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Recent studies suggest that sand can serve as a vehicle for exposure of humans to pathogens at beach sites, resulting in
increased health risks. Sampling for microorganisms in sand should therefore be considered for inclusion in regulatory pro-
grammes aimed at protecting recreational beach users from infectious disease. Here, we review the literature on pathogen
levels in beach sand, and their potential for affecting human health. In an effort to provide specific recommendations for
sand sampling programmes, we outline published guidelines for beach monitoring programmes, which are currently
focused exclusively on measuring microbial levels in water. We also provide background on spatial distribution and temporal
characteristics of microbes in sand, as these factors influence sampling programmes. First steps toward establishing a sand
sampling programme include identifying appropriate beach sites and use of initial sanitary assessments to refine site selection.
A tiered approach is recommended for monitoring. This approach would include the analysis of samples from many sites for
faecal indicator organisms and other conventional analytes, while testing for specific pathogens and unconventional indica-
tors is reserved for high-risk sites. Given the diversity of microbes found in sand, studies are urgently needed to identify the
most significant aetiological agent of disease and to relate microbial measurements in sand to human health risk.
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I N T R O D U C T I O N

Transmission of infectious diseases in terrestrial beach envir-
onments can occur via direct exposure to microbes found in
sand or through the flux of microbes from water to sand
within the swash or intertidal zone. Exposure to pathogens
can include routes such as dermal contact, contact with eyes
and ears, inhalation and ingestion. Recent studies suggest
that direct exposure to beach sands is a risk factor for infec-
tious disease, particularly in children. An epidemiological
study found that gastrointestinal (GI) illness in beach users
was associated with exposure to water and intertidal sand
(Bonilla et al., 2007; Pinto et al., 2012a, b; Sabino et al.,
2014a). A separate epidemiological study (Heaney et al.,
2009) found that digging in the sand was positively associated
with GI illness and was associated with levels of faecal indica-
tor organisms (FIO), enterococci (Heaney et al., 2012). While
correlations between beach sand exposure and infectious
disease exist, the specific causative mechanisms of infection
are yet to be shown including identification of the aetiological
agent.

In addition to direct exposure, sand can also serve as a
vehicle for transferring pathogenic microbes to and from the
adjacent water. Studies on southern Lake Michigan found
that densities of Escherichia coli were highest in core
samples taken from foreshore sands, often by several logs,
but rapidly decreased from that maximum both landwards
and lakewards (Whitman & Nevers, 2003; Kinzelman et al.,
2004; Whitman et al., 2006a). Studies at marine beaches in
Florida found that the intertidal zone (Figure 1), in particular
the upper fringe of this zone, was a hot spot for the accumu-
lation of microbes (Shibata et al., 2004; Wright et al., 2011).
These microbes can be mobilized from this reservoir by
mechanisms such as wave action (Phillips et al., 2014), pore
water transport (Phillips et al., 2011b), and then impact adja-
cent water quality (Phillips et al., 2011a). Microbes may also
be re-deposited in sand by incoming current and waves (Ge
et al., 2010). Maximal FIO levels in both marine and fresh-
water beaches generally occur just behind the highest wave
up-rush along the beach. Of particular significance is that
the foreshore or intertidal zones are areas where beach goers
congregate, and where children tend to play with sand.
Thus, the swash zone and foreshore is a dynamic area of the
shoreline in terms of microbe accumulation and potential
exposures. It is also a zone where the interactions between
the water and sand are strongest allowing for an interchange
of microbes to and from this zone.

To evaluate the current state of knowledge and most press-
ing research needs in the area of beach sand microbiology, a
panel session was convened as part of the TEMPH2014
(Trends in Environmental Microbiology and Public Health,
2014) conference held in Lisbon, Portugal during September
2014. The purpose of the panel was to discuss the potential
inclusion of sand quality assessments in monitoring pro-
grammes for recreational beaches. The interdisciplinary
group of participants held particular expertise in one of two

primary categories, recreational beach water quality and
environmental mycology. The ideas presented in this article
provide an interesting meld of concepts that would benefit
beach sand monitoring programmes. Specifically, this work
begins by reviewing documents that provide recommenda-
tions for changes to existing recreational water quality moni-
toring guidelines (‘Call-to-Action’ documents), and expands
upon these documents by emphasizing the merits of including
measures of sand. The manuscript then focuses on describing
the spatial distribution and temporal characteristics of microbes
in sand, which is necessary for developing general recommen-
dations for sampling programmes. Recommendations for sam-
pling programmes begin by identifying appropriate beach sites
and inclusion of beach sanitary assessments. Strategies for sam-
pling and analysis follow, including an emphasis on recom-
mending which microbes to measure and on advances in
microbe measurement techniques. We conclude with an iden-
tification of research needs and a call for the inclusion of micro-
bial monitoring in sand as an integral part of routine beach
health assessments.

O V E R V I E W O F ‘ C A L L - T O - A C T I O N ’
D O C U M E N T S

Microbial contamination in recreational waters is monitored
through measures of FIOs, including ‘generic’ (non-
pathogenic) E. coli and enterococci (EU, 1976, 2006; USEPA,
1986). The enterococci are a group of bacterial species belong-
ing to the genus Enterococcus. FIOs are seldom in themselves
pathogenic, but since they are found in faeces of both human
and animals they are useful indicators for faecal contamin-
ation of water. The ubiquitous distribution of FIOs in faeces
stands in contrast to the relatively infrequent occurrence of
pathogens, whose detection is complicated by their great
diversity. Reliance on FIOs for water quality assessment is
thus a matter of practicality, as a set of general targets that
are highly concentrated and widely distributed in faeces pro-
vides an economical metric, while testing large volumes of
water for innumerable pathogens is impractical for
monitoring.

The sole reliance on FIO levels in water as a mechanism for
classifying recreational waters was challenged by the
Annapolis Protocol, a document prepared for the World
Health Organization and authored by many of the acknowl-
edged world experts in the field (WHO, 1999), well over a
decade ago. The Annapolis Protocol first identified the value
of a comprehensive sanitary inspection of recreational
waters to identify all sources of potential pathogens, a
concept further developed over the past decade (Boehm
et al., 2009a; Gooch-Moore et al., 2011; Abdelzaher et al.,
2013). The Annapolis Protocol introduced the concept of a
risk-based approach, and acknowledged that common FIO
standards across all waters did not account for the unequal
probability of pathogen presence in faecal contamination
from different sources. In particular, it identified the probable
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reduced health risk when FIOs were primarily from non-
human sources. Many of the recommendations in the
Annapolis Protocol were incorporated into the World
Health Organization (WHO) guidelines for recreational
waters (WHO, 2003, 2009). Implicit in the WHO approach
is the notion that health risks are unacceptable when they
exceed a set FIO threshold level.

As understanding of the differential risk inherent in faeces
from different sources was accumulating, microbial source
tracking (MST) emerged as a discipline. The goal of MST is
to determine the host animals responsible for faecal contam-
ination of water. It is accomplished by analysis of
host-associated microorganisms (or host genes in the case of
mitochondrial DNA) in the faeces of humans and various
animals (reviewed in Stoeckel & Harwood, 2007; Harwood
et al., 2014). In 2005 the US Environmental Protection
Agency (EPA) produced a document that outlined the uses
of MST to aid in total maximum daily load (TMDL) and
risk assessment for recreational waters (USEPA, 2005). Since
that time, the ability to discriminate among different sources
of contamination in water has steadily improved, and MST
has been used to explore FIO sources in beach sand (Russell
et al., 2013).

The 2003 WHO report has an extensive review of the risk
from microbes in sand, but concluded that there was insuffi-
cient evidence to support the establishment of a guideline
value for indicator or pathogenic microorganisms in beach
sand. Neither the subsequent European Union (2006)
Bathing Water directive, nor the USEPA (2012) ‘NEEAR’ cri-
teria consider sand contamination, other than acknowledging
that it may be a source of FIOs in the adjacent water (EU,
2006; USEPA, 2012). Health Canada recreational water
quality guidelines indicate that testing of sand may be war-
ranted in circumstances such as support for sanitary surveys
or disease outbreak investigations, though stated that more

research was needed before guideline values for sand could
be established (Health Canada, 2012). Thus, no regulatory cri-
teria exist currently for microbial levels in sand.

