galois correspon-
dence, M corresponds to an index 3 subgroup H of Gal(¢) containing the stabiliser
of p. Let N be the normal core of H in Gal(¢); that is, the largest normal subgroup
of Gal(¢) contained in H. Therefore, Gal(y) is isomorphic to Gal(¢)/N. Using [11] to
perform group computations, we see that each of the eight possibilities has a unique
such subgroup H of index 3, up to conjugation. This means M/F is the unique cubic
subfield of F(p)/F, up to isomorphism. Further group computations show that in the
cases of Cg, A4 and Ay X C,, Gal(¢)/N 1is isomorphic to C3; in all other cases it is
isomorphic to S3, proving item (2).
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If both Disc(¢) and Disc(y) are perfect squares, then Disc(¢) - Disc(y) is a perfect
square. According to the previous paragraphs, there is only one group among the
eight where this occurs; namely, A4. For the remainder of the proof, we suppose
neither Disc(¢) nor Disc(y) is a perfect square. Thus, the polynomials x> — Disc(¢)
and x*> — Disc(y) define quadratic subfields of the splitting field of ¢(x). By the Galois
correspondence, F(4/Disc(¢)) corresponds to H; = Ag N Gal(¢). Similarly, if M’ is
the normal closure of y(x), then the subgroup fixing M’ is N. Thus, F(+/Disc(y))
corresponds to the unique subgroup H; of Gal(¢) of index 2 that contains N. It follows
that Disc(¢) - Disc(y) is a perfect square if and only if H; = H,. Among the four
remaining possible Galois groups, direct computation shows S3 and S have H, = H,.
The groups Dg and S4 X C, have H; # H,, proving item (3). O

Our next result is an immediate consequence of Theorem 3.2 and the fact that
Disc(f) = ((2a + ¢)*> — (2b + 2)?) - Disc(g)?.

COROLLARY 3.3. We have the following:

(1) Qa+c)*>—2b+2) is a perfect square in F if and only if Gal(f) is either A4
orSy;

(2) Disc(g) is a perfect square in F if and only if Gal(f) is either Cg, As or Ag X Ca;

(3) ((2a+ ¢)* = (2b +2)?) - Disc(g) is a perfect square in F if and only if Gal(f) is
either S3, Ay or §j.

Next, we introduce a degree 4 resolvent polynomial that is helpful in determining

Gal(f).
THEOREM 3.4. Let h(x) = x* + Ax®> + Bx> + Cx + D, where

e A=—4(a®> -2b-6);

e B=23a*—-4a*(3b + 5) + 8(ac + b> + 4b + 9));

o C = —4(a*(a®> - 6b —2) + 8a*(ac + b> + 5) + 16(ac — 2b* — b(ac + 2) — 4));
e D= (a*—4a*(b - 1) + 8(ac — 2b))*.

Then, h(x) is separable and has a linear factor if and only if Gal(f) is either Cg, S3
or Deg.

PROOF. Let {a =r,1/r,s,1/s,t,1/t} be the roots of f(x). The roots of h(x) are

{(r—1/r)+(s—1/s) = (t — 1/1)}, which can be verified by using the theory of ele-

mentary symmetric functions to express the coefficients of A(x) in terms of a, b and c.
If h(x) were not separable, then two roots would be equal. There are six cases:

1) ¢-1/n+@G-1/)+@t=-1/)=F-1/n+(s-1/s)—(-1/1);
2 -1/n+@G-1/)+@=-1/)=F-1/r)=(s=1/s)+ (- 1/1);
) r=1/nN+(=1/9)+0@=1/)=0=-1/r)=(s=1/s) = (= 1/1);
@ r=1/nN+@=1/9=-0=1/)=0F=1/r)=(s=1/s)+ (= 1/1);
&) r=1/N+(s=1/9)=-0=1/)=0=1/r)=(s=1/s) = (= 1/1);
©6) r-1/n-(G6-1/9+@-1/)=—-1/r)=(s=1/s) = (- 1/1).
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TABLE 3. Let f(x) =x®+ax® +bx* + ex® + bx> + ax+ 1 € F[x] be irreducible, g(x) = x> +ax® +
(b—3)x—2a+c and h(x) as defined in Theorem 3.4. The table lists whether Disc(f), Disc(g) and
Disc(f) - Disc(g) are perfect squares in F, and whether A(x) has a linear factor, according to Gal(f).

T Name  Disc(f) Disc(g) Disc(f)-Disc(g) Linear

1 Cs no yes no yes
2 S3 no no yes yes
3 Dy no no no yes
4 Ay yes yes yes no
6 Ay4xC, no yes no no
7 Sy yes no no no
8 S, no no yes no
11 Sy x G no no no no

We will show each case leads to a contradiction. Cases 2 and 5 imply s = 1/s and
Cases 1 and 6 imply ¢ = 1/¢; these contradict the fact that f(x) is irreducible and thus
separable. Case 4 implies st(s — 1) = —(s — t). Since f(x) is separable, this implies
st = —1. Thus, s = =1/t and 1/s = —t. Therefore, —a=r+ 1/r+s+1/s+t+ 1/t =
r + 1/r, which is rational. However, this contradicts Theorem 2.1, which shows r + 1/r
is not rational. Similarly, Case 3 implies st(s + ) = s+t If s+ # 0, then st = 1;
which contradicts the separability of f(x). If s = —z, then 1/s = —1/¢. We again reach
the contradiction —a = r + 1/r. Thus, h(x) is separable.

To prove the rest of the theorem, let G = S4 X C; and H = D¢ be the subgroups
of S¢ as given in Table 1. Then, a complete set of a right coset representatives
of G/H is {id, (34),(56),(34)(56)}. Further, the only block system of G is R =
{{1,2},{3,4},{5, 6}}. We identify r as root 1, 1/r as root 2, s as root 3, 1/s as root 4, ¢
as root 5 and 1/t as root 6.

