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Abstract

Let F be a subfield of the complex numbers and f (x) = x6 + ax5 + bx4 + cx3 + bx2 + ax + 1 ∈ F[x] an
irreducible polynomial. We give an elementary characterisation of the Galois group of f (x) as a transitive
subgroup of S6. The method involves determining whether three expressions involving a, b and c are perfect
squares in F and whether a related quartic polynomial has a linear factor. As an application, we produce
one-parameter families of reciprocal sextic polynomials with a specified Galois group.
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1. Introduction

Let F be a subfield of the complex numbers and f (x) ∈ F[x] an irreducible polynomial
of degree n. Identifying the Galois group, Gal( f ), of f (x) as a transitive subgroup of Sn
is a fundamental problem in computational algebra. In general, this is a difficult task;
most modern approaches are based on [9, 10]. However, when f (x) has a special form,
the computation can be more straightforward.

For example, Galois groups of even quartic polynomials (x4 + ax2 + b), even sextic
polynomials (x6 + ax4 + bx2 + c) and doubly even octic polynomials (x8 + ax4 + b)
have elementary characterisations (see for example [1, 2]). In each case, the charac-
terisation leverages information about the index-2 subfield of the field defined by the
polynomial.

A natural extension of this technique is to irreducible reciprocal polynomials,
which are polynomials satisfying f (x) = xn · f (1/x), since the field extension defined
by such a polynomial also has an index-2 subfield (see Theorem 2.1). Note that if
f (x) =

∑n
i=0 fixi is a reciprocal polynomial, then fi = fn−i; that is, the sequence of

coefficients { fi} forms a palindrome.
In this setting, some similar characterisations of Gal( f ) are known. The following

classical result of Dickson determines the Galois group of an irreducible reciprocal
quartic polynomial by testing the squareness of two elements of F (see [4]). In the
theorem, as in the rest of the paper, we will use the following standard convention for
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describing groups: Cn denotes the cyclic group of order n, Dn the dihedral group of
order 2n, and An and Sn the alternating and symmetric groups on n letters, respectively.
We also use × to denote a direct product, � a semidirect product and � a wreath product.

THEOREM 1.1 (Dickson). Let x4 + ax3 + bx2 + ax + 1 ∈ F[x] be irreducible. Then
Gal( f ) is isomorphic to:

• C2 × C2 if and only if (b + 2)2 − 4a2 is a square in F;
• C4 if and only if ((b + 2)2 − 4a2)(a2 − 4b + 8) is a square in F;
• D4 if and only if neither (b + 2)2 − 4a2 nor ((b + 2)2 − 4a2)(a2 − 4b + 8) is a square

in F.

Since reciprocal polynomials of odd degree are reducible (they have −1 as a root),
the next logical case to consider is Galois groups of irreducible reciprocal sextic
polynomials; that is, those of the form x6 + ax5 + bx4 + cx3 + bx2 + ax + 1 ∈ F[x]. The
purpose of this paper is to provide a similar characterisation, reflecting the spirit of
Theorem 1.1. In doing so, we will generalise the results in [6, 7], which verify that
certain families of irreducible reciprocal sextic polynomials with rational coefficients
have Galois group isomorphic to either S3, D6 or S4 × C2.

The remainder of the paper is organised as follows. In Section 2, we collect several
results concerning field extensions defined by reciprocal polynomials and their Galois
groups; these will be used to prove our main theorem in Section 3. Our main result,
Theorem 3.5, gives a characterisation of the Galois group of x6 + ax5 + bx4 + cx3 +

bx2 + ax + 1 that depends only on the squareness of three elements whose expressions
involve a, b and c, along with whether or not a related quartic polynomial has a linear
factor. As an application, we provide one-parameter families of reciprocal sextics for
each possible Galois group (see Theorem 3.7).

2. Preliminary results

In this section, we let f (x) ∈ F[x] be a monic irreducible reciprocal polynomial of
degree n = 2m, and we let L = F(α) where f (α) = 0. We collect results about L and
Gal( f ) that are used later in the paper.

The reader is referred to [8] for an elementary overview of several standard facts
about reciprocal polynomials. One such result shows there exists a polynomial g(x) of
degree m such that f (x) = xm · g(x + 1/x) (see [8, Proposition 2.0.16]). It turns out that
g(x) is the minimal polynomial of α + 1/α. This result is straightforward to establish
and shows L has an index-2 subfield. For convenience, we include a proof.