M I C R O B I A L C H A R A C T E R I S T I C S O F
B E A C H S A N D

Microbes found in beach sand
Numerous studies have been conducted that document the
existence of pathogenic microbes in beach sands, providing
evidence for sand as a potential reservoir for aetiological
agents of disease (Whitman et al., 2014; Sabino et al.,
2014a). The pathogenic organisms found in sand come from
many groups, including bacteria, viruses, protozoa, helminths
(worms) and fungi. For example, pathogenic bacteria detected
in beach sands include Vibrio vulnificus (Abdelzaher et al.,
2010; Shah et al., 2011), Salmonella (Yamahara et al., 2012),
Campylobacter (Yamahara et al., 2012), Pseudomonas aerugi-
nosa (Esiobu et al., 2004) and Staphylococcus aureus including
methicillin resistant strains (Plano et al., 2013). Viruses found
in sand have included enterovirus by culture (Shah et al.,
2011). Protozoans have included Giardia spp. and
Cryptosporidium spp. in nearshore sands (Abdelzaher et al.,
2010). Nematode larvae and eggs have also been readily
detected in beach sands (Shah et al., 2011). Similarly, many
species of potentially pathogenic yeasts and fungi have been
found including Aspergillus sp., Chrysosporium sp.,
Fusarium sp., Scedosporium sp., Scytalidium sp.,
Scopulariopsis sp. (Sabino et al., 2011), Candida sp. (Shah
et al., 2011), Penicillium sp., Rhodotorula mucilaginosa
(Vogel et al., 2007), Cladosporium sp., Mucor sp. and
Stachybotrys sp. (Gonzales et al., 2000; Migahed, 2003;
Gomes et al., 2008; Bik et al., 2012). Fungi with propensity

Fig. 1. Zones at the interface between beach sand and water. The terminology differs between tidal marine systems and non-tidal freshwater systems. Mean surface
water elevations for marine systems tends to vary with tides. For freshwater systems, in particular within lakes, the mean surface water elevation tends to vary with
seiche. For river systems, mean surface water elevations vary with the seasonal elevation of the groundwater table and waves tend to run parallel to the beach as
opposed to the perpendicular direction observed in most marine and lake settings. (Image modified from Whitman et al., 2014).
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to infect skin and nails include Trichophyton sp. and
Microsporum sp. (Sabino et al., 2011). The presence of black
yeasts of the genera Aureobasidium and Exophiala, causing
allergies, subcutaneous phaeohyphomycoses and neurotropic
infections (de Hoog et al., 2009), have been reported once
(Efstratiou & Velegraki, 2009), probably reflecting their slow
growth and consequential difficulty of detection.

Spatial distribution and temporal
characteristics
The spatial and temporal distribution of FIOs and fungi is
highly variable in sand over distances as small as a few centi-
metres (WHO, 2003; Bonilla et al., 2007; Whitman et al.,
2006b). The heterogeneity at this scale may be due to
limited transport and mixing of microbes in sand such that
once the sand is inoculated under conditions suitable for
growth, microbial distribution becomes very patchy.
Extreme patchiness can be due to discrete inputs from dog
droppings, seabirds and onshore drift, followed by growth.
Different zones of the beach may be more or less conducive
to microbe growth. Research suggests that the swash zone,
and in particular the area just above the maximum up-rush,
may also be conducive for regrowth of FIOs through distinct
wetting and drying actions and unique characteristics afforded
by wrack, which is defined to include seaweed, algae,
Sargassum, kelp, Cladophora, macrophytes and other
vegetation-like accumulations (Alm et al., 2003; Whitman
et al., 2003; Olapade et al., 2006; Ishii et al., 2007; Yamahara
et al., 2009). Although sand moisture content of approximate-
ly 8% is sufficient to permit the survival of bacteria, yeasts and
nematodes (Whitman et al., 2014), there is a lack of consist-
ency in the literature over the distribution of organisms in
sand and their relation to moisture content. Generally, a
greater density of FIOs in wet foreshore sand has been
observed compared with either submerged, backshore, sand
at depth, or dry sand (Whitman et al., 2014). Conversely,
studies at a Florida marine beach found higher concentrations
of E. coli and enterococci in supratidal sand (above the high
water mark) than in intertidal sand (Abdelzaher et al., 2010).

The accumulation of wrack in the swash zone also serves to
maintain FIO populations by serving as a source of nutrients
(Byappanahalli et al., 2003; Imamura et al., 2011), providing
protection from UV light (Feng et al., 2013), and regulating
the temperature and moisture conditions in sands located
immediately below them. Studies have shown that E. coli
and enterococci can survive for over 6 months in sun-dried
algal mats (Cladophora) stored at 48C, and the residual bac-
teria in the dried alga readily grew upon rehydration
(Whitman et al., 2003). Experimental work in the UK found
that FIOs are liable to persist, and possibly proliferate, in
supra-littoral wrack piles on a beach (Ward, 2009; Dunhill
et al., 2013). In addition to the unique hydrodynamics of
this area, which is conducive to the accumulation of wrack,
the swash zone also attracts shorebirds that feed and roost
in this area and may contribute to the microbial load
through their faeces (Lévesque et al., 1993; Fogarty et al.,
2003; Wright et al., 2009; Edge & Hill, 2007; Lu et al., 2011).
Bird faeces may contribute directly to beach water contamin-
ation, although microbial source tracking techniques have
found that beach sand (with bird-derived E. coli) can be a
more significant secondary source of contamination to

adjacent beach water than directly from the bird droppings
themselves (Edge & Hill, 2007).

The growth of microbes in sand is not limited to bacteria. It is
well recognized that fungi survive, and even grow in sand
(Anderson, 1979). This has been demonstrated using both
culture and microscopic analyses. For example, Khiyama &
Makemson (1973) reported that culturable fungi in 42
Mediterranean beaches can reach as high as �7 × 106 CFU g21

(Larrondo & Calvo, 1989). Fungi levels at beaches have been
observed to vary temporally with extreme events. In the volcanic
islands of Madeira and Porto Santo, an archipelago of Portugal,
pathogens in the beach sands have been associated with intense
rainfall events, flash floods and debris flow (Pereira et al., 2013;
Marzol et al., 2006a, b). In a study of 15 Portuguese Atlantic
Coast beaches, the highest number of viable fungal colony
forming units in sand was in supratidal sand, at around
500 CFU g21 (Brandão et al., 2002).

Antimicrobial resistance
Environmental reservoirs of both antibiotic resistant bacteria
(Francino, 2012; Wellington et al., 2013) and antifungal resist-
ant fungi have been emerging. The causes may be associated
with the release of antibiotic and antifungal residues, from
agriculture, animal feeding, aquaculture and also hospital was-
tewater (Jiang et al., 2011; Suzuki & Hoa, 2012; Diwan et al.,
2013). A variety of antibiotic resistant bacteria have been iso-
lated from sand and beach water, which can be in contact with
humans (Velonakis et al., 2014). Examples include MRSA
(methicillin-resistant Staphylococcus aureus) which has been
detected in correlation with the quality of water and sand,
showing a relationship with beach-user overcrowding, the
concentration of other microorganisms, the presence of
yeasts from human origin, as well as water temperature
(Papadakis et al., 1997; Plano et al., 2011; Roberts et al., 2013).

Mudryk et al. (2013) showed that Vibrio species inhabiting
sand were more resistant to antibiotics than those isolated
from seawater; in addition, more than 90% of planktonic
and benthic Vibrio-like bacteria could present multiple anti-
biotic resistance. Also multidrug resistant Enterococcus
faecium from beach sand were identified with similar features
to those from clinical human isolates (Heikens et al., 2008)
indicating that enterococci can be included in the monitoring
of sand, with the respective characterization of antibiotic
resistance and virulence factors (Pinto et al., 2012a, b).