A multivariable function stabilised by H is T(xy, X2, X3, X4, X5,X6) = X| — X3 + X3 —
X4 + X5 — Xg; the action on T is via subscripts. We form the resolvent polynomial
corresponding to G, H and T (see [9]); this produces the polynomial A(x). By the
theory of resolvent polynomials, the factorisation of /(x) corresponds to the orbits of
Gal(f) acting on the cosets G/H. Direct computation on each possibility for Gal(f)
shows that in the cases of Cg, S3 and Dg, there is an orbit of length 1 and an orbit
of length 3. In the other five cases, there is a single orbit of length 4. This means A(x)
factors as a linear times a cubic polynomial in those three cases and remains irreducible
in the other five cases, proving the theorem. ]

We can now state our main result, which gives an elementary characterisation of
Gal(f). This is an immediate consequence of Corollary 3.3 and Theorem 3.4. For
convenience, Table 3 summarises this characterisation.

THEOREM 3.5. Let f(x) = x° + ax® + bx* + cx> + bx> + ax + 1 € F[x] be irreducible,
gx) = x> + ax? + (b — 3)x — 2a + ¢ and h(x) as defined in Theorem 3.4.
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TABLE 4. One-parameter families of reciprocal sextic polynomials with specified Galois group over Q.

T G Polynomials

1 GCs (212 =2t + 13)x0 + (=41 + 2)x° + (=212 + 2t + 19)x* + (8t — 4)x°> +
(=202 + 2t + 19)x% + (41 + 2)x + (21> = 2t + 13)

2 S (322 + D)x% + (1872 — 6)x° + (45¢% + 15)x* + (6072 — 20)x> +
(4572 + 15)x* + (1822 — 6)x + (32 + 1)

3  Dg (t = 16)x° + 61 + 15tx* + (20t + 32)x> + 1562 + 61x + (1 — 16)

4 Ag (2t = 3)x® — 18x° + (=21 + 3)x* — 28x% + (=21 + 3)x* — 18x + (2t — 3)

6 AsxCr, (E+32-Dx®+ (68 +682+6)x° + (158 =32 — 15x* +
(203 — 1272 + 20)x° + (1572 — 37> — 15)x% + (68 + 6> + 6)x +

B +32-1)
7 8 0+ (=2t = 12)x° — tx* + (41 — 40)x> — 12 + (=21 — 12)x + ¢
8 S (B + 2)x0 + (182 + 24)x> + (4582 + 78)x* + (601* + 48)x> +

(4572 + 78)x% + (1822 + 24)x + (32 + 2)
11 Sy xCy, (t+2)x%+ (6 +24)x° + (15¢ + 78)x* + (201 + 48)x> + (151 + 78)x> +
(614 24)x + (t +2)

(1) If Disc(f) is a perfect square in F, then Gal(f) is A4 if Disc(g) is a square and is
S otherwise.

(2) If Disc(f) is not a square and Disc(g) is a square, then Gal(f) is Cq if h(x) has a
linear factor and is A4 X C, otherwise.

(3) If Disc(f) and Disc(g) are not squares and Disc(f) - Disc(g) is a square, then
Gal(f) is S5 if h(x) has a linear factor and is S, otherwise.

(4) If none of Disc(f), Disc(g) and Disc(f) - Disc(g) is a square, then Gal(f) is D¢ if
h(x) has a linear factor and is S4 X C, otherwise.

EXAMPLE 3.6. As an example, we use Theorem 3.5 to compute the Galois group
of a family of sextic reciprocal polynomials. Take ¢ > —27/4 and suppose the polyno-
mial f(x) = x% +3x° + (t + 6)x* + (2t + 7)x> + (1 + 6)x* + 3x + 1 € Q[x] is irreducible.
Then, Disc(f) = —t*(4¢ + 27)3, which is not a square. We also have g(x) = x> + 3x% +
(t +3)x + (2t + 1). Then, Disc(g) = —t>(4t + 27), which is also not a square. However,
Disc(f) - Disc(g) is a square. Further, h(x) has x + 47 + 27 as a linear factor. By item
(3) of Theorem 3.5, Gal(f) is §3. Note, this also confirms item (3) of [6, Theorem 1].

As an application of Theorem 3.5, we give one-parameter families of reciprocal
sextics defined over Q for each possible Galois group.

THEOREM 3.7. The polynomials in Table 4 have the indicated Galois group over Q,
except for values of t that result in reducible polynomials.

Verifying each family of polynomials in Table 4 has the indicated Galois group
is a straightforward computation using Theorem 3.5 and a computer algebra system.
For example, we can consider the polynomial in the first row of Table 4:f(x) =

https://doi.org/10.1017/5S0004972723000163 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972723000163

44

C. Awtrey and A. Lee [8]

22 =2t + 13)x5 + (=41 +2)x° + (=262 + 2t + 19)x* + (81 — 4)x> + (=212 + 21 + 19)x% +
(=4t + 2)x + (21> = 2t + 13). Then, Disc(f) = —(t> — t — 1)*(#> — t + 7)*, which is not
a square. We also have g(x) = (21> — 2t + 13)x + (=4t + 2)x* + (=8> + 8t — 20)x +
(16¢ — 8). Then, Disc(g) = (> — t — 1)>(> — t + 7)?, which is a square. Furthermore,
h(x) has (t* — 21 + 1477 — 13t + 169/4)x + 4t* — 83 + 361> — 32t + 64 as a linear
factor. This proves Gal(f) = Cg, as claimed.
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