THEOREM 2.1. The minimal polynomial, g(x), of β = α + 1/α has degree m. Thus, L
has a subfield, K = F(β), of index 2.

PROOF. Let the roots of f (x) be {α = r1, 1/r1, . . . , rm, 1/rm}, and let g(x) be the
polynomial whose roots are {ri + 1/ri} for 1 ≤ i ≤ m. Thus, the degree of g(x) is m and
g(β) = 0. Let h(x) = xm · g(x + 1/x). It follows that f (x) = h(x) since both polynomials
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TABLE 1. Possible Galois groups of irreducible reciprocal sextic polynomials. Size gives the order of the
group.

T Name Size Generators

6T1 C6 6 (164253)
6T2 S3 6 (16)(25)(34), (145)(236)
6T3 D6 12 (36)(45), (135246)
6T4 A4 12 (154)(263), (34)(56)
6T6 A4 × C2 24 (34)(56), (164253)
6T7 S+4 24 (35)(46), (154)(263)
6T8 S−4 24 (154)(263), (12)(36)(45)
6T11 S4 × C2 48 (12)(3645), (146235)

are monic, are of the same degree and have the same roots. If g(x) were reducible, say
g(x) = k(x) · l(x), then this would imply f (x) is reducible since

f (x) = h(x) = xdeg(k)k(x + 1/x) · xdeg(l)l(x + 1/x).

However, this contradicts the irreducibility of f (x). Thus, g(x) is irreducible and is
therefore the minimal polynomial of β. �

Since subfields of L correspond to block systems of Gal( f ) (see [5, Section 1.6] for
more information about block systems), it follows that Gal( f ) can be embedded in a
suitable wreath product. In particular, the following is an immediate consequence of
Theorem 2.1 and [5, Theorem 2.6 A].

COROLLARY 2.2. We have Gal( f ) is a subgroup of C2 � Gal(g) � Cm
2 � Gal(g). Thus,

2m · m! is an upper bound for |Gal( f )|.

3. Galois groups of reciprocal sextics

For the rest of the paper, we let f (x) = x6 + ax5 + bx4 + cx3 + bx2 + ax + 1 ∈ F[x]
be an irreducible reciprocal polynomial, α a root of f (x) and L = F(α). Let g(x)
denote the minimal polynomial of α + 1/α. Thus, we have the following result as a
consequence of Theorem 2.1.

COROLLARY 3.1. The polynomial g(x) = x3 + ax2 + (b − 3)x − 2a + c is irreducible
and defines a cubic subfield K of L.

Since f (x) is irreducible of degree 6, it follows that Gal( f ) is a transitive subgroup
of S6 that is also a subgroup of C2 � S3 � S4 × C2, by Corollary 2.2. Among the 16
transitive subgroups of S6, only 8 are subgroups of S4 × C2. Table 1 gives information
about these 8 groups: their transitive numbers (as given in [3]), their orders, descriptive
names and generators for (one representative of the conjugacy class of) each group.
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TABLE 2. One sample reciprocal sextic Polynomial in Q[x] for each possible Galois group.

T Name Polynomial

6T1 C6 x6 + x3 + 1
6T2 S3 x6 + 3x4 + 4x3 + 3x2 + 1
6T3 D6 x6 + 3x3 + 1
6T4 A4 x6 + 4x5 − x4 − x2 + 4x + 1
6T6 A4 × C2 x6 + x5 − 3x4 − 5x3 − 3x2 + x + 1
6T7 S+4 x6 + x4 + 5x3 + x2 + 1
6T8 S−4 x6 + 5x4 + 2x3 + 5x2 + 1
6T11 S4 × C2 x6 + x4 + 2x3 + x2 + 1

We point out that 6T7 and 6T8 are isomorphic copies of S4 that are distinguished
by their parity; that is, 6T7 contains only even permutations while 6T8 does not; this is
reflected in the table by the respective superscripts of each group’s ‘Name’. Note that
each of these eight groups does appear as a Galois group over Q. See Table 2, which
gives one sample irreducible reciprocal sextic polynomial in Q[x] for each possible
Galois group.

We can determine properties of Gal( f ) from properties of Gal(g), as our next
general result shows.