Fungi can have an intrinsic antifungal resistance to certain
antifungal substances (primary resistance) but initially suscep-
tible microorganisms can also develop resistance (secondary
resistance). In the first case, we have examples such as
Candida krusei, resistant to fluconazole (Orozco et al., 1998)
or specific Fusarium species (Carneiro et al., 2011), resistant
to the majority of antifungals used in clinical practice
(Alastruey-Izquierdo et al., 2008). These species have coded
in their genome molecular mechanisms that enable them to
survive in presence of those antifungals. Candida spp. and
Fusarium spp. are frequently found in sand samples and are
considered as parameters to evaluate the microbiological
quality of a given sample (Sabino et al., 2011). Nevertheless,
the number of fungi showing antifungal resistance has been
rising over the years. Aspergillus is one of the major fungal
threats showing high rates of resistance to azoles, especially
in Europe (Sabino et al., 2011) with the environment
serving as one of the possible sources of resistant strains
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(Snelders et al., 2008; Verweij et al., 2009; Mortensen et al.,
2010; Chowdhary et al., 2013). In a recent study (Sabino
et al., 2014b), the cryptic species of A. fumigatus, A. lentulus
and Neosartorya pseudofischeri were detected in samples
from beaches. These species have been reported to be resistant
in vitro to the azole antifungals (Balajee et al., 2005; Yaguchi
et al., 2007; Alcazar-Fuoli et al., 2008).

The rapid increase of antibiotic and antifungal resistance
compromises the treatment of several bacterial (ECDC,
2013; WHO, 2014) and fungal infections (CDC, 2015).
Antibiotic and antifungal resistance is considered a serious
threat to human health because of the limited treatments
available resulting in greater costs (Finley et al., 2013) and
increased morbidity and mortality (Ashbolt et al., 2013;
World Health Organization, 2014). MRSA is particularly
notorious among the antibiotic resistant bacteria as it causes
life-threatening skin ailments that are difficult to treat.
Escherichia coli, although a natural inhabitant of the human
intestine, has several pathogenic forms causing extreme
gastrointestinal infection, some of which exhibit cephalo-
sporin resistance (de Kraker et al., 2011). Antibiotic resistant
bacteria are found in bathing waters and studies have shown
that risks are related to the type of water activity (Leonard
et al., 2015). Regarding fungi, invasive Candida infections
are the fourth leading cause of hospital-acquired bloodstream
infections, and they are associated with a high mortality
(.40%) (Sipsas et al., 2009). Candida and Aspergillus
species cause a majority of serious infections in non-HIV
patients. Because of the high risk of fungal infections in
immunocompromised individuals, antifungal prophylaxis is
often used to treat these patients. However, the expanding
use of antifungal drugs has been associated with increasing
incidence of antifungal drug resistance resulting from inher-
ently less sensitive species and/or acquisition of drug
class-specific resistance mechanisms (Pfaller et al., 2011).
Most alarming in recent years, resistant strains of certain
Candida or Aspergillus species have emerged that are resistant
to azoles, especially due to antifungal prophylaxis.
Nevertheless, in Aspergillus, and considering the molecular
mechanisms underlying their high rates of resistance to
azoles, especially in Europe (Chowdhary et al., 2013) (TR34/
L98H and TR46/Y121F/T289A mutations of the CYP51A
gene), it was hypothesized that one of the possible sources
of resistant strains is the environment (Snelders et al., 2008;
Verweij et al., 2009; Mortensen et al., 2010; Chowdhary
et al., 2013).

R E C O M M E N D A T I O N S F O R S A N D
M O N I T O R I N G P R O G R A M M E S

Criteria for selecting designated recreational
beaches
The European Union under the 1976 directive has a specific
two-part definition for bathing waters. It defines bathing
waters as areas where bathing is explicitly authorized by the
competent authorities of each member State, or where bathing
is not prohibited and is traditionally practiced by a large
number of bathers; The second criteria means that the public
largely self select what will become a bathing area and it is
then up to the authorities to ensure suitable microbial quality.

For purposes of this review, we consider a recreational
beach to serve as a bathing water. We also consider a recre-
ational beach to be a designated shore and water complex
largely used for recreation. Waters may be marine or fresh
water (fluvial or lentic), and sands may be calcareous, basaltic
or siliceous in origin. Indeed, some very well-known beaches
are made up of cobble or even bedrock, but here we restrict
our discussion to sands. Biologically, beaches like all shore-
lines are ecotonal, where the terrestrial and nearshore ecosys-
tems interact and overlap (Pennak, 1951). Here organisms
interact at many different trophic levels including the
microbes, which are found at the lowest levels. Little is
known about obligate or specific bacteria, fungi or viruses in
sand but we describe in this paper a diverse array of
common indicators or pathogenic species known to occur in
marine and freshwater sands.

Beach characteristics
At the local level, the beach itself is divided into zones
(Figure 1) largely influenced by hydrology: the swash –
where wave run-up and return occurs; intertidal – the hori-
zontal extent of tides; the berm – a raised sand ridge of
sand deposited by maximum wave run up; foreshore – area
under influence of waves and tides; and backshore – landward
side of the beach generally not affected by water except during
storms. The berm tends to have the highest concentration of
microbes due to filtering waves as they infiltrate the sand.
The berm may also be a significant source of bacteria to
bathing waters when waves or tides re-suspend stored material
and return it to the nearshore (Whitman et al., 2014). The back-
and foreshore may also have significant input from animals
especially seabirds. More research is needed on the transport
of bacteria or fungi to or from the beach via groundwater but
it is presumed that some microbes, especially the smaller
ones (,5 microns) (Solo-Gabriele et al., 1998), can pass
through shallow groundwater relatively easily. Boehm et al.
(2004) found that microbes could be potentially transported
to the surf zone through tidally driven exchange of ground-
water. de Sieyes et al. (2008) hypothesized that the transport
of nutrients via groundwater promotes the persistence and
population replication of bacteria within the surf zone.

Sanitary assessments and sand remediation
methods
A sanitary survey is the first step in evaluating pollution
sources of a beach. This requires that the beach be viewed
within the context of its beachshed. A ‘beachshed’ is ‘a
defined stretch of shoreline and the biogeochemical factors
that influence it’ (Whitman et al., 2014). The extent of the
beachshed and its potential influence on a beach should be
considered before conducting a sanitary survey, developing a
monitoring programme, estimating risk or conducting a
microbial source tracking exercise. This would include ground-
water, runoff, incoming streams, anthropogenic and natural
faecal input, surface water dynamics, offshore influences and
general water quality. A common mistake is to seek a single
cause of poor sand quality or to finalize a survey after discover-
ing obvious or superficial factors. Multiple sources of contam-
ination are illustrated by the 63rd Street Beach, Chicago
(Whitman et al., 2001). Investigation has shown that FIOs
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may be introduced into the foreshore from (1) direct defeca-
tion from birds, (2) accumulation of sand wave infiltration,
(3) shoreward drift from re-suspended bacteria, (4) growth
in stranded green algae Cladophora and (5) in situ growth of
bacteria in moist sand (Halliday & Gast, 2011; Whitman
et al., 2014). Human faecal sources should be given high prior-
ity because they not only pose the greatest health risk, but may
lend themselves to engineering and management solutions.

One of the obvious benefits of conducting a sanitary survey
is discovering the source or factors contributing to sand con-
tamination. Practical beach management and visitor education
are good first steps. An adequate number of animal-proof
rubbish receptacles will reduce disease-carrying wildlife, the
spread of spoiled, discarded food and waste, and the associated
vectors on the beach. Wrack management may help in minim-
izing the persistence of indicator microbes and some pathogens.
Removal of nearby air pollution sources (in the case of airborne
fungal spores) could help in the management of fungi in beach
sands. As mentioned above, humans are sources of pathogenic
microbes and limiting the number of people at a beach to
prevent overcrowding will also avoid excessive microbial con-
tributions within a congested environment (Brandão et al.,
2002). The number of beach visitors could possibly be con-
trolled by limiting access and, in some cases, through the avail-
ability of parking. Encouraging visitors to shower before and
after returning from the beach and hand washing before
eating may reduce illnesses. One study showed that even just
rinsing hands in the beach water greatly reduces bacterial
adhering on hands (Whitman et al., 2009). If birds contribute
to poor sand quality an assessment would be necessary to deter-
mine whether deterrence is in line with local ecosystem preser-
vation efforts. If so, there are techniques such as landscaping,
sand grooming, and even the use of dogs and other tactics
that can be used to deter birds. Nearby streams and margins
may also contain high bacteria levels and swimmers should
be encouraged avoid these areas. Often break-walls direct con-
taminants shoreward and managers may wish to have visitors
avoid these areas (Byappanahalli et al., 2015). Seepage or
runoff on to the beach might also increase contamination.
Thus, comprehensive sanitary surveys coupled with visitor edu-
cation, adaptive management, and well-designed monitoring,
will go far in providing safer enjoyment of recreational beaches.

In cases where a sanitary assessment and prevention is not
enough, remediation may be needed. Remediation technologies
include sand grooming (Kinzelman et al., 2003; Kinzelman &
McLellan, 2009), sand re-nourishment (Hernandez et al.,
2014) and treatment through chemical disinfectants and physical
sterilization. Iodine spraying is one of the options currently
employed in Portugal (Costa et al., 2009) but theoretically
other non-hazardous options exist such as sonication and high-
energy light bathing (such as UV and infra-red radiation, ozone).
As harmless for beach users as all these possibilities may be, the
downstream pollution cleanup procedures inevitably will act
both upon harmful contaminants and normal innocuous flora.
Care should be taken that these methods are used only in
extreme pollution events rather than as routine procedures.

General considerations for developing a
monitoring programme
Designing a sampling programme begins with several prelim-
inary questions: where should we sample, how do we sample,

and how often should we sample? Deciding where to monitor
can be difficult; experience shows that contaminants arising
from the water accumulate along the foreshore but substantial
contamination may be occurring from surrounding areas,
wildlife, pets and humans themselves higher on the beach. A
programme that encompasses areas where visitors might
encounter pathogens, ranging from backshore sand to
the swash zone, may be appropriate at many beaches.
Longitudinal transects along the beach at pre-selected inter-
vals are preferred from a statistical standpoint, but known
‘hotspots’ should not be excluded from these studies.

Achieving representative sampling at beaches is difficult
due to diverse inputs of microorganisms that create a hetero-
geneous community ‘landscape’. Sand is arguably a more
problematic matrix than water, as it is relatively less prone
to mixing than water. Sample replication is essential since
microbial distribution in sand is patchy. An alternative or
companion strategy to replication is to collect many individual
samples and mix them to create a composite sample, keeping
in mind that pseudo-replicate sampling of composite samples
should also be carried out to avoid placing undue weight
on data based on a very small fraction of the sample. For
example, Phillips et al. (2011a) collected 60 shallow core
samples (each 2.5 cm diameter and 2.5 cm deep) along
target transects. They combined these core samples, mixed
them thoroughly, and utilized an aliquot for analysis.

Temperature and irradiation of exposed sand can vastly
reduce levels of surface microbes. While deep within the
sand, communities change due to more negative redox poten-
tial and lack of oxygen. Core samples are essential in order to
provide an integrated survey of potential microbial pathogens.
Sampling depths to 20–30 cm are the most practical and pro-
tective for the casual beach visitor. Once collected samples
require extraction or elution prior to analysis (Boehm et al.,
2009b).

Decisions on the frequency of monitoring should be based
on the amount of beach use, susceptibility to contamination,
and also on cost. In temperate climates, beach use is very
limited during cold weather, and sampling programmes may
be minimized. It is known that sand microbial quality
changes much less rapidly than the frequent temporal vari-
ability observed in water (Boehm et al., 2002; Enns et al.,
2012). On the other hand, studies have shown correlations
between water and sand FIO content, especially at the fore-
shore (Whitman & Nevers, 2003; Phillips et al., 2011a, b).
Generally, any monitoring programme should account for tra-
deoffs between visitor risk, budget, effectiveness, and account-
ing for expected variations in targeted microbes. Beach sand
should be routinely sampled at least annually and whenever
there has been an event such as a sewage release, major
storm events or known seasonal events. Pre- and post-event
monitoring where large crowds are anticipated might be con-
sidered. High-risk beaches, such as those potentially impacted
by human sewage, require more frequent monitoring.

Sampling strategies based upon desired
outcomes and integrating traditional
approaches
Development of a monitoring programme for beach sand
requires first that the desired outcomes of such a programme
are clearly defined. An example of a two-part outcome is
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protecting public health while allowing maximal use of the
important resource represented by the beach. Another
outcome might be to identify the source of the contamination
so that mitigation of the contamination can occur. These out-
comes require different sample collection and analysis
approaches. For example, if public health is the main criteria,
measurements should focus on the primary aetiological agent
of disease or an indicator of the aetiological agent. Similarly if
the focus is to identify the source of bacterial contamination,
then MST should be the focus of sampling efforts. In most
cases the aetiological agents and sources are inter-related
and so monitoring programmes may be focused on identifying
both.

Other factors that contribute towards different sand mon-
itoring approaches include historical factors. When consider-
ing the two main categories of application, recreational water
quality monitoring vs. environmental mycology, the
approaches have been very different. In the USA, the
modern era of recreational water quality monitoring was
initiated by the amendment to the Federal Water Pollution
Control Act of 1948, the Clean Water Restoration Act of
1966. Recreational water quality monitoring using FIO has
been guided by a National Academy of Science initiative
(NAS, 1972) with its inclusion within regulatory language
by 1976 (EU, 1976; USEPA, 1976). The original purpose of
beach monitoring during the 1970s was to detect whether
the beach was impacted by sewage. This focus was initiated
during an era when sewage was disposed to coastal areas
with minimal treatment, resulting in direct impacts on local
beach water quality from sewage outfalls. In this case, the
concept of an indicator microbe, one found in human
sewage, made perfect logical sense as indicator microbes are
suited to track the aetiological agents of disease from human
sewage, especially if the contamination is nearby. However,
with improvements to sanitary infrastructures in most devel-
oped countries, direct impacts from human sewage have
become less significant and other sources of contamination
now make a larger contribution to overall beach water
quality. These other sources include faeces from animals,
wash-off of microbes from human bathers (Elmir et al.,
2007, 2009) and potential regrowth of indicator microbes in
beach sands. As a result, the recreational water quality
research community argues that the FIO concept is not
meeting its originally intended purpose, particularly when
the source of contamination is not human sewage. The scien-
tific community has widely acknowledged the need to expand
assessment to include additional measures of potential
disease-causing agents due to the recognition that there are
many other sources of microbes besides human sewage
(Fujioka et al., submitted). These additional measures can
include alternative indicators such as C. perfringens and
Bacteroidales which, unlike the traditional FIO, are unable
to multiply in the environment under aerobic conditions.

In contrast, applications in environmental mycology have
taken a much different approach. Environmental mycology is
generally based upon an underlying notion that fungi are ubi-
quitous and are derived from many different sources. As such,
studies focused on characterizing health threats from fungi in
the environment typically include analyses of many fungi,
usually as many as can practically be measured. This results
in very cumbersome and time-consuming analyses, which in
many cases are difficult to assess in terms of human health out-
comes; in particular due to the lack of dose response data

between fungal exposures and human health outcomes.
Ultimately, each individual has its exposure limit to fungi,
which is dependent in part upon immune status. As a result,
the environmental mycology community recognizes the need
to simplify its approach for assessing the potential for trans-
mission of infectious disease within beach settings. The
‘tiered’ approach described below represents a compromise
between the recreational water quality community and those
whose primary focus area is in environmental mycology.

A tiered approach for beach sand monitoring
programmes
The ‘first pass’ of most monitoring programmes is culturable
microbes. From the recreational monitoring community these
microbes are normally FIOs. But from the environmental
mycology perspective these may include total culturable
fungi. The methods for analysing culturable microbes are rela-
tively inexpensive, can be performed in laboratories with
minimal specialized equipment and expertise, and in many
cases have extensive historical use, providing context to new
measurements. However, enumerating traditional FIOs, in
particular, provides no information about contamination
source in sand or water (recently reviewed in Harwood
et al., 2014), and the dearth of sand-related epidemiology
studies leaves a substantial knowledge gap about human
health risks (Whitman et al., 2014).

In contrast to traditional regulatory approaches, the classic
approach in environmental mycology has been to measure all
fungi and FIO present in sand together with total counts of
viable colony-forming units, as described in Brandão et al.
(2002). More recently, however, environmental mycologists
have started to focus on measures of specific microorganisms,
more relevant in terms of public health (i.e. black moulds and
keratinophilic fungi) (Sabino et al., 2014a). This change is due
to the lengthy and expensive practice of identifying all possible
organisms. Thus, Environmental Mycology is gradually
migrating towards the concept of measuring representative
microbes or a fungal indicator microbe. As such the first
tiered approach for monitoring the microbiological quality
of water and/or beach sand should focus on measures of indi-
cator microbes. This is consistent with current regulatory
approaches used to assess recreational water for faecal con-
tamination and is also consistent with the more recent evolv-
ing approaches in environmental mycology. In the case of
fungi, the first tier analysis approach could include measures
of total culturable fungi.