THEOREM 3.2. Let φ(x) ∈ F[x] be irreducible of degree 6 and ρ be a root of φ. Suppose
that F(ρ) has a subfield M of degree 3 defined by γ(x) ∈ F[x]. Then:

(1) Disc(φ) is a perfect square in F if and only if Gal(φ) is either A4 or S+4 ;
(2) Disc(γ) is a perfect square in F if and only if Gal(φ) is either C6, A4 or A4 × C2;
(3) Disc(φ) · Disc(γ) is a perfect square in F if and only if Gal(φ) is either S3, A4

or S−4 .

PROOF. A standard result in Galois theory shows that Gal(φ) is a subgroup of A6 if and
only if Disc(φ) is a square in F. Of the eight possibilities, only A4 and S+4 are subgroups
of A6, proving item (1).

Since γ is a cubic polynomial, another standard result in Galois theory shows
Gal(γ) � C3 if and only if Disc(γ) is a perfect square. Under the Galois correspon-
dence, M corresponds to an index 3 subgroup H of Gal(φ) containing the stabiliser
of ρ. Let N be the normal core of H in Gal(φ); that is, the largest normal subgroup
of Gal(φ) contained in H. Therefore, Gal(γ) is isomorphic to Gal(φ)/N. Using [11] to
perform group computations, we see that each of the eight possibilities has a unique
such subgroup H of index 3, up to conjugation. This means M/F is the unique cubic
subfield of F(ρ)/F, up to isomorphism. Further group computations show that in the
cases of C6, A4 and A4 × C2, Gal(φ)/N is isomorphic to C3; in all other cases it is
isomorphic to S3, proving item (2).
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If both Disc(φ) and Disc(γ) are perfect squares, then Disc(φ) · Disc(γ) is a perfect
square. According to the previous paragraphs, there is only one group among the
eight where this occurs; namely, A4. For the remainder of the proof, we suppose
neither Disc(φ) nor Disc(γ) is a perfect square. Thus, the polynomials x2 − Disc(φ)
and x2 − Disc(γ) define quadratic subfields of the splitting field of φ(x). By the Galois
correspondence, F(

√
Disc(φ)) corresponds to H1 = A6 ∩ Gal(φ). Similarly, if M′ is

the normal closure of γ(x), then the subgroup fixing M′ is N. Thus, F(
√

Disc(γ))
corresponds to the unique subgroup H2 of Gal(φ) of index 2 that contains N. It follows
that Disc(φ) · Disc(γ) is a perfect square if and only if H1 = H2. Among the four
remaining possible Galois groups, direct computation shows S3 and S−4 have H1 = H2.
The groups D6 and S4 × C2 have H1 � H2, proving item (3). �

Our next result is an immediate consequence of Theorem 3.2 and the fact that
Disc( f ) = ((2a + c)2 − (2b + 2)2) · Disc(g)2.

COROLLARY 3.3. We have the following:

(1) (2a + c)2 − (2b + 2)2 is a perfect square in F if and only if Gal( f ) is either A4
or S+4 ;

(2) Disc(g) is a perfect square in F if and only if Gal( f ) is either C6, A4 or A4 × C2;
(3) ((2a + c)2 − (2b + 2)2) · Disc(g) is a perfect square in F if and only if Gal( f ) is

either S3, A4 or S−4 .

Next, we introduce a degree 4 resolvent polynomial that is helpful in determining
Gal( f ).

THEOREM 3.4. Let h(x) = x4 + Ax3 + Bx2 + Cx + D, where

• A = −4(a2 − 2b − 6);
• B = 2(3a4 − 4a2(3b + 5) + 8(ac + b2 + 4b + 9));
• C = −4(a4(a2 − 6b − 2) + 8a2(ac + b2 + 5) + 16(ac − 2b2 − b(ac + 2) − 4));
• D = (a4 − 4a2(b − 1) + 8(ac − 2b))2.

Then, h(x) is separable and has a linear factor if and only if Gal( f ) is either C6, S3
or D6.

PROOF. Let {α = r, 1/r, s, 1/s, t, 1/t} be the roots of f (x). The roots of h(x) are
{(r − 1/r) ± (s − 1/s) ± (t − 1/t)}, which can be verified by using the theory of ele-
mentary symmetric functions to express the coefficients of h(x) in terms of a, b and c.