A second-tier approach using source-specific testing
(microbial source tracking; MST) may be undertaken if infor-
mation on the source of faecal contamination or fungi is
required, either for mitigation or for risk assessment. Recent
studies have estimated very different human health risks
from faecal contamination originating from different host
animals (Soller et al., 2010, 2014) and so acceptable levels of
indictor microbes should consider the potential source of
the FIO. For fungi, species identification may help in identify-
ing sources. For example, some fungi are associated with
superficial infection, like the contagious Tinea corporis (ring-
worm). The Trichophyton and Microsporum genera include
species of human, animal or soil origin (Badillet, 1973).
Thus, identification of species may point to the contamination
source for fungi in particular.
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A third-tier approach would generally be most useful
where many people are likely to be exposed (e.g. a crowded
beach with human densities greater than 1 per square metre
of beach sand area), and where MST has indicated the likely
presence of high-risk faecal or fungal sources. The informa-
tion provided by MST could be used to target particular
pathogens that are known to be shed by the indicated
host types. It can also require a great number of separate
tests if several host types contribute to contamination.
Alternatively, one can use a microarray approach, where hun-
dreds of nucleic acid sequences representing FIOs, pathogens
and MST markers can be simultaneously queried (Weidhaas
et al., 2014). An issue with microarray is that sample sizes
are very small, so very efficient concentration methods that
do not result in interference with nucleic acid hybridization
are necessary, and these are still under development.

The second tier and third tier of analyses may be left for
reference laboratories, laboratories with the technical expert-
ise to analyse MST markers and pathogens from environmen-
tal samples, including capabilities for molecular analyses.
These reference laboratories should assess regional specifici-
ties of indicator microorganisms and support or validate
laboratories capable of basic analysis. For this level of refer-
ence, accreditation by ISO 17025 (ISO/IEC 17025, 2005) will
ensure the technical proficiency of a laboratory and technical
personnel. Inter-laboratory quality assessment schemes will
capacitate the laboratories at this level to the point where
they can validate first tier analytical approaches and provide
expertise for non-standardized analytical methods. In this
case, reproducibility and repeatability will ensure results inde-
pendent of laboratories and technicians.

What should be measured?
The rapid pace of technological advances in the environmen-
tal detection and quantification of microbial targets has
created what might be considered an embarrassment of
riches. It engenders questions such as, should we test for a rep-
resentative pathogen or two, or a broad suite of pathogens?
Does testing need to be quantitative, or do binary results
(plus/minus) (presence/absence) suffice? Should the focus be
on one microbial type, such as viruses, or should the group
of targets be broadened? Ideally, monitoring methods for
beach sand monitoring should be inexpensive, provide
instant, or at least same-day results, and be directly connected
with human health outcomes (Figure 2). The current reality of
monitoring methods is that there is no ready protocol that
leads precisely to such an elegant outcome. Instead,

compromise on one or more aspects of the ideal indicator is
necessary and for this reason a tiered approach is recom-
mended by the authors of this review as described above.

Over the past 60 years FIOs have proved a useful surrogate
for measuring pathogens. The FIOs most commonly used for
regulatory purposes are enterococci for marine waters (WHO,
2003) and E. coli for fresh water (USEPA, 2012). Other alter-
native indicator microbes that have been recommended
include Clostridium perfringens (Fujioka & Shizumura, 1985;
Roll & Fujioka, 1997; Boehm et al., 2009a), Bacteroidales
(Boehm et al., 2009a) and coliphage (Havelaar et al., 1993;
Luther & Fujioka, 2004; Boehm et al., 2009a). Although
FIOs are utilized extensively worldwide, their limitations
have been recognized (EU, 2006). Limitations include the
fact that commonly used FIOs are invariably bacterial
species, whereas the majority of the reported illnesses are
believed to be caused by viruses (particularly norovirus),
and analytical techniques suitable for routine use are poor at
distinguishing between human and animal sources of bacterial
FIOs. Data from the USA identified the following eight faecal
pathogens as dominating waterborne illness: norovirus, rota-
virus, adenovirus, Cryptosporidium spp., Giardia lamblia,
Campylobacter jejuni, Salmonella enterica and E. coli
O157:H7 (Mead et al., 1999; Vital et al., 2008).
Investigations at beaches in Miami, FL, USA support the
hypothesis that existing indicator microbes indirectly
monitor several pathogens through common factors, at least
in sand. However, for pathogens such as Cryptosporidium
spp., Giardia spp. and enterovirus, generalizations about the
predictive ability of indicator microbes must be treated with
caution owing to the sparseness of data.

Soller et al. (2010) concluded that in fresh water, enteric
viruses and Giardia appear to account for the vast majority
of the observed swimming-associated GI illnesses, and when
treated sewage effluent predominates, norovirus alone may
represent the primary concern. The pre-eminence of noro-
viruses is supported by work by Public Health England,
where norovirus dominated the identified cause of illness
from consuming sewage-contaminated shellfish (Figure 3).
Evaluating trends from 1991 through 2011, the aetiological
agent most frequently identified as the cause of an outbreak
was norovirus. This is particularly apparent for more recent
years where detection technologies have been capable to iden-
tify the aetiological agent responsible for the outbreaks (David
Lees, personal communication, CEFAS UK).

The European Union has sponsored an investigation
(Virobathe) into analytical methods for viruses for possible
incorporation into the 2020 revision of the European
Union’s (2006) Bathing Water Directive. The report of this
work concluded that whilst adenoviruses were a possible
control parameter, noroviruses were encountered too infre-
quently to be considered (EU, 2009; Wyer et al., 2012).
However the authors of Virobathe have since recommended
to the European Commission that a viral pathogen standard
should not be adopted on both analytical and public health
grounds. They recommend instead that future risk continues
to be managed through demonstrating connectivity to faecal
sources, rather than proving that a pathogen is being excreted
by the contributing population (Kay, 2015). Overall, because
of their link to gastrointestinal disease and/or detection in rec-
reational waters, viruses that should be considered when
evaluating potential aetiological agents in sand include noro-
virus, adenovirus, rotavirus, enterovirus and hepatitis.

Fig. 2. Conceptual triangle for ideal characteristics of an indicator organism
used for the first tier of screening sand quality at beaches.
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The main fungi pathogenic to man and other mammals are
found within the anamorphic (asexual reproductive phase)
group. These fungi are saprophytic and occasionally pathogenic,
and can be isolated from water, soil, animals and humans
(Gomes et al., 2008). The presence of certain ubiquitous
fungal genera, such as Alternaria, Acremonium, Aspergillus,
Candida, Chaetomium, Cladosporium, Fusarium, Mucor,
Penicillium, Phoma, Rhodotorula and Trichoderma can be clin-
ically important (Velonakis et al., 2014; Wang et al., 2014) due
to their involvement in human diseases (Dolenc-Voljč, 2005;
The Fungal Research Trust, 2011; Kaštelan et al., 2014).
Among these Aspergillus, Candida, Fusarium and dermato-
phytes like Microsporum and Trichophyton were identified as
representing the majority of fungal isolates from clinical
samples important for human health, and that these were
appropriate for inclusion in beach sand quality legislation
(Rees et al., 1998). These genera should be included in beach
sand quality legislation, as should allergenic airborne spore
releasing moulds to protect those with respiratory disorders
such as cystic fibrosis, asthma and reactive bronchitis. Beach
specific studies in Egypt suggest that Candida and
Scopulariopsis may be widespread (Migahed, 2003). Melanized
fungi, such as black yeasts from the family Herpotrichiellaceae
are also recognized as new emerging pathogens (de Hoog
et al., 2009). Fungi from genera Cladophialophora, Exophiala

and Fonsecaea are causative agents of chromoblastomycosis in
subtropic and tropic regions and since they have been detected
on wood, soil, plant material and in environments polluted with
oil or creosote, their presence should also be evaluated in sand
(Vicente et al., 2008), especially on inland beaches. Since they
are often detected in beach sand, species like F. pedrosoi, F.
monophora, C. bantiana and E. dermatitidis should be included
in future legislations of beach sand quality. Organisms of biosaf-
ety level 3 like Cladophialophora bantiana should also be con-
sidered. Figure 4 brings together data on fungi found in water
and sand environments and those in clinical experiments to
identify those most of concern in studies of recreational waters.

Technological advances in microbe
measurement techniques
Improving technology has provided several new, but relatively
expensive, methodologies for determining the safety of beach
sand, e.g. quantitative PCR for specific pathogens or
host-specific gene markers, or multi-target methods such as
microarray or next-generation nucleic acid sequencing.
However, it is important to note that molecular analysis will
only reveal the presence of microbial genetic material, which
does not always represent viable microbes. Culturable organ-
isms must be capable of replication in order to be detected, a
condition that is closer to an infective state that simply posses-
sing genetic material. An example of this discrepancy is the
2012 US Environmental Protection Agency criteria for recre-
ational water quality, which estimates 36 cases of gastroenteritis
per 1000 exposed individuals in waters containing a geometric
mean level of 35 culturable enterococci per 100 mL, but 470
‘cell equivalents’ per 100 mL by qPCR (USEPA, 2012).
Conversely, some researchers have reported that FIO can
enter a viable but non-culturable (VBNC) state in water from
which they may be infective (Heim et al., 2002; Lleò et al.,
2005; Boehm & Sassoubre, 2014), and these forms can be
detected by molecular methods. Thus although molecular
methods can detect specific microbes that are associated with
human health outcomes, what they detect is different from
culture-dependent methods, which adds to the complexity of
adopting new methods based upon knowledge gained from
older technologies. Few epidemiology studies have been con-
ducted to determine whether new methods to detect specific
pathogens are better assessments of human health outcomes
than the century-old FIO paradigm. So a knowledge void
exists that fosters indecision about which methods(s) of assess-
ment should be used. Although more information through epi-
demiology studies may be deemed better, economic constraints
become quite important to regulatory agencies and the citizens
who must ultimately pay for the testing.

Given the advent of new genomics approaches, measure-
ments of the entire microbial community represent a potential
new approach (see Application of Metagenomics to Assess
Microbial Communities in Water and Other Environmental
Matrices by Staley and Sadowsky in this issue). Many of the
microbes living in sand have not been cultured and may not
be culturable; thus a complete understanding of the microbial
ecology of sand communities has not been possible.
Furthermore, the lack of detection of unculturable and poten-
tially infectious microorganisms has confounded monitoring
efforts to protect public health. Consequently, metagenomic
and 16S-amplicon-based studies to characterize microbial

Fig. 3. Aetiology of bivalve shellfish associated infections as reported by Public
Health England. Data are unpublished. The upper image provides the
distribution of aetiological agents of disease for England and Wales Health
Protection Agency, UK as provided by Craig Baker-Austin from the Centre
for Environment, Fisheries and Aquaculture Science (CEFAS) Laboratory in
Weymouth. DSP is Diarrhetic Shellfish Poisoning. The lower image provides
the distribution of aetiological agents from 1991 through 2011 showing that
among the aetiological agents identified, the one responsible for the majority
of the outbreaks is norovirus. The data for the lower plot was provided by
David Lees, CEFAS, UK.
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communities in sand, water and sediment habitats will offer
great insight into the ecology of these systems (Lozupone &
Knight, 2007; Staley et al., 2015). In addition, characterization
of these communities will provide a context for the role and
relative abundance of potential pathogens, which has previous-
ly only been assessed using a relatively small number of
ephemeral molecular targets (Aw & Rose, 2012). While in its
infancy, this type of approach has been taken by Cui et al.
(2013) who used 454 sequencing to find backshore sands in
Hawaii had a more diverse community and contained different
populations than other beach zones. Piggot et al. (2012) found
that the Proteobacteria and Bacteroidetes dominate biofilm
communities in South Florida beach sand, with microbial com-
munities that vary by location within the tidal zones and in
relation to water activity. More recently, Halliday et al.
(2014) reported that sand at the high tide line, intertidal
sand and adjacent water samples contained different overall
bacterial communities, that there was some similarity in com-
munity composition between coastal water samples from two
distant sites, and there was dissimilarity between bacterial
communities from high tide and intertidal sands.

Recently, 16S rDNA amplicon analysis, using the Illumina
HiSeq and MiSeq platforms was used to examine microbial

communities in sands obtained from an estuarine beach and a
marine site in Tampa, FL; a freshwater lake in Saint Paul, MN;
and Lake Michigan, near Chicago, IL (Whitman et al., 2014).
Among all three sites, Proteobacteria, Bacteroidetes, Firmicutes
and Actinobacteria were the most abundant phyla, with families
at all sites including Rhodobacteraceae, Flavobacteriaceae,
Flammeovirgaceae and Campylobacteraceae. Sand from the
marine sites had greater richness and higher non-parametric
diversity indices than the other sites examined (Figure 5). More
recently a programme ‘sands of the world’ has been initiated
which utilizes, 16S amplicon sequencing and Illiumina HiSeq
to examine spatial and temporal diversity of bacterial as well as
fungal communities in beach sands collected from fresh (Great
Lakes) and salt water beaches around the world. More specifical-
ly, this project will characterize microbial diversity in sands from
four beaches along the Great Lakes as well as marine beaches on
both US coasts, the Gulf of Mexico, Hawaii, Japan and Korea.
This information will be useful to determine what environmental
factors control beach microbial communities and whether
sands harbour unique or similar bacteria, archeal and fungal
microbial communities that vary in some predictable manner.
In addition, these data may give us insight into which microbial
taxa are related to specific sand habitats.

Fig. 4. Presence of fungal genera in environmental and clinical studies. Blue circle includes fungal genera reported from seawater and ocean studies, orange circle
presents fungi isolated from sand. In red circle there are genera reported as causative agents for human disease. The intersection of the circles includes fungi,
isolated from two (seawater – beach sand, beach sand – clinical samples, clinical samples – seawater) or all three sampled sites (seawater – beach sand –
clinical samples).
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S C I E N T I F I C R E S E A R C H N E E D S

The research community recognizes that the traditional FIO
paradigm is limited. This paradigm has served the public
health community well for more than a century, especially
in areas directly impacted by sewage. In developed countries,
direct sewage impacts on beaches are the exception rather
than the rule. In beaches impacted by non-point source con-
tamination, the relationships between FIOs and human health
outcomes are not well understood; therefore it is unclear
whether continued monitoring for FIOs in these cases is rele-
vant. Regardless of the source of contamination, the incidence
of illness is higher for beach bathers relative to non-bathers
(Colford et al., 2007; Fleisher et al., 2010; Sinigalliano et al.,
2010) and also for beach users who play in the sand relative
to those who do not play in the sand (Heaney et al., 2012).
It is also recognized that sand can serve as a reservoir of patho-
genic microbes, including faecal pathogens of human or
animal source, as well as fungi, which are generally considered
to be associated with environmental sources. Thus, pathogens
may be present and transmitted in the beach environment,
even in the absence of sewage contamination. We recommend
research to establish a cause and effect relationship for infec-
tious disease contracted within beach environments. First and
foremost is the identification of the aetiological agent of
disease followed by establishing stronger links between envir-
onmental monitoring parameters and human health risk.
Specific recommendations include:

(1) Identification of the aetiological agent(s) of disease. A
better understanding is needed of the aetiological agents
responsible for the majority of disease attributed to recre-
ational water and sand contact. Identifying the aetiological
agent will provide a stronger mechanistic understanding
for disease transmission in beach settings. With this
understanding, effective control and monitoring pro-
grammes can be implemented. To narrow the list of
possible aetiological agents, public health data should be
examined. A preliminary assessment of reportable

diseases in the EU and USA (Table 1) suggest that signifi-
cant pathogens that have potential sand reservoirs include
GI pathogens Salmonella, Shigella, verotoxin-producing
E. coli, Campylobacter, Cryptosporidium, Cyclospora,
Vibrio, Giardia, hepatitis A and Listeria. Those associated
with sediment and water reservoirs include Yersinia,
Leptospira and Tularaemia. Although a list of reportable
diseases is available, low-level self-limiting diseases (e.g.
GI illness, mild skin infections and mild respiratory infec-
tions) are usually not reported and the aetiological agents
are typically not measured. Wheeler et al. (1999) found
that the incidence rate for mild gastroenteritis was under-
reported by a factor of 31. Thus numbers listed in Table 1
may significantly underestimate the incidence of report-
able diseases. Concerted efforts are needed to encourage
clinical practitioners to more often request an evaluation
of etiological agents of disease to better track them.
Because of unique clinical manifestations, the tracking
of fungal infections may be more easily accomplished as
opposed to GI infections.