If h(x) were not separable, then two roots would be equal. There are six cases:

(1) (r − 1/r) + (s − 1/s) + (t − 1/t) = (r − 1/r) + (s − 1/s) − (t − 1/t);
(2) (r − 1/r) + (s − 1/s) + (t − 1/t) = (r − 1/r) − (s − 1/s) + (t − 1/t);
(3) (r − 1/r) + (s − 1/s) + (t − 1/t) = (r − 1/r) − (s − 1/s) − (t − 1/t);
(4) (r − 1/r) + (s − 1/s) − (t − 1/t) = (r − 1/r) − (s − 1/s) + (t − 1/t);
(5) (r − 1/r) + (s − 1/s) − (t − 1/t) = (r − 1/r) − (s − 1/s) − (t − 1/t);
(6) (r − 1/r) − (s − 1/s) + (t − 1/t) = (r − 1/r) − (s − 1/s) − (t − 1/t).
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TABLE 3. Let f (x) = x6 + ax5 + bx4 + cx3 + bx2 + ax + 1 ∈ F[x] be irreducible, g(x) = x3 + ax2 +

(b − 3)x − 2a + c and h(x) as defined in Theorem 3.4. The table lists whether Disc( f ), Disc(g) and
Disc( f ) · Disc(g) are perfect squares in F, and whether h(x) has a linear factor, according to Gal( f ).

T Name Disc( f ) Disc(g) Disc( f )·Disc(g) Linear

1 C6 no yes no yes
2 S3 no no yes yes
3 D6 no no no yes
4 A4 yes yes yes no
6 A4 × C2 no yes no no
7 S+4 yes no no no
8 S−4 no no yes no
11 S4 × C2 no no no no

We will show each case leads to a contradiction. Cases 2 and 5 imply s = 1/s and
Cases 1 and 6 imply t = 1/t; these contradict the fact that f (x) is irreducible and thus
separable. Case 4 implies st(s − t) = −(s − t). Since f (x) is separable, this implies
st = −1. Thus, s = −1/t and 1/s = −t. Therefore, −a = r + 1/r + s + 1/s + t + 1/t =
r + 1/r, which is rational. However, this contradicts Theorem 2.1, which shows r + 1/r
is not rational. Similarly, Case 3 implies st(s + t) = s + t. If s + t � 0, then st = 1;
which contradicts the separability of f (x). If s = −t, then 1/s = −1/t. We again reach
the contradiction −a = r + 1/r. Thus, h(x) is separable.

To prove the rest of the theorem, let G = S4 × C2 and H = D6 be the subgroups
of S6 as given in Table 1. Then, a complete set of a right coset representatives
of G/H is {id, (34), (56), (34)(56)}. Further, the only block system of G is R =
{{1, 2}, {3, 4}, {5, 6}}. We identify r as root 1, 1/r as root 2, s as root 3, 1/s as root 4, t
as root 5 and 1/t as root 6.

A multivariable function stabilised by H is T(x1, x2, x3, x4, x5, x6) = x1 − x2 + x3 −
x4 + x5 − x6; the action on T is via subscripts. We form the resolvent polynomial
corresponding to G, H and T (see [9]); this produces the polynomial h(x). By the
theory of resolvent polynomials, the factorisation of h(x) corresponds to the orbits of
Gal( f ) acting on the cosets G/H. Direct computation on each possibility for Gal( f )
shows that in the cases of C6, S3 and D6, there is an orbit of length 1 and an orbit
of length 3. In the other five cases, there is a single orbit of length 4. This means h(x)
factors as a linear times a cubic polynomial in those three cases and remains irreducible
in the other five cases, proving the theorem. �

We can now state our main result, which gives an elementary characterisation of
Gal( f ). This is an immediate consequence of Corollary 3.3 and Theorem 3.4. For
convenience, Table 3 summarises this characterisation.

THEOREM 3.5. Let f (x) = x6 + ax5 + bx4 + cx3 + bx2 + ax + 1 ∈ F[x] be irreducible,
g(x) = x3 + ax2 + (b − 3)x − 2a + c and h(x) as defined in Theorem 3.4.
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TABLE 4. One-parameter families of reciprocal sextic polynomials with specified Galois group over Q.