(2) Quantitative microbial risk assessment (QMRA). QMRA
methods should be utilized to specifically estimate
public health risks from various pathogens (bacteria,
fungi, viruses, protozoa, helminths) in beach sand,
which can transmit diseases by various exposure routes
(contact, ingestion, inhalation). QMRA methods are gen-
erally less expensive and less time consuming than epi-
demiological studies; however, in some cases
relationships needed in calculating risks and disease
rates are not available (e.g. dose-response relationships
for some microbes). An assessment must be made as to
which pathogens in beach sand can and cannot be evalu-
ated by QMRA. Preliminary assessments (Shibata &
Solo-Gabriele, 2012) have identified the need for
dose-response estimates for fungi and helminths.
Moreover, to obtain a better estimate of skin-related ail-
ments, the impacts of wounds should be evaluated on
the dose-response of various aetiological agents known
to cause skin disease. In some cases, such as for helminths,

Fig. 5. Most abundant phyla found in beach sand at (A) freshwater, temperate beaches (MN and IL) and (B) marine, tropical beaches (FL). A total of 36 phyla were
identified by sequencing of the V6 hypervariable region of the 16S rDNA among all samples.
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larvae can penetrate the skin without requiring a wound
for entry.

(3) Epidemiological studies. Epidemiological studies measure
disease in the exposed population and are the method
of choice for establishing the link between human
health (GI illness, acute febrile respiratory illness, skin ail-
ments, ear and eye infections) and environmental factors.
Since this method is expensive, work intensive and time
consuming, it should be used at selected beach sites,
bearing in mind the slow onset of infections caused by
fungi and parasites. Epidemiologists should determine if
study designs can specifically measure pathogen disease
rate and measure exposure to the sand by three separate

routes (contact, ingestion, inhalation). Controlled cohort
or randomized trial studies – similar in aim to those
undertaken in water – are needed to better quantify
disease risk from exposure to sand.

(4) Evaluate alternatives to FIO for beach monitoring pro-
grammes. Although measurements of FIOs should not
be discontinued because many beaches are susceptible
to sewage contamination, their usefulness needs to be
reassessed. The most common FIOs (E. coli, enterococci)
fail to fulfil the following three scientifically based ideal
criteria or cellular properties of the indicator bacteria,
which are required to ensure that the numbers of FIO
will correspond to the numbers of sewage-borne

Table 1. Number of cases of reportable diseases and incidence rates in the EU and US. Data from ECDC (2011a, b, 2012, 2014a, b) and CDC (2013,
2014). Incidence rates based upon population estimates of 506–503 million and 309–314 million for the EU and US, respectively.

Disease Year European Union United States

Total no.
of cases

Incidence rate
(per 100,000
habitants)

Total no.
of cases

Incidence rate
(per 100,000
habitants)

Salmonellosis 2010 90,764 17.9 54,424 17.6
2011 88,577 17.5 51,887 16.7
2012 87,719 17.4 53,800 17.1

Shigellosis 2010 6839 1.35 14,786 4.79
2011 6655 1.32 13,352 4.30
2012 6643 1.32 15,283 4.86

VTEC infectiona 2010 3748 0.74 5476 1.77
2011 9661 1.91 6047 1.95
2012 5954 1.18 6463 2.06

Listeriosis 2010 1686 0.33 821 0.27
2011 1538 0.30 870 0.28
2012 1692 0.34 727 0.23

Legionellosis 2010 5854 1.16 3346 1.08
2011 4449 0.88 4202 1.35
2012 5856 1.16 3688 1.17

Vibriosis, non-cholera 2010 – – 846 0.27
2011 – – 832 0.27
2012 – – 1111 0.35

Campylobacteriosis 2010 218,957 43.28 – –
2011 227,803 45.02 – –
2012 218,153 43.37 – –

Yersiniosis 2010 6614 1.31 – –
2011 6810 1.35 – –
2012 6110 1.21 – –

Leptospirosis 2010 822 0.16 – –
2011 685 0.14 – –
2012 778 0.15 – –

Tularaemia 2010 888 0.18 124 0.04
2011 755 0.15 166 0.05
2012 1003 0.20 149 0.05

Cryptosporidiosis 2010 822 0.16 8944 2.90
2011 685 0.14 9250 2.98
2012 778 0.15 7956 2.53

Cyclosporiasis 2010 – – 179 0.06
2011 – – 151 0.05
2012 – – 123 0.04

Giardiasis 2010 17,130 3.39 19,811 6.42
2011 16,475 3.26 16,747 5.39
2012 16,424 3.27 15,178 4.83

Hepatitis A 2010 13,471 2.66 1670 0.54
2011 12,706 2.51 1398 0.45
2012 13,156 2.62 1562 0.50

aVTEC, verotoxin-producing Escherichia coli, the Shigella-like toxin (includes toxin producing O157). Also known as shiga toxin producing E. coli
(STEC).
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pathogens in the water samples tested (Bonde, 1966;
Yates, 2007): (a) The indicator should be consistently
and exclusively associated with a source of human patho-
gens (e.g. human faeces/sewage); (b) FIO should not be
able to multiply under environmental conditions
because they would no longer track some sewage-borne
pathogens (viruses, protozoa), which presumably do not
multiply in the environment; (c) their resistance or sur-
vival characteristics to environmental conditions and to
wastewater treatment processes should be similar to that
of pathogens. Without these cellular characteristics and
multiplication in human intestinal sources, the FIO
would not track pathogens and subsequently human
health. Research is needed to evaluate the reliability and
feasibility of monitoring sand for alternative faecal indica-
tors that meet the above three ideal criteria and thus
appropriately track pathogens. Since noroviruses are one
of the more likely aetiological agents for water-borne
transmission of diseases during recreational uses of
water, there is a pressing need to develop appropriate
viral indicator(s). Viral indicators could include bacterio-
phages (bacterial viruses), which have similar size, chem-
ical composition and survival characteristics as human
enteric viruses. Phages, which are considered promising
indicators of human enteric viruses, are F-specific RNA
bacteriophages (Havelaar et al., 1993; Luther & Fujioka,
2004), phages of enterococci bacteria (Santiago-
Rodriguez et al., 2013) or phages of Bacteroides (Ebdon
et al., 2007; McMinn et al., 2014). In addition, it will be
important to evaluate beach sand for the alternative FIO
(C. perfringens) because it is a conservative indicator of
sewage contamination (Fujioka & Shizumura, 1985; Roll
& Fujioka, 1997). Because of their persistence as spores,
the use of C. perfringens may be most useful in areas
where currents dilute and remove existing contamination.

(5) Develop techniques for detection and quantification of
microbe levels. There is a need for improved cultivation
methods for detection of fungi, viruses, helminths, proto-
zoa and bacteria in environmental samples. There is a
need to determine if the method to detect a specific patho-
gen or class of pathogens is feasible and reliable for mon-
itoring purposes. If a pathogen detection method is not
feasible, then a feasible and reliable indicator monitoring
method should be implemented, which should provide
data on the quantity and infectivity for that pathogen or
that class of pathogens. In this regard, culturable
methods provide information on the theoretical infectiv-
ity of the pathogen and this kind of data can be used to
determine public health risks. Currently, many molecular
methods have been developed to rapidly and reliably
detect specific pathogens. The limitation of this method
is that it does not differentiate between dead and living
pathogens. As a result, public health assessments must
be based on some assumptions. The value of molecular
methods is that they can be used to confirm the presence
or absence of specific pathogens in beach sand, regardless
of their viability. Improved molecular techniques for the
detection of medically important fungi in sand are
needed. Also, the ecological role of fungi in coastal reser-
voirs such as beach sand is little understood (Migahed,
2003) and needs to be investigated. In securing better
protection, unnecessary complexity in monitoring is to
be avoided. Concern has been expressed on the cost

burden of monitoring – particularly in developing
regions – of even the existing criteria (WHO, 2003).
Against this must be balanced a better cost-benefit
balance of targeted improvements and the avoidance of
expenditure on ineffective measures undertaken simply
to meet flawed criteria (Kay et al., 1999).

(6) Pathogen levels and survival in sands. A more complete
picture of the types and levels of pathogens in sand is
needed, including a focus on evaluating their geographic,
spatial and temporal distribution. Multiple studies have
documented E. coli and enterococci reservoirs in sand,
but few studies have concurrently measured pathogens
to determine if E. coli and enterococci are indicative of
faecal pollution that carries pathogens, or uncoupled
from their original source through prolonged survival or
growth. The general consensus among researchers is
that pathogens do not multiply in the environment. So
prolonged survival or growth of E. coli and enterococci
would result in their presence in the absence of pathogens.
New research is needed that can provide tools to deter-
mine whether FIO are indicative of pathogens within
sand environments. The sources of faecal pollution will
largely determine the types of pathogens that may be
present in sand. Faecal pollution can be deposited directly
in sand through outfall runoff or wildlife, or may be deliv-
ered through contaminated water. Understanding how
faecal pollution and its co-occurring pathogens are modu-
lated in both the sand and water environment can guide
the types of indicators or pathogens chosen. Further,
gaining a more complete picture of the pathogens that
persist in the beach sand and the causative agents for
disease, will guide choices of indicators for monitoring
and improve assessments of risk.

(7) Develop tools to identify sources. Although considerable
advances have been made through MST, more work is
needed to identify and approve/agree methods that distin-
guish between human and non-human sources. There is a
need to understand differences in risk among these
sources. An improved understanding of the relative risk
of faecal contamination from human and other sources
is necessary to establish acceptable levels of FIOs in the
environment.

(8) Regulations are to reflect microbial sources. Through
application of the Annapolis Protocol the WHO has con-
firmed the need to consider all potential sources of patho-
gens, not only those from faecal point sources, an
approach endorsed by the Rotorua declaration of 2011
(IWA, 2011). The beach environment is an important
contributor to water, both through the retention, and pos-
sible regrowth, of FIOs within the sand matrix and beach
wrack, but also for the presence in sand of non-faecal
pathogens including fungi, protozoa and parasites.
Forthcoming developments of regulatory standards need
to reflect this evolving understanding of microbial
sources, the pathogens they contain, and the associated
health risks.

(9) Develop reliable sand collection methods designed to
recover average pathogen loads for a given beach site or
at a specific site where pathogens are suspected. Since
pathogen contamination at sandy beaches is expected to
be patchy, sand samples from multiple sites should be col-
lected and pooled to determine average concentrations of
pathogens in sandy areas. However, targeted sampling
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(within decaying algae, bird roosts, swash zone, public
showers, land-based discharges onto beach sand) should
also be conducted where pathogen contamination is sus-
pected. These contaminated patches of sand are good
sources for microbial source tracking analysis.

(10) Determine beach sand quality at freshwater vs. marine
beaches. Fresh and marine beach sands have been
reported to be contaminated by different sources of FIO
and pathogens (Whitman et al., 2014). For example, dif-
ferent species of algae have been reported to contaminate
shorelines of freshwater beaches (Byappanahalli et al.,
2003) vs. marine beaches (Imamura et al., 2011). In this
regard, decay of Cladophora in freshwater beaches has
been reported to allow for the growth of FIO and other
pathogenic bacteria (Ishii et al., 2006). Therefore, sand
at freshwater beaches and sand at marine beaches can
be expected to differ with respect to sources of contamin-
ation, types of pathogens and their survival characteristics.

(11) Assess beach sand quality based on contamination by
land- and air-based discharges, which are known to be
major factors that determine the sources as well as per-
sistence of microorganisms in beach sand. High rainfall
patterns cause land-based discharges such as streams
and storm drains and may include discharges from agri-
cultural and animal raising facilities. Even beaches with
low rainfall can receive substantial urban discharges
(storm drains) that include effluents from sewage and
industrial facilities as well as discharges of human
faeces directly into storm drains. The impacts of these
land-based discharges affect the quality of beach sand
differently at different beaches and must be assessed as
site-specific factors. Air transportation plays the same
role for sporulating microorganisms.

(12) Assess standardized methods to recover and disinfect FIO
and pathogens from silica-based vs. calcium carbonate-
based sands. Both silica sand and calcium carbonate
sand are chemically stable sand particles. However,
calcium carbonate sand is more reactive and dissolves
in dilute acid more readily compared with silica sand.
As a result, each may not react similarly to all reagents
and may have different influences on survival of micro-
organisms. There is a need to determine the impact of
silica-based and calcium carbonate-based sands on sur-
vival characteristics of microbes, on the use of reagents
to recover microbes from sand and in the use of chemical
reagents to disinfect these two types of beach sand. As a
corollary to disinfection, efforts are needed to evaluate
the impacts of sand disinfection on the microbial ecosys-
tems and at upper trophic levels.

S U M M A R Y A N D C O N C L U S I O N S

There is compelling scientific evidence that beaches, through
their sands, are a significant contributor to the pathogen
load to which beach users are exposed. Many beach epidemio-
logical studies have focused on the impacts of bathing. At
beaches that are not impacted by sewage effluent, the source
of pathogens originates from the local beach site itself and
includes human visitors at the beach, animals, local runoff
and the release of microbes from sand. The microbes released
from sand can include native microbes (autochthonous) or
those that have been deposited from outside sources

(allochthonous). Studies have identified the presence of patho-
genic microbes in beach sand and have identified factors other
than point source pollution that contribute to their presence
(e.g. moisture, wrack, wildlife, domestic animals, beach
morphology, currents). More recent epidemiological studies
have shown that children who play in sand are subject to
higher rates of illness relative to those who do not play in
the sand. Thus beach sand can serve as a vehicle for disease
transmission, either through direct sand contact containing
microbes or indirectly through contact with water containing
microbes washed off from sand. Given the ability of sand to
harbour microbes, we recommend the inclusion of sand mea-
surements in all beach monitoring programmes.

We provide a series of recommendations for beach moni-
toring programmes that begin by identifying designated recre-
ational beach areas, beach sanitary surveys inclusive of
remediation methods, general considerations for monitoring
programmes, and a sampling strategy based upon desired out-
comes. Given the large number of potential aetiological agents
of disease, a tiered approach is recommended for beach sand
monitoring. The approach should begin with measures of
FIOs and/or total culturable fungi followed by microbes
with potential for source tracking. For microbes transmitted
via faecal-oral routes, sources should be identified through
microbial source tracking. For fungi, specific species can be
used to help identify sources. For the third tier, the specific
aetiological agent responsible for disease should be measured.
No beach epidemiological study to date (whether focused on
water or sand) has directly measured pathogens in human
subjects to confirm the aetiological agent of disease.
According to QMRA methods, the most likely aetiological
agents for faecal-oral beach illnesses include norovirus and
Giardia. So far, measurements of fungi have not been included
in beach epidemiological studies. However, given their pro-
pensity in beach sands, agents that we recommend for inclu-
sion in the third tier of measurements are pathogenic
Aspergillus sp., Candida sp., Microsporum sp., and
Trichophyton sp. Measurement techniques include culture-
based methods and quantitative PCR. An alternative approach
can include the measure of the beach metagenome as a means
of assessing the microbial ecological factors that may facilitate
the presence of pathogens.

Considerable evidence exists that sand can serve as a reser-
voir of enteric microorganisms and fungi, which can be vehi-
cles of disease transmission at beach sites. Current policies
worldwide, at both national and international levels, give
scant regard to the impact of sands on the health of users of
beaches. We recommend that sand quality measures should
be considered with some urgency for inclusion in regulatory
programmes aimed at protecting recreational beach user
health. Contaminated sands present health and economic
costs that can and should be known by decision makers, com-
munities and by individuals. Available evidence should be
evaluated by both scientists and regulators with a view to
filling the data gaps outlined here, which should be followed
by sound policy development for safeguarding public health.
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Diwan V., Stålsby L.C. and Tamhankar A.J. (2013) Seasonal and tem-
poral variation in release of antibiotics in hospital wastewater: estima-
tion using continuous and grab sampling. PLoS ONE 8, e68715.
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