T G Polynomials

1 C6 (2t2 − 2t + 13)x6 + (−4t + 2)x5 + (−2t2 + 2t + 19)x4 + (8t − 4)x3 +

(−2t2 + 2t + 19)x2 + (−4t + 2)x + (2t2 − 2t + 13)
2 S3 (3t2 + 1)x6 + (18t2 − 6)x5 + (45t2 + 15)x4 + (60t2 − 20)x3 +

(45t2 + 15)x2 + (18t2 − 6)x + (3t2 + 1)
3 D6 (t − 16)x6 + 6tx5 + 15tx4 + (20t + 32)x3 + 15tx2 + 6tx + (t − 16)
4 A4 (2t − 3)x6 − 18x5 + (−2t + 3)x4 − 28x3 + (−2t + 3)x2 − 18x + (2t − 3)
6 A4 × C2 (t3 + 3t2 − 1)x6 + (6t3 + 6t2 + 6)x5 + (15t3 − 3t2 − 15)x4 +

(20t3 − 12t2 + 20)x3 + (15t3 − 3t2 − 15)x2 + (6t3 + 6t2 + 6)x +
(t3 + 3t2 − 1)

7 S+4 tx6 + (−2t − 12)x5 − tx4 + (4t − 40)x3 − tx2 + (−2t − 12)x + t
8 S−4 (3t2 + 2)x6 + (18t2 + 24)x5 + (45t2 + 78)x4 + (60t2 + 48)x3 +

(45t2 + 78)x2 + (18t2 + 24)x + (3t2 + 2)
11 S4 × C2 (t + 2)x6 + (6t + 24)x5 + (15t + 78)x4 + (20t + 48)x3 + (15t + 78)x2 +

(6t + 24)x + (t + 2)

(1) If Disc( f ) is a perfect square in F, then Gal( f ) is A4 if Disc(g) is a square and is
S+4 otherwise.

(2) If Disc( f ) is not a square and Disc(g) is a square, then Gal( f ) is C6 if h(x) has a
linear factor and is A4 × C2 otherwise.

(3) If Disc( f ) and Disc(g) are not squares and Disc( f ) · Disc(g) is a square, then
Gal( f ) is S3 if h(x) has a linear factor and is S−4 otherwise.

(4) If none of Disc( f ), Disc(g) and Disc( f ) · Disc(g) is a square, then Gal( f ) is D6 if
h(x) has a linear factor and is S4 × C2 otherwise.

EXAMPLE 3.6. As an example, we use Theorem 3.5 to compute the Galois group
of a family of sextic reciprocal polynomials. Take t > −27/4 and suppose the polyno-
mial f (x) = x6 + 3x5 + (t + 6)x4 + (2t + 7)x3 + (t + 6)x2 + 3x + 1 ∈ Q[x] is irreducible.
Then, Disc( f ) = −t4(4t + 27)3, which is not a square. We also have g(x) = x3 + 3x2 +

(t + 3)x + (2t + 1). Then, Disc(g) = −t2(4t + 27), which is also not a square. However,
Disc( f ) · Disc(g) is a square. Further, h(x) has x + 4t + 27 as a linear factor. By item
(3) of Theorem 3.5, Gal( f ) is S3. Note, this also confirms item (3) of [6, Theorem 1].

As an application of Theorem 3.5, we give one-parameter families of reciprocal
sextics defined over Q for each possible Galois group.

THEOREM 3.7. The polynomials in Table 4 have the indicated Galois group over Q,
except for values of t that result in reducible polynomials.

Verifying each family of polynomials in Table 4 has the indicated Galois group
is a straightforward computation using Theorem 3.5 and a computer algebra system.
For example, we can consider the polynomial in the first row of Table 4: f (x) =
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(2t2− 2t +13)x6 + (−4t +2)x5 + (−2t2+2t + 19)x4 + (8t − 4)x3 + (−2t2 + 2t + 19)x2 +

(−4t + 2)x + (2t2 − 2t + 13). Then, Disc( f ) = −(t2 − t − 1)4(t2 − t + 7)4, which is not
a square. We also have g(x) = (2t2 − 2t + 13)x3 + (−4t + 2)x2 + (−8t2 + 8t − 20)x +
(16t − 8). Then, Disc(g) = (t2 − t − 1)2(t2 − t + 7)2, which is a square. Furthermore,
h(x) has (t4 − 2t3 + 14t2 − 13t + 169/4)x + 4t4 − 8t3 + 36t2 − 32t + 64 as a linear
factor. This proves Gal( f ) = C6, as claimed.
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